Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 455
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Poult Sci ; 103(9): 104005, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39053372

RESUMEN

Annexin A2 (ANXA2) is a multifaceted protein implicated in various stages of viral infections, particularly in envelope virus replication through mechanisms such as endocytosis and exocytosis. This study delves into the characterization and functional dynamics of duck ANXA2 (duANXA2). We successfully cloned the full-length coding sequence of duANXA2 and conducted a detailed structural analysis. The open reading frame (ORF) of duANXA2 is 1020 bp, encoding 339 amino acids and featuring 4 conserved domains. Phylogenetic tree analysis indicates that duANXA2 is most closely related to Gallus gallus, with significantly lesser homology to fish species. We evaluated the tissue-specific expression of duANXA2 in healthy ducks, noting its ubiquitous presence but varying expression levels across different organs, with notably high expression in the esophagus and immune organs. Upon infecting duck embryo fibroblast (DEF) cells with the duck Tembusu virus (DTMUV), a flavivirus causing ducks substantial mortality and a dramatic decline in egg production, we observed a pronounced upregulation of duANXA2. Functional assays demonstrated that overexpression of duANXA2 in DEF cells augments DTMUV replication, while its interference markedly reduces DTMUV replication. These findings underscore the role of duANXA2 as a facilitator of DTMUV replication, presenting it as a potential target for therapeutic intervention in managing DTMUV infections.


Asunto(s)
Anexina A2 , Proteínas Aviares , Patos , Flavivirus , Filogenia , Enfermedades de las Aves de Corral , Replicación Viral , Animales , Patos/genética , Anexina A2/genética , Anexina A2/metabolismo , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/genética , Flavivirus/fisiología , Flavivirus/genética , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Proteínas Aviares/química , Clonación Molecular , Infecciones por Flavivirus/veterinaria , Infecciones por Flavivirus/virología , Infecciones por Flavivirus/genética , Secuencia de Aminoácidos , Alineación de Secuencia/veterinaria
2.
J Agric Food Chem ; 72(21): 12240-12250, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38764183

RESUMEN

LIM domain binding 3 (LDB3) serves as a striated muscle-specific Z-band alternatively spliced protein that plays an important role in mammalian skeletal muscle development, but its regulatory role and molecular mechanism in avian muscle development are still unclear. In this study, we reanalyzed RNA sequencing data sets of 1415 samples from 21 chicken tissues published in the NCBI GEO database. First, three variants (LDB3-X, LDB3-XN1, and LDB3-XN2) generated by alternative splicing of the LDB3 gene were identified in chicken skeletal muscle, among which LDB3-XN1 and LDB3-XN2 are novel variants. LDB3-X and LDB3-XN1 are derived from exon skipping in chicken skeletal muscle at the E18-D7 stage and share three LIM domains, but LDB3-XN2 lacks a LIM domain. Our results preliminarily suggest that the formation of three variants of LDB3 is regulated by RBM20. The three splice isomers have divergent functions in skeletal muscle according to in vitro and in vivo assays. Finally, we identified the mechanism by which different variants play different roles through interactions with IGF2BP1 and MYHC, which promote the proliferation and differentiation of chicken myoblasts, in turn regulating chicken myogenesis. In conclusion, this study revealed the divergent roles of three LDB3 variants in chicken myogenesis and muscle remodeling and demonstrated their regulatory mechanism through protein-protein interactions.


Asunto(s)
Empalme Alternativo , Pollos , Proteínas con Dominio LIM , Desarrollo de Músculos , Músculo Esquelético , Animales , Pollos/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/química , Músculo Esquelético/crecimiento & desarrollo , Desarrollo de Músculos/genética , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo , Mioblastos/metabolismo , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Proteínas Aviares/química , Diferenciación Celular , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/química
3.
J Agric Food Chem ; 72(22): 12529-12540, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38764367

RESUMEN

In this study, edible bird's nest (EBN) was proven to be a suitable source of bioactive peptides via enzymatic hydrolysis. The ultrafiltration component of the EBN peptides (EBNPs, Mw < 3 000 Da) could be responsible for moderate moisture retention and filaggrin synthesis. It was found that EBNP had a great capacity to protect HaCaT keratinocytes from DNA damage caused by UVB-irradiation and enhance wound healing by increasing the migratory and proliferative potential of cells. Furthermore, the external application of EBNP could effectively repair high glycolic acid concentration-induced skin burns in mice. A total of 1 188 peptides, predominantly the hydrophobic amino acids (e.g., Leu, Val, Tyr, Phe), were identified in the EBNP by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Molecular docking showed that hydrophobic tripeptides from EBNP had a good binding affinity to proton-dependent oligopeptide transporter PepT1. Our data indicated that the hydrophobic amino acid-rich EBNP plays an important role in skin wound healing.


