Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 478
Filtrar
1.
Exp Eye Res ; 240: 109808, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38278467

RESUMEN

Vasohibin-2 (VASH2) is confirmed to be associated with angiogenesis. To investigate the vitreous levels of VASH2 and how VASH2 induces angiogenesis in proliferative diabetic retinopathy (PDR), a total of 120 eyes were enrolled in this prospective and randomized controlled study and the vitreous level of VASH2 was quantified by Luminex liquid suspension chip. Vector systems were applied in human retinal microvascular endothelial cells (HRMECs) for VASH2 gene overexpression, along with interfering lentiviral vectors (VASH2-shRNA) for VASH2 gene silencing. Cell migration, autophagic flux, as well as the expression of α-tubulin, detyrosinated ⍺-tubulin, LC3 II/LC3 I, P62 were detected under normal, VASH2 overexpression, or interference conditions. The level of VASH2 in PDR patients was significantly higher (218.61 ± 30.14 pg/ml) than that in ERM/MH patients (80.78 ± 2.05 pg/ml) (P = 0.001). The migration ability of HRMECs was significantly increased in VASH2 overexpression group, while in the interfering group, the migration ability decreased. VASH2 increased the detyrosination of ⍺-tubulin. The high fluorescence intensity of autophagic flux showed an activation of autophagy in VASH2 overexpression group, which was also confirmed by the increase of LC3 II/LC3 I ratio and the decrease of P62. Collectively, the present study shows in PDR, vitreous level of VASH2 is higher. VASH2 promotes neovascularization by inducing autophagy, suggesting VASH2 could be a new anti-angiogenic drug target for PDR.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Humanos , Retinopatía Diabética/genética , Retinopatía Diabética/metabolismo , Células Endoteliales/metabolismo , Tubulina (Proteína)/metabolismo , Estudios Prospectivos , Neovascularización Patológica/metabolismo , Diabetes Mellitus/metabolismo , Proteínas Angiogénicas/genética
2.
Sci Rep ; 13(1): 17153, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37821528

RESUMEN

To study the differences in VASH2 expression in pediatric medulloblastoma (MB) tumor tissues of different molecular subtypes, to analyze the correlation between VASH2 and the molecular subtypes of medulloblastoma, clinicopathological data, and prognosis, and to explore the specific mechanism of VASH2's role in SHH medulloblastoma cell lines DAOY. We analyzed 47 pediatric medulloblastoma cases admitted to the Department of Pediatric Neurosurgery of the First Affiliated Hospital of Xinjiang Medical University from January 2011 to December 2019, and the expression levels of YAP1 and GAB1 in these tumor tissues were detected by immunohistochemistry (IHC) and molecularly typed (WNT-type, SHH-type, and non-WNT/SHH-type). The correlation between VASH2 and molecular typing of medulloblastoma was analyzed. We also analyzed the medulloblastoma dataset in the GEO database (GSE30074 and GSE202043) to explore the correlation between VASH2 and the prognosis of medulloblastoma patients, as well as performed a comprehensive GO enrichment analysis specifically for the VASH2 gene to reveal the underlying biological pathways of its complex molecular profile. We used vasopressin 2 (VASH2) as a research target and overexpressed and knocked down VASH2 in SHH medulloblastoma cell lines DAOY by lentiviral vectors in vitro, respectively, to investigate its role in SHH medulloblastoma cell lines DAOY cell proliferation, apoptosis, migration, invasion and biological roles in the cell cycle. (1) Among 47 pediatric medulloblastoma cases, 8 were WNT type, 29 were SHH type, and 10 were non-WNT/SHH type. the positive rate of VASH2 was highest in the SHH type with a 68.97% positive rate, followed by non-WNT/SHH and lowest in the WNT type. The results of the multifactorial analysis showed that positive expression of VASH2 was associated with medulloblastoma molecular subtype (SHH type), site of tumor development (four ventricles), and gender (male), P < 0.05. (2) The results of cellular experiments showed that overexpression of VASH2 increased the invasion and migration ability of medulloblast Daoy, while knockdown of VASH2 inhibited the invasion and Overexpression of VASH2 upregulated the expression of Smad2 + 3, Smad4, Mmp2 and the apoptotic indicators Bcl-2 and Caspase3, while knockdown of VASH2 suppressed the expression of Smad2 + 3 and Mmp2, and silenced the expression of Smad4 and the apoptotic indicators Bcl2, Caspase3 expression. Flow cytometric cycle analysis showed that VASH2 overexpression increased the S phase in the Daoy cell cycle, while VASH2 knockdown decreased the S phase in the SHH medulloblastoma cell lines DAOY cell cycle. Bioinformatics analysis showed that there was no statistically significant difference between the expression of VASH2 genes in the GSE30074 and GSE202043 datasets and the prognosis of the patients, but the results of this dataset analysis suggested that we need to continue to expand the sample size of the study in the future. The results of the GO enrichment analysis showed that the angiogenic pathway was the most significantly enriched, and the PPI interactions network of VASH2 was obtained from the STRING database. Using the STRING database, we obtained the PPI interaction network of VASH2, and the KEGG enrichment analysis of VASH2-related genes showed that VASH2-related genes were related to the apoptosis pathway, and therefore it was inferred that VASH2 also affects the development of tumors through apoptosis. We found for the first time that the positive expression rate of VASH2 was closely associated with SHH-type pediatric medulloblastoma and that VASH2 was involved in the invasion, migration, cell cycle, and apoptotic capacity of SHH medulloblastoma cell lines DAOY by affecting downstream indicators of the TGF-ß pathway. This suggests that it is involved in the progression of pediatric medulloblastoma, and VASH2 is expected to be a diagnostic and therapeutic target for SHH-type pediatric medulloblastoma.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Humanos , Masculino , Niño , Meduloblastoma/patología , Metaloproteinasa 2 de la Matriz , Neoplasias Cerebelosas/patología , Línea Celular Tumoral , Proliferación Celular/genética , Vasopresinas/uso terapéutico , Proteínas Angiogénicas/genética
3.
Nat Commun ; 14(1): 2265, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-37081014

RESUMEN

Thoracic aortic aneurysm (TAA) is a localized or diffuse dilatation of the thoracic aortas, and causes many sudden deaths each year worldwide. However, there is no effective pharmacologic therapy. Here, we show that AGGF1 effectively blocks TAA-associated arterial inflammation and remodeling in three different mouse models (mice with transverse aortic constriction, Fbn1C1041G/+ mice, and ß-aminopropionitrile-treated mice). AGGF1 expression is reduced in the ascending aortas from the three models and human TAA patients. Aggf1+/- mice and vascular smooth muscle cell (VSMC)-specific Aggf1smcKO knockout mice show aggravated TAA phenotypes. Mechanistically, AGGF1 enhances the interaction between its receptor integrin α7 and latency-associated peptide (LAP)-TGF-ß1, blocks the cleavage of LAP-TGF-ß1 to form mature TGF-ß1, and inhibits Smad2/3 and ERK1/2 phosphorylation in VSMCs. Pirfenidone, a treatment agent for idiopathic pulmonary fibrosis, inhibits TAA-associated vascular inflammation and remodeling in wild type mice, but not in Aggf1+/- mice. In conclusion, we identify an innovative AGGF1 protein therapeutic strategy to block TAA-associated vascular inflammation and remodeling, and show that efficacy of TGF-ß inhibition therapies require AGGF1.


Asunto(s)
Aneurisma de la Aorta Torácica , Factor de Crecimiento Transformador beta1 , Humanos , Ratones , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Sistema de Señalización de MAP Quinasas , Aneurisma de la Aorta Torácica/genética , Ratones Noqueados , Inflamación/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteínas Angiogénicas/genética
4.
Tohoku J Exp Med ; 258(2): 121-128, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-35922907

RESUMEN

Vasohibin-2 (VASH2) is a gene that promotes local angiogenesis. The tubulin carboxypeptidase activity of vasohibin causes detyrosination of alpha-tubulin and may play an important role in the regulation of various phenomena. Pathological and therapeutic angiogenesis are involved in atherosclerotic lesions. This study aimed to investigate whether the expression of VASH2 is associated with peripheral artery disease (PAD) in relation to angiogenesis, tubulin detyrosination, and severity of atherosclerotic lesions. An analysis of femoral and tibial arteries obtained from 86 patients with PAD or abdominal aortic aneurysm (AAA) was performed. The expressions of cluster of differentiation 31, VASH1, VASH2, and detyrosinated alpha-tubulin (DT-tubulin) were examined by immunohistochemistry, and their association with PAD was analyzed. The counts of VASH2 in the tunica media and adventitia in the tibial artery were significantly higher than those in the femoral artery in the PAD (P = 0.005 and P = 0.008, respectively) and AAA (P = 0.002 and P < 0.001, respectively) groups. In the tunica media and adventitia, VASH2 was significantly correlated with DT-tubulin. There was no significant difference in the expression of VASH2 and DT-tubulin in medial smooth muscle cells (McNemar test, P > 0.999). This study revealed the possible involvements of VASH2 in atherosclerosis by two methods-one maybe related to the progression of atherosclerosis by inducing angiogenesis and the second may be related to the decrease in arterial elasticity by increasing DT-tubulin in medial smooth muscle cells.


Asunto(s)
Proteínas Angiogénicas , Enfermedad Arterial Periférica , Tubulina (Proteína) , Proteínas Angiogénicas/genética , Proteínas Angiogénicas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Humanos , Tubulina (Proteína)/metabolismo
5.
Nan Fang Yi Ke Da Xue Xue Bao ; 42(7): 966-975, 2022 Jul 20.
Artículo en Chino | MEDLINE | ID: mdl-35869758