Asunto(s)
Aves , Proteínas Filagrina , Péptidos , Hidrolisados de Proteína , Piel , Cicatrización de Heridas , Animales , Cicatrización de Heridas/efectos de los fármacos , Hidrolisados de Proteína/química , Hidrolisados de Proteína/metabolismo , Ratones , Piel/química , Piel/metabolismo , Humanos , Péptidos/química , Péptidos/metabolismo , Aves/metabolismo , Simulación del Acoplamiento Molecular , Queratinocitos/metabolismo , Queratinocitos/efectos de los fármacos , Espectrometría de Masas en Tándem , Masculino , Proteínas Aviares/química , Proteínas Aviares/metabolismo , Transporte Biológico , Células HaCaT , Absorción Cutánea
4.
Food Chem ; 454: 139797, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38797099

RESUMEN

This study investigated antioxidant and anti-inflammatory peptides from Edible Bird's Nest (EBN). The prepared EBN peptides were sequentially separated, purified, and successively identified by ultrafiltration, gel filtration and mass spectrometry techniques. Four potential antioxidant and anti-inflammatory peptides were identified as Peptide 1 (LFWSPSVYLK), Peptide 2 (GWPHLEDNYLDW), Peptide 3 (NPPADLHK) and Peptide 4 (GDLAYLDQGHR). Molecular docking analysis revealed that Peptide 1 and Peptide 2 can competitively interrupt the formation of Keap1-Nrf2 due to the presence of hydrophobic and antioxidant amino acids in their peptide sequences. Peptide 3 and Peptide 4 have a strong effect on interacting with the binding site of IKK-ß due to the interaction of anti-inflammatory amino acids and C-terminal arginine/lysine. The four peptides were synthesised and validated for their antioxidant and anti-inflammatory activities. The results suggest that the four peptides may serve as promising bioactive peptides for preventing oxidative stress and inflammation-related diseases.


Asunto(s)
Antiinflamatorios , Antioxidantes , Aves , Simulación del Acoplamiento Molecular , Péptidos , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antiinflamatorios/aislamiento & purificación , Péptidos/química , Péptidos/aislamiento & purificación , Péptidos/farmacología , Secuencia de Aminoácidos , Humanos , Proteínas Aviares/química , Proteínas Aviares/aislamiento & purificación , Estrés Oxidativo/efectos de los fármacos
5.
J Phys Chem B ; 128(22): 5320-5326, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38805723

RESUMEN

It is still a puzzle that has not been entirely solved how migratory birds utilize the Earth's magnetic field for biannual migration. The most consistent explanation thus far is rooted in the modulation of the biological function of the cryptochrome 4 (Cry4) protein by an external magnetic field. This phenomenon is closely linked with the flavin adenine dinucleotide (FAD) cofactor that is noncovalently bound in the protein. Cry4 is activated by blue light, which is absorbed by the FAD cofactor. Subsequent electron and proton transfers trigger radical pair formation in the protein, which is sensitive to the external magnetic field. An important long-lasting redox state of the FAD cofactor is the signaling (FADH•) state, which is present after the transient electron transfer steps have been completed. Recent experimental efforts succeeded in crystallizing the Cry4 protein from Columbia livia (ClCry4) with all of the important residues needed for protein photoreduction. This specific crystallization of Cry4 protein so far is the only avian cryptochrome crystal structure available, which, however, has great similarity to the Cry4 proteins of night migratory birds. The previous experimental studies of the ClCry4 protein included the absorption properties of the protein in its different redox states. The absorption spectrum of the FADH• state demonstrated a peculiar red shift compared to the photoabsorption properties of the FAD cofactor in its FADH• state in other Cry proteins from other species. The aim of this study is to understand this red shift by employing the tools of computational microscopy and, in particular, a QM/MM approach that relies on the polarizable embedding approximation.