RESUMEN

OBJECTIVE: To explore the role of vasohibin-2 (VASH2) in regulation of proliferation and metastasis of cervical cancer cells. METHODS: We analyzed the differentially expressed genes between cervical cancer cells with flotillin-1 overexpression and knockdown by RNA-seq combined with analysis of public databases. The expression levels of VASH2 were examined in normal cervical epithelial cells (HcerEpic), cervical cancer cell lines (HeLa, C-33A, Ca ski, SiHa and MS751) and fresh cervical cancer tissues with different lymph node metastasis status. We further tested the effects of lentivirus-mediated overexpression and interference of VASH2 on proliferation, migration, invasion and lymphatic vessel formation of the cervical cancer cells and detected the expression levels of key epithelial-mesenchymal transition (EMT) markers and TGF-ß mRNA. RESULTS: RNA-seq and analysis of public databases showed that VASH2 expression was significantly upregulated in cervical cancer cells exogenously overexpressing flotillin-1 (P < 0.05) and downregulated in cells with flotillin-1 knockdown (P < 0.05), and was significantly higher in cervical cancer tissues with lymph node metastasis than in those without lymph node metastasis (P < 0.01). In cervical cancer cell lines Ca Ski, SiHa, and MS751 and cervical cancer tissue specimens with lymph node metastasis, VASH2 expression was also significantly upregulated as compared with HcerEpic cells and cervical cancer tissues without lymph node metastasis (P < 0.05). Exogenous overexpression of VASH2 significantly promoted proliferation, migration, invasion and lymphatic vessel formation of cervical cancer cells, whereas these abilities were significantly inhibited in cells with VASH2 knockdown (P < 0.05). The cervical cancer cells overexpressing VASH2 showed significant down- regulation of e-cadherin and up- regulation of N-cadherin, Vimentin and VEGF-C, while the reverse changes were detected in cells with VASH2 knockdown (P < 0.05). TGF-ß mRNA expression was significantly up-regulated in cervical cancer cells overexpressing VASH2 and down-regulated in cells with VASH2 knockdown (P < 0.001). CONCLUSION: Flotillin-1 may participate in TGF-ß signaling pathway-mediated EMT through its down-stream target gene VASH2 to promote the proliferation, migration, invasion and lymphatic vessel formation of cervical cancer cells in vitro.


Asunto(s)
Transición Epitelial-Mesenquimal , Neoplasias del Cuello Uterino , Proteínas Angiogénicas/genética , Proteínas Angiogénicas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Metástasis Linfática , ARN Mensajero , Factor de Crecimiento Transformador beta/metabolismo , Neoplasias del Cuello Uterino/patología
6.
Environ Pollut ; 308: 119665, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35738517

RESUMEN

Maternal exposure to atmospheric fine particulate matter (PM2.5) during pregnancy is associated with adverse fetal development, including abnormal brain development. However, the underlying mechanisms and influencing factors remain uncertain. This study investigated the roles of DNA methylation in genes involving neurodevelopment and thyroid hormones (THs) in fetal brain development after maternal exposure to PM2.5 from e-waste. Among 939 healthy pregnant women recruited from June 2011 to September 2012, 101 e-waste-exposed and 103 reference mother-infant pairs (204 pairs totally) were included. Annual ground-level PM2.5 concentrations over e-waste-exposed area (116.38°E, 23.29°N) and reference area (116.67°E, 23.34°N) in 2011, 2012 were obtained by estimates and maternal exposure was evaluated by calculating individual chronic daily intakes (CDIs) of PM2.5. Methylation and THs including thyroid-stimulating hormone (TSH), free triiodothyronine (FT3) and free thyroxine (FT4) level were measured in umbilical cord blood collected shortly after delivery. We found higher ground-level PM2.5 concentrations led to greater individual CDI of PM2.5 in e-waste-exposed pregnant women. After adjustment for gender and birth BMI, significant mediation effects on the adverse associations of maternal PM2.5 exposure with birth head circumference were observed for methylations at positions +13 and + 32 (respectively mediated proportion of 9.8% and 5.3%, P < 0.05 and P < 0.01) in the brain-specific angiogenesis inhibitor 1 (BAI1) gene, but not for methylations in the catenin cadherin-associated protein, alpha 2 (CTNNA2) gene. BAI1 (position +13) methylation was also significantly correlated with FT3 levels (rs = -0.156, P = 0.032), although maternal CDI of PM2.5 was positively associated with higher odds of abnormal TSH levels (OR = 5.03, 95% CI: 1.00, 25.20, P = 0.05) rather than FT3 levels. Our findings suggest that methylation (likely linked to THs) in neonates may play mediation roles associated with abnormal brain development risk due to maternal exposure to atmospheric PM2.5 from e-waste.


Asunto(s)
Proteínas Angiogénicas , Encéfalo , Metilación de ADN , Exposición Materna , Material Particulado , Receptores Acoplados a Proteínas G , Proteínas Angiogénicas/genética , Encéfalo/crecimiento & desarrollo , Femenino , Desarrollo Fetal , Humanos , Recién Nacido , Exposición Materna/efectos adversos , Material Particulado/toxicidad , Embarazo , Receptores Acoplados a Proteínas G/genética , Hormonas Tiroideas , Tirotropina , Tiroxina
7.
Vasc Health Risk Manag ; 18: 201-209, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401004