Asunto(s)
Criptocromos , Flavina-Adenina Dinucleótido , Criptocromos/química , Criptocromos/metabolismo , Flavina-Adenina Dinucleótido/química , Flavina-Adenina Dinucleótido/metabolismo , Animales , Proteínas Aviares/química , Proteínas Aviares/metabolismo , Oxidación-Reducción
6.
Protein J ; 43(4): 771-781, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38767790

RESUMEN

Hemoglobin (Hb) is the key metalloprotein within red blood cells involved in oxygen transportation from lungs to body cells. The heme-iron atom inherent within Hb effectuates the mechanism of oxygen transportation and carbon dioxide removal. Structural investigations on avian Hb are limited when compared with the enormous work has been carried out on mammalian Hb. Here, the crystal structure of T-state methemoglobin (T-metHb) from domestic duck (Anas platyrhynchos), a low oxygen affinity avian species, determined to 2.1Å resolution is presented. Duck T-metHb crystallized in the orthorhombic space group C2221 with unit cell parameters a = 59.89, b = 109.42 and c = 92.07Å. The final refined model with R-factor: 19.5% and Rfree: 25.2% was obtained. The structural analysis reveals that duck T-metHb adopts a unique quaternary structure that is distinct from any of the avian liganded Hb structures. Moreover, it closely resembles the deoxy Hb of bar-headed goose, a high oxygen-affinity species. Besides the amino acid αPro119 located in the α1ß1 interface, a unique quaternary structure with a constrained heme environment is attributed for the intrinsic low oxygen-affinity of duck Hb. This study reports the first protein crystal structure of low oxygen-affinity avian T-metHb from Anas platyrhynchos.


Asunto(s)
Patos , Metahemoglobina , Oxígeno , Animales , Metahemoglobina/química , Metahemoglobina/metabolismo , Oxígeno/química , Oxígeno/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Proteínas Aviares/química , Conformación Proteica
7.
Poult Sci ; 103(6): 103673, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38564837

RESUMEN

Type IV interferon (IFN) has been shown to be a cytokine with antiviral activity in fish and amphibian. But, it has not been cloned and characterized functionally in avian species. In this study, type IV IFN, IFN-υ, and its 2 possible receptors, IFN-υR1 and IL10RB, were identified from an avian species, the mallard (Anas platyrhynchos). Mallard IFN-υ has a 531 bp open reading frame (ORF), encoding 176 amino acids (aa), and has highly conserved features as reported in different species, with an N-terminal signal peptide and a predicted multi-helix structure. The IFN-υR1 and IL10RB contain 528 and 343 aa, respectively, with IFN-υR1 protein containing JAK1 and STAT binding sites, and IL10RB containing TYK2 binding site. These 2 receptor subunits also possess 3 domains, the N-terminal extracellular domain, the transmembrane domain, and the C-terminal intracellular domain. Expression analysis indicated that IFN-υ, IFN-υR1 and IL10RB were widely expressed in examined organs/tissues, with the highest level observed in pancreas, blood, and kidney, respectively. The expression of IFN-υ, IFN-υR1 and IL10RB in liver, spleen or kidney was significantly upregulated after stimulation with polyI:C. Furthermore, recombinant IFN-υ protein induced the expression of ISGs, and the receptor of IFN-υ was verified as IFN-υR1 and IL10RB using a chimeric receptor approach in HEK293 cells. Taken together, these results indicate that IFN-υ is involved in the host innate immune response in mallard.


Asunto(s)
Proteínas Aviares , Patos , Subunidad beta del Receptor de Interleucina-10 , Animales , Patos/genética , Subunidad beta del Receptor de Interleucina-10/genética , Subunidad beta del Receptor de Interleucina-10/química , Subunidad beta del Receptor de Interleucina-10/metabolismo , Proteínas Aviares/genética , Proteínas Aviares/química , Proteínas Aviares/metabolismo , Secuencia de Aminoácidos , Filogenia , Receptores de Interferón/genética , Receptores de Interferón/metabolismo , Receptores de Interferón/química , Alineación de Secuencia/veterinaria , Inmunidad Innata , Interferones/genética , Interferones/metabolismo , Perfilación de la Expresión Génica/veterinaria
8.
Poult Sci ; 103(5): 103629, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38518664

RESUMEN

Chicken egg chalaza (CLZ) is a natural colloidal structure in eggs that exists as an egg yolk stabilizer and is similar in composition to egg white. In this study, the proteome, phosphoproteome, and N-glycoproteome of CLZ were characterized in depth. We hydrolyzed the CLZ proteins and enriched the phosphopeptides and glycopeptides. We identified 45 phosphoproteins and 80 N-glycoproteins, containing 59 phosphosites and 203 N-glycosylation sites, respectively. Typically, the ovalbumin in CLZ was both phosphorylated and N-glycosylated, with 4 phosphosites and 4 N-glycosylation sites. Moreover, we identified 2 N-glycosylated subunits of ovomucin, mucin-5B and mucin-6, with 32 and nine N- glycosylation sites, respectively. Analysis of the phosphorylation and N-glycosylation status of CLZ proteins could provide novel insights into the structural and functional characteristics of CLZ.