RESUMEN

The Klippel-Trénaunay syndrome is an unusual syndrome of vascular and dermatologic manifestation in which patients demonstrate hemihypertrophy of the soft tissue and bones of one limb, cutaneous haemangiomas and varicosities in anatomically abnormal positions. Described in 1900 by two French physicians, the etiology remained unclear until recently, when evidence emerged that there was a genetic basis for this sporadic disorder. Genes that encoded pathological angiogenic factors and caused vascular dysmorphogenesis, explaining the molecular bases of this syndrome, were identified. Several angiogenic genes were identified but one gene, the AGGF1 (formerly VG5Q) gene, was seen in mutations involving patients diagnosed with Klippel-Trénaunay syndrome. Furthermore, this syndrome was also noted to have overlapping clinical features linked with the "overgrowth syndromes," in which genetic mutations along somatic lines were identified. These involved The PI3K enzyme which forms part of the phosphoinositide 3-kinase pathway which is encoded by the PIK3CA-gene. This enzyme mediates embryonic cellular growth in-utero and diseases involved in this pathway are classified as members of the PIK3CA-related overgrowth syndrome. This paper reviews the status of what is now known about the molecular genetics of this unusual, but clinically challenging disorder and its differentiation from similar diseases, linked with the PIK3CA-gene and the related overgrowth syndromes.


Asunto(s)
Síndrome de Klippel-Trenaunay-Weber , Proteínas Angiogénicas/genética , Fosfatidilinositol 3-Quinasa Clase I/genética , Humanos , Síndrome de Klippel-Trenaunay-Weber/diagnóstico , Síndrome de Klippel-Trenaunay-Weber/genética , Síndrome de Klippel-Trenaunay-Weber/patología , Mutación , Fosfatidilinositol 3-Quinasas/genética
8.
J Biol Chem ; 298(4): 101759, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35202649

RESUMEN

Angiogenic factor AGGF1 (AngioGenic factor with G-patch and FHA (Forkhead-Associated) domain 1) blocks neointimal formation (formation of a new or thickened layer of arterial intima) after vascular injury by regulating phenotypic switching of vascular smooth muscle cells (VSMCs). However, the AGGF1 receptor on VSMCs and the underlying molecular mechanisms of its action are unknown. In this study, we used functional analysis of serial AGGF1 deletions to reveal the critical AGGF1 domain involved in VSMC phenotypic switching. This domain was required for VSMC phenotypic switching, proliferation, cell cycle regulation, and migration, as well as the regulation of cell cycle inhibitors cyclin D, p27, and p21. This domain also contains an RDDAPAS motif via which AGGF1 interacts with integrin α7 (ITGA7), but not α8. In addition, we show that AGGF1 enhanced the expression of contractile markers MYH11, α-SMA, and SM22 and inhibited MEK1/2, ERK1/2, and ELK phosphorylation in VSMCs, and that these effects were inhibited by knockdown of ITGA7, but not by knockdown of ITGA8. In vivo, deletion of the VSMC phenotypic switching domain in mice with vascular injury inhibited the functions of AGGF1 in upregulating α-SMA and SM22, inhibiting MEK1/2, ERK1/2, and ELK phosphorylation, in VSMC proliferation, and in blocking neointimal formation. Finally, we show the inhibitory effect of AGGF1 on neointimal formation was blocked by lentivirus-delivered shRNA targeting ITGA7. Our data demonstrate that AGGF1 interacts with its receptor integrin α7 on VSMCs, and this interaction is required for AGGF1 signaling in VSMCs and for attenuation of neointimal formation after vascular injury.


Asunto(s)
Músculo Liso Vascular , Lesiones del Sistema Vascular , Proteínas Angiogénicas/genética , Proteínas Angiogénicas/metabolismo , Animales , Antígenos CD/metabolismo , Movimiento Celular , Proliferación Celular , Células Cultivadas , Cadenas alfa de Integrinas/metabolismo , Ratones , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Neointima/genética , Neointima/metabolismo , Lesiones del Sistema Vascular/metabolismo
9.
Exp Neurol ; 351: 113994, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35114205

RESUMEN

The adhesion G protein-coupled receptor BAI1/ADGRB1 plays an important role in suppressing angiogenesis, mediating phagocytosis, and acting as a brain tumor suppressor. BAI1 is also a critical regulator of dendritic spine and excitatory synapse development and interacts with several autism-relevant proteins. However, little is known about the relationship between altered BAI1 function and clinically relevant phenotypes. Therefore, we studied the effect of reduced expression of full length Bai1 on behavior, seizure susceptibility, and brain morphology in Adgrb1 mutant mice. We compared homozygous (Adgrb1-/-), heterozygous (Adgrb1+/-), and wild-type (WT) littermates using a battery of tests to assess social behavior, anxiety, repetitive behavior, locomotor function, and seizure susceptibility. We found that Adgrb1-/- mice showed significant social behavior deficits and increased vulnerability to seizures. Adgrb1-/- mice also showed delayed growth and reduced brain weight. Furthermore, reduced neuron density and increased apoptosis during brain development were observed in the hippocampus of Adgrb1-/- mice, while levels of astrogliosis and microgliosis were comparable to WT littermates. These results show that reduced levels of full length Bai1 is associated with a broader range of clinically relevant phenotypes than previously reported.


Asunto(s)
Proteínas Angiogénicas/metabolismo , Receptores Acoplados a Proteínas G , Proteínas Angiogénicas/genética , Animales , Encéfalo/metabolismo , Hipocampo/metabolismo , Ratones , Receptores Acoplados a Proteínas G/genética , Convulsiones/genética , Convulsiones/metabolismo
10.
Pathol Res Pract ; 230: 153764, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35032831

RESUMEN

MicroRNAs (miRNAs) act as oncogenes or tumor suppressors by suppressing the expression of target genes, some of which are engaged in angiogenic signaling pathways directly or indirectly. Tumor development and metastasis are dependent on angiogenesis, and it is the main reason for the poor prognosis of cancer patients. New blood vessels are formed from pre-existing vessels when angiogenesis occurs. Thus, it is essential to develop primary tumors and the spread of cancer to surrounding tissues. MicroRNAs (miRNAs) are small noncoding RNAs involved in various biological processes. They can bind to the 3'-UTR of their target genes and prevent them from expressing. MiRNAs control the activity of endothelial cells (ECs) through altering many biological pathways, which plays a key role in cancer progression and angiogenesis. Recent findings revealed that tumor-derived extracellular vesicles participated directly in the control of tumor angiogenesis by delivering miRNAs to ECs. miRNAs recently show great promise in cancer therapies to inhibit angiogenesis. In this study, we showed the miRNA-regulated signaling pathways in tumor angiogenesis with highlighting the anti-angiogenic therapy response and miRNA delivery methods that have been used to inhibit angiogenesis in both in vivo and in vitro studies.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Proteínas Angiogénicas/antagonistas & inhibidores , Neoplasias de la Mama/irrigación sanguínea , Neoplasias de la Mama/terapia , Terapia Genética , MicroARNs/uso terapéutico , Neovascularización Patológica , Proteínas Angiogénicas/genética , Proteínas Angiogénicas/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Terapia Molecular Dirigida , Transducción de Señal
11.
Pathol Res Pract ; 230: 153758, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35026646

RESUMEN

Lymphangioleiomyomatosis (LAM) is a rare pulmonary neoplasm, clinically associated with dyspnea and respiratory failure. Current therapeutic modalities do not necessarily reach satisfactory outcome and novel therapeutic approaches are currently warranted. Therefore, in this study, we focused on vasohibin-1 (VASH1) and -2 (VASH2); VASH1 terminated and VASH2 promoted angiogenesis. In addition, both VASH1/2 were reported to influence the progression of various human malignancies. We first performed hierarchical clustering analysis to attempt to classify 36 LAM cases into three different clusters according to immunoreactivity of VASH1/2 and other angiogenic and prognostic factors of LAM; VEGFR1/2/3, p-mTOR, p-S6, p-4EBP, ERα, PgR, MMP2, and MMP9. The cluster harboring higher angiogenic factors had higher VASH1/2 status. VASH1 was significantly positively correlated with VEGFR2, MMP9, and p-mTOR (p-value <0.05), and VASH2 with both angiogenic and prognostic factors including VEGFR1, PgR, MMP9, p-mTOR, p-S6, and p-4EBP (p-value <0.05). Subsequent PCR array of angiogenic genes demonstrated that high VASH1 mRNA was significantly positively associated with the status of SPHK1 and TYPM, lower EGF and EFNB2 (p-value <0.05), and high VASH2 mRNA negatively with MMP2 (p-value <0.05). VASH1 was considered to be up-regulated by activation of angiogenesis, whereas VASH2 could influence the angiogenesis and progression of LAM.


Asunto(s)
Proteínas Angiogénicas/metabolismo , Biomarcadores de Tumor/metabolismo , Proteínas de Ciclo Celular/metabolismo , Neoplasias Pulmonares/metabolismo , Linfangioleiomiomatosis/metabolismo , Neovascularización Patológica , Adulto , Proteínas Angiogénicas/genética , Biomarcadores de Tumor/genética , Proteínas de Ciclo Celular/genética , Progresión de la Enfermedad , Femenino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Linfangioleiomiomatosis/genética , Linfangioleiomiomatosis/patología , Masculino , Persona de Mediana Edad , Adulto Joven
12.
Microvasc Res ; 140: 104297, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34890690

RESUMEN

Angiogenesis caused by acute vascular occlusion occurs in various ischemic diseases. The in vitro tube formation assay by endothelial cells is a rapid, quantitative method for drug discovery on angiogenesis. Tube formation assay on Matrigel has been widely used to identify the angiogenesis, however, there are some problems to limit its application. In this study, we found for the first time that sodium dithionite (SD) could induce endothelial cell tube formation without Matrigel under hypoxia condition. To further verify our findings, the angiogenesis related proteins and mRNA at different time points after tube formation were measured both in primary human large-vessel endothelial cell (HUVECs) and murine microvascular endothelial cell line (Bend.3). In conclusion, compared with traditional tube formation on Matrigel, the novel model exhibits the following advantages: (1) Combination oxygen glucose deprivation with sodium dithionite (OGD-SD) model is operated more easily than traditional tube formation. (2) OGD-SD can be used for not only cell imaging, but also immunofluorescence, protein extraction and gene analysis. (3) OGD-SD is more applicable to acute hypoxia model of endothelial cell in vitro. (4) OGD-SD may be more suitable to identify molecular mechanism of compound that intervenes processes of pro-tube formation, tube formation and tube disconnection.