Asunto(s)
Pollos , Proteínas del Huevo , Animales , Proteínas del Huevo/química , Proteínas del Huevo/metabolismo , Proteómica , Proteoma , Proteínas Aviares/química , Proteínas Aviares/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Glicosilación , Óvulo/química , Fosfoproteínas/química , Fosfoproteínas/metabolismo
9.
Viruses ; 13(11)2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34834938

RESUMEN

Two key cytosolic receptors belonging to the retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) family sense the viral RNA-derived danger signals: RIG-I and melanoma differentiation-associated protein 5 (MDA5). Their activation establishes an antiviral state by downstream signaling that ultimately activates interferon-stimulated genes (ISGs). While in rare cases RIG-I gene loss has been detected in mammalian and avian species, most notably in the chicken, MDA5 pseudogenization has only been detected once in mammals. We have screened over a hundred publicly available avian genome sequences and describe an independent disruption of MDA5 in two unrelated avian lineages, the storks (Ciconiiformes) and the rallids (Gruiformes). The results of our RELAX analysis confirmed the absence of negative selection in the MDA5 pseudogene. In contrast to our prediction, we have shown, using multiple dN/dS-based approaches, that the MDA5 loss does not appear to have resulted in any compensatory evolution in the RIG-I gene, which may partially share its ligand-binding specificity. Together, our results indicate that the MDA5 pseudogenization may have important functional effects on immune responsiveness in these two avian clades.


Asunto(s)
Proteínas Aviares/genética , Aves/genética , Proteína 58 DEAD Box/genética , Eliminación de Gen , Secuencia de Aminoácidos , Animales , Proteínas Aviares/química , Proteínas Aviares/inmunología , Aves/clasificación , Aves/inmunología , Proteína 58 DEAD Box/química , Proteína 58 DEAD Box/inmunología , Humanos , Inmunidad Innata , Modelos Moleculares , Filogenia , Seudogenes , Alineación de Secuencia
10.
Genes (Basel) ; 12(10)2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34680960

RESUMEN

Transglutaminase 1 (TGM1) is a membrane-anchored enzyme that cross-links proteins during terminal differentiation of epidermal and esophageal keratinocytes in mammals. The current genome assembly of the chicken, which is a major model for avian skin biology, does not include an annotated region corresponding to TGM1. To close this gap of knowledge about the genetic control of avian cornification, we analyzed RNA-sequencing reads from organotypic chicken skin and identified TGM1 mRNA. By RT-PCR, we demonstrated that TGM1 is expressed in the skin and esophagus of chickens. The cysteine-rich sequence motif required for palmitoylation and membrane anchorage is conserved in the chicken TGM1 protein, and differentiated chicken keratinocytes display membrane-associated transglutaminase activity. Expression of TGM1 and prominent transglutaminase activity in the esophageal epithelium was also demonstrated in the zebra finch. Altogether, the results of this study indicate that TGM1 is conserved among birds and suggest that chicken keratinocytes may be a useful model for the study of TGM1 in non-mammalian cornification.


Asunto(s)
Proteínas Aviares/genética , Esófago/metabolismo , Piel/metabolismo , Transglutaminasas/genética , Animales , Proteínas Aviares/química , Proteínas Aviares/metabolismo , Embrión de Pollo , Secuencia Conservada , Esófago/enzimología , Evolución Molecular , Pinzones , Piel/enzimología , Transglutaminasas/química , Transglutaminasas/metabolismo
11.
Science ; 373(6551): 226-231, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34244416

RESUMEN

Early events in the evolutionary history of a clade can shape the sensory systems of descendant lineages. Although the avian ancestor may not have had a sweet receptor, the widespread incidence of nectar-feeding birds suggests multiple acquisitions of sugar detection. In this study, we identify a single early sensory shift of the umami receptor (the T1R1-T1R3 heterodimer) that conferred sweet-sensing abilities in songbirds, a large evolutionary radiation containing nearly half of all living birds. We demonstrate sugar responses across species with diverse diets, uncover critical sites underlying carbohydrate detection, and identify the molecular basis of sensory convergence between songbirds and nectar-specialist hummingbirds. This early shift shaped the sensory biology of an entire radiation, emphasizing the role of contingency and providing an example of the genetic basis of convergence in avian evolution.