Asunto(s)
Células Endoteliales/patología , Células Endoteliales de la Vena Umbilical Humana/patología , Neovascularización Patológica , Neovascularización Fisiológica , Proteínas Angiogénicas/genética , Proteínas Angiogénicas/metabolismo , Animales , Bioensayo , Hipoxia de la Célula , Línea Celular , Movimiento Celular , Ditionita/farmacología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Regulación de la Expresión Génica , Glucosa/deficiencia , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ratones , Neovascularización Fisiológica/efectos de los fármacos , Transducción de Señal
13.
Bioengineered ; 13(1): 164-177, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34847836

RESUMEN

Angiogenesis plays an important role in tissue development and repair, and how to regulate angiogenesis effectively is a widely studied problem in the biomedical field. In recent years, the role of autophagy in vascular endothelial cells has attracted extensive attention. Icariin (ICA) is a traditional Chinese medicine that has been proven to have outstanding protective effects on the vascular system and to regulate cellular autophagy effectively. However, at present, it has not been reported whether ICA can affect the angiogenic ability of endothelial cells by affecting autophagy. In this study, we aimed to investigate whether ICA affects the angiogenesis capacity of EA.hy926 human vascular endothelial cells through autophagy and explain the underlying potential mechanisms. First, we determined that ICA at appropriate concentrations has the ability to promote cell migration and angiogenesis using wound healing assays and tube formation assays. Then, at the molecular level, we observed the upregulation of VEGFA, VEGFR2, ANGI, ANGII, and Tie2 mRNA and detected the upregulation of TGFß1 protein by Western blotting. We also demonstrated that angiogenic concentrations of ICA can effectively activate autophagy. The autophagy inhibitor 3-MA significantly suppressed TGFß1 expression and tube formation in EA.hy926 cells. Overall, we hope that our studies might help to further understand the effect of ICA on vascular endothelial cells and provide a theoretical basis for future angiogenic applications of ICA.


Asunto(s)
Proteínas Angiogénicas/genética , Células Endoteliales/citología , Flavonoides/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Angiopoyetina 1/genética , Angiopoyetina 2/genética , Autofagia , Línea Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Humanos , Receptor TIE-2/genética , Regulación hacia Arriba , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética
15.
Anticancer Res ; 41(9): 4463-4470, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34475070

RESUMEN

BACKGROUND/AIM: The treatment of advanced clear cell renal cell carcinoma (ccRCC) is based on stratification of patients according to prognosis (favorable, intermediate, and poor). The aim of the study was to improve prognostication by biomarkers involved in angiogenesis. PATIENTS AND METHODS: The study group consisted of 20 patients who underwent surgery for ccRCC. Gene expression analysis was peformed on a set of matched (primary tumor, metastasis, n=20+20) FFPE tissue samples. An additional analysis was done on expression data of 606 patients obtained from the TCGA Kidney Clear Cell Carcinoma (KIRC) database. Quantitative estimation of mRNA of selected genes (TaqMan human Angiogenesis Array, 97 genes) was performed by a real-time RT-PCR method with TaqMan® arrays. RESULTS: Using the Cox regression model, 4 genes (PDGFB, FGF4, EPHB2 and BAI1) were identified whose expression was related to progression-free interval (PFI). Further analysis using the Kaplan Meier method conclusively revealed the relationship of BAI1 expression to prognosis (both datasets). Patients with higher BAI1 expression had significantly shorter PFI and overall survival. CONCLUSION: We showed that tumor tissue BAI1 expression level is a prognostic marker in ccRCC. Therefore, this gene might be involved in a prognostic panel to improve scoring systems on which the management of metastatic ccRCC patients is based.


Asunto(s)
Proteínas Angiogénicas/genética , Biomarcadores de Tumor/genética , Carcinoma de Células Renales/genética , Perfilación de la Expresión Génica/métodos , Neoplasias Renales/genética , Receptores Acoplados a Proteínas G/genética , Regulación hacia Arriba , Carcinoma de Células Renales/mortalidad , Carcinoma de Células Renales/cirugía , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Renales/mortalidad , Neoplasias Renales/cirugía , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Pronóstico , Análisis de Regresión , Análisis de Supervivencia
16.
Arterioscler Thromb Vasc Biol ; 41(11): 2756-2769, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34551592