Asunto(s)
Evolución Biológica , Néctar de las Plantas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Pájaros Cantores/fisiología , Percepción del Gusto , Aminoácidos , Animales , Proteínas Aviares/química , Proteínas Aviares/metabolismo , Aves/fisiología , Carbohidratos , Dieta , Conducta Alimentaria , Multimerización de Proteína , Sacarosa
12.
Vet Res Commun ; 45(4): 329-333, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34278549

RESUMEN

In captivity, cardiovascular diseases are common in grey parrots. The diagnosis of these diseases in living birds is difficult, and new diagnostic possibilities would be desirable. The heart is an important endocrine organ in which cardiomyocytes synthetise B-type natriuretic peptide (BNP) and release it into the bloodstream. This hormone has a significant role in cardiovascular and body fluid regulation. The blood concentration of BNP is used in human medicine and small animal medicine as a diagnostic tool in the identification of heart diseases and as a prognostic marker for the risk of mortality. The nucleotide and amino acid sequence of BNP was described in Congo (n = 4) and Timneh (n = 3) grey parrots by PCR after RNA isolation from the atria and ventricles. The results showed a high similarity between the nucleotide sequences of the grey parrots' BNP and the already known sequence of this hormone in chickens. The amino acid sequence of the mature peptide region is consistent in these three species. BNP plasma concentration could be a possible blood parameter for identifying clinically manifest cardiovascular diseases in grey parrots as it is in other species.


Asunto(s)
Proteínas Aviares/genética , Péptido Natriurético Encefálico/genética , Loros/genética , Secuencia de Aminoácidos , Animales , Proteínas Aviares/química , Proteínas Aviares/metabolismo , Secuencia de Bases , Péptido Natriurético Encefálico/química , Péptido Natriurético Encefálico/metabolismo , Loros/metabolismo , Alineación de Secuencia
13.
Nat Commun ; 12(1): 4461, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34294694

RESUMEN

Serial femtosecond crystallography has opened up many new opportunities in structural biology. In recent years, several approaches employing light-inducible systems have emerged to enable time-resolved experiments that reveal protein dynamics at high atomic and temporal resolutions. However, very few enzymes are light-dependent, whereas macromolecules requiring ligand diffusion into an active site are ubiquitous. In this work we present a drop-on-drop sample delivery system that enables the study of enzyme-catalyzed reactions in microcrystal slurries. The system delivers ligand solutions in bursts of multiple picoliter-sized drops on top of a larger crystal-containing drop inducing turbulent mixing and transports the mixture to the X-ray interaction region with temporal resolution. We demonstrate mixing using fluorescent dyes, numerical simulations and time-resolved serial femtosecond crystallography, which show rapid ligand diffusion through microdroplets. The drop-on-drop method has the potential to be widely applicable to serial crystallography studies, particularly of enzyme reactions with small molecule substrates.


Asunto(s)
Cristalografía por Rayos X/métodos , Enzimas/química , Enzimas/metabolismo , Animales , Proteínas Aviares/química , Proteínas Aviares/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Biocatálisis , Dominio Catalítico , Pollos , Cristalografía por Rayos X/instrumentación , Diseño de Equipo , Modelos Moleculares , Muramidasa/química , Muramidasa/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , beta-Lactamasas/química , beta-Lactamasas/metabolismo
14.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34074782

RESUMEN

Vivid, saturated structural colors are conspicuous and important features of many animals. A rich diversity of three-dimensional periodic photonic nanostructures is found in the chitinaceous exoskeletons of invertebrates. Three-dimensional photonic nanostructures have been described in bird feathers, but they are typically quasi-ordered. Here, we report bicontinuous single gyroid ß-keratin and air photonic crystal networks in the feather barbs of blue-winged leafbirds (Chloropsis cochinchinensis sensu lato), which have evolved from ancestral quasi-ordered channel-type nanostructures. Self-assembled avian photonic crystals may serve as inspiration for multifunctional applications, as they suggest efficient, alternative routes to single gyroid synthesis at optical length scales, which has been experimentally elusive.