RESUMEN

Objective: Angiogenic factor AGGF1 (angiogenic factor with G-patch and FHA [Forkhead-associated] domain 1) promotes angiogenesis as potently as VEGFA (vascular endothelial growth factor A) and regulates endothelial cell (EC) proliferation, migration, specification of multipotent hemangioblasts and venous ECs, hematopoiesis, and vascular development and causes vascular disease Klippel-Trenaunay syndrome when mutated. However, the receptor for AGGF1 and the underlying molecular mechanisms remain to be defined. Approach and Results: Using functional blocking studies with neutralizing antibodies, we identified [alpha]5[beta]1 as the receptor for AGGF1 on ECs. AGGF1 interacts with [alpha]5[beta]1 and activates FAK (focal adhesion kinase), Src (proto-oncogene tyrosine-protein kinase), and AKT (protein kinase B). Functional analysis of 12 serial N-terminal deletions and 13 C-terminal deletions by every 50 amino acids mapped the angiogenic domain of AGGF1 to a domain between amino acids 604-613 (FQRDDAPAS). The angiogenic domain is required for EC adhesion and migration, capillary tube formation, and AKT activation. The deletion of the angiogenic domain eliminated the effects of AGGF1 on therapeutic angiogenesis and increased blood flow in a mouse model for peripheral artery disease. A 40-mer or 15-mer peptide containing the angiogenic domain blocks AGGF1 function, however, a 15-mer peptide containing a single amino acid mutation from -RDD- to -RGD- (a classical RGD integrin-binding motif) failed to block AGGF1 function. Conclusions: We have identified integrin [alpha]5[beta]1 as an EC receptor for AGGF1 and a novel AGGF1-mediated signaling pathway of [alpha]5[beta]1-FAK-Src-AKT for angiogenesis. Our results identify an FQRDDAPAS angiogenic domain of AGGF1 crucial for its interaction with [alpha]5[beta]1 and signaling.


Asunto(s)
Proteínas Angiogénicas/metabolismo , Células Endoteliales/metabolismo , Miembro Posterior/irrigación sanguínea , Integrina alfa5beta1/metabolismo , Isquemia/metabolismo , Neovascularización Fisiológica , Células 3T3-L1 , Inductores de la Angiogénesis/farmacología , Proteínas Angiogénicas/genética , Proteínas Angiogénicas/farmacología , Animales , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Femenino , Quinasa 1 de Adhesión Focal/metabolismo , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Integrina alfa5beta1/genética , Isquemia/tratamiento farmacológico , Isquemia/genética , Isquemia/fisiopatología , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Neovascularización Fisiológica/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Fosforilación , Dominios y Motivos de Interacción de Proteínas , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Transducción de Señal , Familia-src Quinasas/metabolismo
17.
Biomed Pharmacother ; 143: 112151, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34507115

RESUMEN

Wound healing is a public health concern. Licorice gained a great attention for its antioxidant and anti-inflammatory properties which expand its valuable effects as a herbal medicine. In this study, we pointed out to the wound healing potential and the mechanism by which licorice alcoholic extract can modulate cutaneous wound healing through immune, antioxidant, histopathological, immunohistochemical (IHC) and molecular studies. 24 Wister rats were assigned into 3 groups (n = 8 each); control group, topical and oral supplied groups. Licorice extract administration significantly increased total and differential leucocyte counts, phagocytic activity of neutrophils, antioxidant biomarkers as superoxide dismutase (SOD), glutathione peroxidase activities (GPx) and reduced glutathione (GSH) content with a notable reduction in oxidative stress marker malondialdehyde (MDA). Moreover, histopathological findings detected complete re-epithelialization with increasing collagen synthesis while IHC results revealed a significant enhancement in the expression of α-SMA, PDGFR-α, FGFR1 and Cytokeratin 14 in licorice treated groups compared with the control group. Licorice extract supplementation accelerated wound healing by increasing angiogenesis and collagen deposition through up-regulation of bFGF, VEGF and TGF-ß gene expression levels compared with the control group. UPLC-PDA-MS/MS aided to authenticate the studied Glycyrrihza species and recognized 101 potential constituents that may be responsible for licorice-exhibited potentials. Based on our observations we concluded that licorice enhanced cutaneous wound healing via its free radical-scavenging potential, potent antioxidant activities, and anti-inflammatory actions. Therefore, licorice could be used as a potential alternative therapy for wound injury which could overcome the associated limitations of modern therapeutic products.


Asunto(s)
Inductores de la Angiogénesis/farmacología , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Glycyrrhiza , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Piel/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Heridas Penetrantes/tratamiento farmacológico , Inductores de la Angiogénesis/aislamiento & purificación , Proteínas Angiogénicas/genética , Proteínas Angiogénicas/metabolismo , Animales , Antiinflamatorios/aislamiento & purificación , Antioxidantes/aislamiento & purificación , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Glycyrrhiza/química , Mediadores de Inflamación/metabolismo , Masculino , Neovascularización Fisiológica/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Fitoquímicos/aislamiento & purificación , Extractos Vegetales/aislamiento & purificación , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Piel/lesiones , Piel/metabolismo , Piel/patología , Heridas Penetrantes/genética , Heridas Penetrantes/metabolismo , Heridas Penetrantes/patología
18.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34502102

RESUMEN

Every cell in the body requires oxygen for its functioning, in virtually every animal, and a tightly regulated system that balances oxygen supply and demand is therefore fundamental. The vascular network is one of the first systems to sense oxygen, and deprived oxygen (hypoxia) conditions automatically lead to a cascade of cellular signals that serve to circumvent the negative effects of hypoxia, such as angiogenesis associated with inflammation, tumor development, or vascular disorders. This vascular signaling is driven by central transcription factors, namely the hypoxia inducible factors (HIFs), which determine the expression of a growing number of genes in endothelial cells and pericytes. HIF functions are tightly regulated by oxygen sensors known as the HIF-prolyl hydroxylase domain proteins (PHDs), which are enzymes that hydroxylate HIFs for eventual proteasomal degradation. HIFs, as well as PHDs, represent attractive therapeutic targets under various pathological settings, including those involving vascular (dys)function. We focus on the characteristics and mechanisms by which vascular cells respond to hypoxia under a variety of conditions.