Asunto(s)
Proteínas Aviares/química , Evolución Biológica , Plumas/química , Nanoestructuras/química , Passeriformes , beta-Queratinas/química , Animales , Óptica y Fotónica
15.
PLoS One ; 16(5): e0250408, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33945567

RESUMEN

Gyps species have been previously shown to be highly sensitive to the toxic effects of diclofenac, when present in their food sources as drug residues following use as a veterinary medicine. Vultures exposed to diclofenac soon become depressed and die with signs of severe visceral gout and renal damage on necropsy. The molecular mechanism behind toxicity and renal excretion of uric acid is still poorly understood. With the clinical pictures suggesting renal uric acid excretion as the target site for toxicity, as a first step the following study was undertaken to determine the uric acid excretory pathways present in the African white-backed vulture (Gyps africanus) (AWB), one of the species susceptible to toxicity. Using transcriptome analysis, immunohistochemistry and functional predictions, we demonstrated that AWB makes use of the organic anion transporter 2 (OAT2) for their uric acid excretion. RT-qPCR analysis subsequently demonstrated relatively similar expression of the OAT2 transporter in the vulture and chicken. Lastly docking analysis, predicted that the non-steroidal drugs induce their toxicity through an allosteric binding.


Asunto(s)
Proteínas Aviares/metabolismo , Riñón/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Animales , Proteínas Aviares/química , Proteínas Aviares/genética , Aves , Transportadores de Anión Orgánico Sodio-Independiente/química , Transportadores de Anión Orgánico Sodio-Independiente/genética , Transcriptoma , Ácido Úrico/metabolismo
16.
Biol Reprod ; 104(6): 1302-1321, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-33675663

RESUMEN

Turkey semen contains cysteine-rich secretory proteins (CRISPs) that belong to the dominant seminal plasma proteins. We aimed to isolate and characterize CRISP from turkey seminal plasma and evaluate its possible involvement in yellow semen syndrome (YSS). YSS, which is well characterized, causes reduced fertility and hatchability. The protein was purified using hydrophobic interaction, gel filtration, and reverse phase chromatography. It then was subjected to identification by mass spectrometry, analysis of physicochemical properties, and specific antibody production. The biological function of the isolated protein was tested and included its effects on sperm motility and migration and sperm-egg interactions. Sperm motility was measured with the CASA system using Hobson Sperm Tracker. The reproductive tract of turkey toms was analyzed for gene expression; immunohistochemistry was used for protein localization in the male reproductive tract, spermatozoa, and inner perivitelline layer. The isolated protein was identified as cysteine-rich venom protein-like isoform X2 (CRVP X2; XP_010706464.1) and contained feature motifs of CRISP family proteins. Turkey CRVP X2 was present in both spermatozoa and seminal plasma. The extensive secretion of CRVP X2 by the epithelial cells of the epididymis and ductus deferens suggests its involvement in post-testicular sperm maturation. The internally localized CRVP X2 in the proximal part of the sperm tail might be responsible for stimulation of sperm motility. CRVP X2 on the sperm head might be involved in several events prior to fusion and may also participate in gamete fusion itself. Although the mechanisms by which CRVP X2 mediates fertilization are still unknown, the involvement of complementary sites cannot be excluded. The disturbance of CRVP X2 expression can serve as an etiologic factor of YSS in the turkey. This study expands the understanding of the detailed mechanism of fertilization in birds by clarifying the specific role of CRVP X2.


Asunto(s)
Proteínas Aviares/genética , Semen/química , Proteínas de Plasma Seminal/genética , Motilidad Espermática , Interacciones Espermatozoide-Óvulo , Pavos/genética , Secuencia de Aminoácidos , Animales , Proteínas Aviares/química , Proteínas Aviares/metabolismo , Masculino , Filogenia , Proteínas de Plasma Seminal/química , Proteínas de Plasma Seminal/metabolismo , Alineación de Secuencia , Pavos/metabolismo
17.
Mikrochim Acta ; 188(3): 101, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33630138

RESUMEN

Green emitting copper nanoclusters (G-Cu NCs), yellow emitting Cu NCs (Y-Cu NCs), orange emitting Cu NCs (O-Cu NCs) and red emitting Cu NCs (R-Cu NCs) were prepared using chicken egg white as the stabilizer by changing the reaction conditions. This is a green, facile and cheap method to explore different color emitting CuNCs by the same precursor and stabilizers. The G-Cu NCs were employed for the detection of ethanol due to their aggregation induced emission enhancement (AIEE) effect. The fluorescence emission of Cu NCs at 526 nm under the excitation of 444 nm can be effectively enhanced in the presence of ethanol due to AIEE effect, thus realizing the quantitative determination of ethanol content in the range 5-60%. In addition, a visual dual-emission fluorescence probe with the combination of G-Cu NCs and silicon nanoparticles (Si NPs/G-Cu NCs) was designed to evaluate ethanol content conveniently and rapidly. Desirable linear relationship is observed between ratio of fluorescence intensity (I525/I441) and ethanol content under the excitation of 383 nm. Visible color transformation of this probe is observed in the ethanol content range 2-20%. Moreover, the ethanol sensing platforms were applied to the detection and evaluation of the alcohol content of liquor, and the recoveries in liquor were in the range 99.7% to 113%, broadening the applications of Cu NCs and providing a sensitive detection method for ethanol.


Asunto(s)
Conalbúmina/química , Etanol/análisis , Colorantes Fluorescentes/química , Nanopartículas del Metal/química , Muramidasa/química , Ovalbúmina/química , Animales , Proteínas Aviares/química , Pollos , Cobre/química , Bebidas Fermentadas/análisis , Fluorescencia , Límite de Detección , Espectrometría de Fluorescencia/métodos
18.
Cell Stress Chaperones ; 26(1): 115-127, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32880058

RESUMEN

Heat shock protein 60 (HSP60) is a well-recognized multifunctional protein, playing a substantial role in protecting organisms from environmental stress. The domestic pigeon (Columba livia) is a promising model organism, with important economic and ecological value, and its health is susceptible to temperature stress. To explore the molecular characteristics, tissue expression profile, and response to temperature stress for HSP60 of Columba livia (ClHSP60), we firstly cloned and characterized the complete cDNA sequence and investigated its expression profile under optimal conditions and acute temperature stress. The cDNA of ClHSP60 contained 2257 nucleotides, consisting of 12 exons with length ranging from 65 to 590 bp. The open reading frame (ORF) encoded 573 amino acids with calculated molecular weight of 60.97 kDa that contained a number of structurally prominent domains or motifs. Under optimal temperature conditions, levels of ClHSP60 expression differed between all the tested tissues (the highest was noted in liver and the lowest in pectoralis major muscle). Under acute temperature stress, five patterns of change were detected in the tested tissues, suggesting that different tissues in domestic pigeons differentially responded to various temperature stress conditions. Upregulation of ClHSP60 expression was highest in the lung and pectoralis major muscle, reflecting the crucial role of these two tissues in temperature regulation. However, the crop, cerebrum, and heart showed little change or decreased ClHSP60 expression. The results indicate that ClHSP60 may be sensitive to and play pivotal roles in responding to acute temperature stress.


Asunto(s)
Proteínas Aviares/genética , Chaperonina 60/genética , Columbidae/genética , Animales , Proteínas Aviares/química , Chaperonina 60/química , Clonación Molecular , Respuesta al Choque por Frío , Columbidae/fisiología , Respuesta al Choque Térmico , Modelos Moleculares , Filogenia , Transcriptoma
19.
Protein Pept Lett ; 28(1): 18-30, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32196438