Asunto(s)
Proteínas Angiogénicas/metabolismo , Vasos Sanguíneos/metabolismo , Hipoxia de la Célula , Factor 1 Inducible por Hipoxia/metabolismo , Oxígeno/metabolismo , Proteínas Angiogénicas/genética , Animales , Vasos Sanguíneos/crecimiento & desarrollo , Vasos Sanguíneos/fisiología , Redes Reguladoras de Genes , Humanos , Factor 1 Inducible por Hipoxia/genética , Neovascularización Fisiológica
19.
Basic Res Cardiol ; 116(1): 40, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34105014

RESUMEN

Obtained from the right cell-type, mesenchymal stromal cell (MSC)-derived small extracellular vesicles (sEVs) promote stroke recovery. Within this process, microvascular remodeling plays a central role. Herein, we evaluated the effects of MSC-sEVs on the proliferation, migration, and tube formation of human cerebral microvascular endothelial cells (hCMEC/D3) in vitro and on post-ischemic angiogenesis, brain remodeling and neurological recovery after middle cerebral artery occlusion (MCAO) in mice. In vitro, sEVs obtained from hypoxic (1% O2), but not 'normoxic' (21% O2) MSCs dose-dependently promoted endothelial proliferation, migration, and tube formation and increased post-ischemic endothelial survival. sEVs from hypoxic MSCs regulated a distinct set of miRNAs in hCMEC/D3 cells previously linked to angiogenesis, three being upregulated (miR-126-3p, miR-140-5p, let-7c-5p) and three downregulated (miR-186-5p, miR-370-3p, miR-409-3p). LC/MS-MS revealed 52 proteins differentially abundant in sEVs from hypoxic and 'normoxic' MSCs. 19 proteins were enriched (among them proteins involved in extracellular matrix-receptor interaction, focal adhesion, leukocyte transendothelial migration, protein digestion, and absorption), and 33 proteins reduced (among them proteins associated with metabolic pathways, extracellular matrix-receptor interaction, focal adhesion, and actin cytoskeleton) in hypoxic MSC-sEVs. Post-MCAO, sEVs from hypoxic MSCs increased microvascular length and branching point density in previously ischemic tissue assessed by 3D light sheet microscopy over up to 56 days, reduced delayed neuronal degeneration and brain atrophy, and enhanced neurological recovery. sEV-induced angiogenesis in vivo depended on the presence of polymorphonuclear neutrophils. In neutrophil-depleted mice, MSC-sEVs did not influence microvascular remodeling. sEVs from hypoxic MSCs have distinct angiogenic properties. Hypoxic preconditioning enhances the restorative effects of MSC-sEVs.


Asunto(s)
Proteínas Angiogénicas/metabolismo , Encéfalo/irrigación sanguínea , Células Endoteliales/metabolismo , Vesículas Extracelulares/trasplante , Infarto de la Arteria Cerebral Media/cirugía , Células Madre Mesenquimatosas/metabolismo , Microvasos/metabolismo , Neovascularización Fisiológica , Remodelación Vascular , Proteínas Angiogénicas/genética , Animales , Hipoxia de la Célula , Movimiento Celular , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Vesículas Extracelulares/metabolismo , Humanos , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/fisiopatología , Masculino , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Microvasos/fisiopatología , Neuronas/metabolismo , Neuronas/patología , Recuperación de la Función , Transducción de Señal , Factores de Tiempo
20.
Microvasc Res ; 138: 104189, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34062191

RESUMEN

Tumor-associated vessels constitution is the result of angiogenesis, the hallmark of cancer essential for tumor to develop in dimension and to spread throughout the organism. Tumor endothelium is configured as an active functioning organ capable of determine interaction with the immune response and all the other components of the variegate cancer microenvironment, determining reciprocal influence. Angiogenesis is here analyzed in its molecular and cellular mechanisms, multiple mediators and principal players, represented by Endothelial Cells. It is discussed the striking heterogeneity of cancer endothelium, due to morphological and molecular aberrations that it often presents and its multiple origin. Among the cells that participate to the composition of tumor vasculature, Endothelial Progenitor Cells represent an important source for physical sustain and paracrine signaling in the process of angiogenesis. Treatment options are reviewed, with particular focus on novel therapeutic strategies for overcoming tumor resistance to anti-angiogenic agents.


Asunto(s)
Células Progenitoras Endoteliales/patología , Neoplasias/irrigación sanguínea , Neovascularización Patológica , Microambiente Tumoral , Inhibidores de la Angiogénesis/uso terapéutico , Proteínas Angiogénicas/genética , Proteínas Angiogénicas/metabolismo , Animales , Linaje de la Célula , Células Progenitoras Endoteliales/efectos de los fármacos , Células Progenitoras Endoteliales/inmunología , Células Progenitoras Endoteliales/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/inmunología , Fenotipo , Transducción de Señal , Microambiente Tumoral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...