RESUMEN

BACKGROUND: "Avians" often show efficient oxygen management to meet the demands of their metabolism. Hemoglobin, a transporter protein consists of four non-covalently linked subunits contain haem binding hydrophobic pocket serves as a site of allosteric cooperativity. The physiology and anatomy of both mammals and avian are functionally different, in birds, the respiratory system formed by small air sacs that serve as tidal ventilation for the lungs and have no significant exchange across their cells. Parakeet (Psittacula krameri) a tropical and non-migrating species and it is easily adapted to living in disturbed habitat. The sequence analysis reveals that α and ß chain of parakeet hemoglobin highly similar grey lag goose and bar headed goose hemoglobin respectively. Thus it has been tempted us to study in to analyzing the sequence and structural comparison of this hemoglobin to find out the physiological capabilities of parakeet hemoglobin. OBJECTIVE: The structure determination studies of parakeet hemoglobin by X-ray diffraction. The sequence and structure are compared with goose, chicken and human Hb, emphasizing the role of amino acids in the subunit contacts that facilitate survival by low oxygen demand. METHODS: The Hb was purified and crystallized by hanging drop vapor diffusion method using poly ethylene glycol (PEG) 3350 and sodium phosphate buffer. X-ray diffracted data set was collected at 3Å resolution, the data was processed in Automar and molecular replacement, refinements, model building was carried out in CCP4i program package. The final refined model was deposited in protein data bank with accession id 2zfb. RESULTS: The tertiary structure of Parakeet Hb is compared with the met form of BHG Hb (1c40) and oxy form of GLG (1faw) and oxy form of human Hbs (1hho). Superimposing parakeet Hb α1ß1 subunit with 'R' state human Hb shows an r.m.s.d of 0.98 Å and for BHG and GLG Hb, the r.m.s.d shows 0.72 and 0.61 Å. The replacement of α115Asp in parakeet Hb as against the α115Glu in human Hb results in the movement of GH corners. The amino acid proline at α50 present only in Parakeet Hb and Chicken HbD and not present in any other avian family which includes human Hb. The residue α78Thr located in EF corner loop region, which slightly diverge when superimposing with human and BHG Hb and also replacement of α113Asn present only in Parakeet Hb placed near the FG helix corner. CONCLUSION: The present study describes the structure determination of parakeet hemoglobin and its structural features to understand its oxygen affinity characteristics. The crystals were obtained by buffered low-salt conditions, like those of chicken HbD, carbonmonoxy and cyanomet human Hb. The present study reveals several interesting and unique modifications in the finer aspects of the quaternary structure of parakeet Hb, which are involved in oxygen affinity characteristics and the α1ß1 subunit contacts. Crystallization of parakeet Hb with allosteric effectors like Inositol pentaphosphate may bring further understanding of the influence of physiological and environmental factors on the quaternary structure.


Asunto(s)
Proteínas Aviares/química , Hemoglobinas/química , Oxígeno/química , Psittacula , Animales , Cristalografía por Rayos X , Dominios Proteicos
20.
Dev Comp Immunol ; 117: 103979, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33338517

RESUMEN

Complement component 3 d (C3d) is the final cleavage product of the complement component C3 and serves as a crucial role in link innate and adaptive immunity, and increase B-cell sensitivity to an antigen by 1000-10000 fold. The crystal structure of human C3d revealed there are two distinct surfaces, a convex surface containing the thioester-constituting residues that mediate covalent binding to the target antigen, and a concave surface with an acidic pocket responsible for interaction with CR2. In this study, we cloned and sequenced cDNA fragment encoding C3d region from 15 wild bird species. Then, the C3d sequences from wild birds, chicken and mammals were aligned to construct phylogenetic trees. Phylogenetic tree displayed two main branches, indicating mammals and birds, but the bird C3d branch was divided into two main parts, with five wild birds (Ardeola bacchus, Zoothera, Bubo, Crossoptilon mantchuricum and Caprimulgus europaeus) clustering much closer to mammals. In addition, the C3d proteins of Ardeola bacchus, Bubo, Crossoptilon mantchuricum and Caprimulgus europaeus contained a Glu163 residue at the position at which Lys163 was found in other birds. However, Glu163 have the same charge polarity as Asp163, which is the key amino acid residue comprising the acidic pocket combined with CR2 found at this position in mammals, and Zoothera also possessed Asp163 at this position. Structure modeling analyses also verified that the C3ds of these five wild bird species exhibited the amino acid sequence and structure comprising the typical acidic pocket found in mammals that is required for combination with B cell surface receptors, which contribute electrostatic forces to interact with CR2. Our investigations indicate that some bird C3ds may already have the ability to bind with CR2 by electrostatic force, like mammals. As Ardeola bacchus, Zoothera, Bubo, Crossoptilon mantchuricum and Caprimulgus europaeus have more typical C3d concave acid pockets and thus a stronger ability to bind CR2, we speculate that these five wild birds may have a solider immunity against pathogens. Our phylogenetic and structural analyses of bird C3ds provide insights on the evolutionary divergence in the function of immune factors of avian and mammalian.


Asunto(s)
Proteínas Aviares/inmunología , Aves/inmunología , Complemento C3d/inmunología , Evolución Molecular , Inmunidad/inmunología , Secuencia de Aminoácidos , Animales , Proteínas Aviares/química , Proteínas Aviares/genética , Sitios de Unión/genética , Aves/clasificación , Aves/genética , Clonación Molecular , Complemento C3d/clasificación , Complemento C3d/genética , Humanos , Inmunidad/genética , Modelos Moleculares , Filogenia , Unión Proteica , Dominios Proteicos , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...