RESUMEN
Aging is associated with a number of physiologic changes including perturbed circadian rhythms; however, mechanisms by which rhythms are altered remain unknown. To test the idea that circulating factors mediate age-dependent changes in peripheral rhythms, we compared the ability of human serum from young and old individuals to synchronize circadian rhythms in culture. We collected blood from apparently healthy young (age 25-30) and old (age 70-76) individuals at 14:00 and used the serum to synchronize cultured fibroblasts. We found that young and old sera are equally competent at initiating robust ~24 hr oscillations of a luciferase reporter driven by clock gene promoter. However, cyclic gene expression is affected, such that young and old sera promote cycling of different sets of genes. Genes that lose rhythmicity with old serum entrainment are associated with oxidative phosphorylation and Alzheimer's Disease as identified by STRING and IPA analyses. Conversely, the expression of cycling genes associated with cholesterol biosynthesis increased in the cells entrained with old serum. Genes involved in the cell cycle and transcription/translation remain rhythmic in both conditions. We did not observe a global difference in the distribution of phase between groups, but found that peak expression of several clock-controlled genes (PER3, NR1D1, NR1D2, CRY1, CRY2, and TEF) lagged in the cells synchronized ex vivo with old serum. Taken together, these findings demonstrate that age-dependent blood-borne factors affect circadian rhythms in peripheral cells and have the potential to impact health and disease via maintaining or disrupting rhythms respectively.
Asunto(s)
Envejecimiento , Ritmo Circadiano , Humanos , Ritmo Circadiano/fisiología , Adulto , Anciano , Envejecimiento/fisiología , Fibroblastos/metabolismo , Masculino , Femenino , Regulación de la Expresión Génica , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Células Cultivadas , Suero , Factores de EdadRESUMEN
Deprivation of sleep (DS) and its effects on circadian rhythm gene expression are not well understood despite their influence on various physiological and psychological processes. This study aimed to elucidate the changes in the expression of circadian rhythm genes following a night of sleep and DS. Their correlation with sleep architecture and physical activity was also examined. The study included 81 participants who underwent polysomnography (PSG) and DS with actigraphy. Blood samples were collected after PSG and DS. Expression levels of brain and muscle ARNT-like 1 (BMAL1), circadian locomotor output cycles kaput (CLOCK), neuronal PAS domain protein 2 (NPAS2), period 1 (PER1), cryptochrome 1 (CRY1) and nuclear receptor subfamily 1 group D member 1 (NR1D1) were analyzed using qRT-PCR. DS decreased the expression of CLOCK and BMAL1 while increasing PER1. PER1 expression correlated positively with total sleep time and non-rapid-eye-movement (NREM) sleep duration and negatively with sleep latency, alpha, beta and delta waves in the O1A2 lead. Physical activity during DS showed positive correlations with CLOCK, BMAL1, and CRY1. The findings highlight the role of PER1 in modulating sleep patterns, suggesting potential targets for managing sleep-related disorders. Further research is essential to deepen the understanding of these relationships and their implications.
Asunto(s)
Ritmo Circadiano , Privación de Sueño , Sueño , Humanos , Masculino , Ritmo Circadiano/genética , Femenino , Sueño/genética , Sueño/fisiología , Adulto , Privación de Sueño/genética , Privación de Sueño/metabolismo , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Polisomnografía , Criptocromos/genética , Criptocromos/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Regulación de la Expresión Génica , Ejercicio FísicoRESUMEN
Obstructive sleep apnea (OSA) is characterized by co-occurrence with affective disorders. Our study aims to investigate the association of circadian clock gene expressions, and the presence and severity of depressive symptoms in OSA patients. The study included 184 individuals, who underwent polysomnography (PSG) and had their peripheral blood collected in the evening before and the morning after the PSG. Patients were divided into two groups: the OSA (apnea-hypopnea index (AHI) > 5) and the control group (AHI < 5). RNA was extracted from peripheral blood leukocytes. Expression levels of the selected genes (BMAL1, CLOCK, PER1, CRY1, NPAS2, and NR1D1) were assessed by qRT-PCR. Questionnaire data was collected in the morning (including the Insomnia Severity Index (ISI), Epworth Sleepiness Scale (ESS), Chronotype Questionnaire (CQ), and Montgomery-Åsberg Depression Rating Scale (MADRS)). The expression of all examined circadian clock genes in OSA patients was upregulated in the morning compared to the evening (except NPAS2). No differences were observed between OSA and control groups at either time point. Additionally, there was a positive correlation between the severity of depressive symptoms (assessed with MADRS) and morning expression of circadian genes in the group of OSA patients. Finally, in multivariable linear regression, ISI score (B = 0.750, p < 0.001), AM score of CQ (B = 0.416, p = 0.007), and morning PER1 gene expression (B = 4.310, p = 0.042) were found to be predictive factors for greater severity of depression symptoms in OSA patients. Dysregulated circadian clock gene expression in OSA patients is linked to depressive symptom severity, suggesting circadian disruption may underlie affective symptoms in OSA.
Asunto(s)
Relojes Circadianos , Depresión , Polisomnografía , Apnea Obstructiva del Sueño , Humanos , Apnea Obstructiva del Sueño/genética , Apnea Obstructiva del Sueño/fisiopatología , Masculino , Persona de Mediana Edad , Femenino , Relojes Circadianos/genética , Depresión/genética , Adulto , Proteínas CLOCK/genética , Índice de Severidad de la Enfermedad , Ritmo Circadiano/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas del Tejido Nervioso , Factores de Transcripción ARNTL , CriptocromosRESUMEN
The circadian variation in stroke occurrence is a well-documented phenomenon. However, the circadian effect on stroke outcome, particularly on post-stroke cognition, has not yet been fully elucidated. We aim to evaluate the influence of diurnal variation of stroke onset upon post-stroke cognition and development of post-stroke depression. Based on 4-hourly time period of stroke occurrence, 249 recruited cohorts were categorized into 6 groups. Several clinical and cognitive parameters were compared among the groups. Then, the mRNA expression of core clock genes in Peripheral Blood Mononuclear Cells were quantified and correlated with post-stroke outcomes among 24 acute phase cases with day-time or night-time stroke occurrence. Furthermore, the genetic susceptibility towards a higher number of cases in the morning was examined by genotyping CLOCK (rs1801260T/C, rs4580704G/C) and CRY2 (rs2292912C/G) genes variants in cases and 292 controls. In our study, the peak for highest incidence although observed during the early morning from 4 to 8 am, the nocturnal-onset stroke cases showed more severity (12.2 ± 5.67) at the time of admission irrespective of arterial territory involved. The night onset cases were also found to be more susceptible to develop language impairment and post-stroke depression in due course of time. Upon transcript analysis, circadian genes (BMAL1 and CRY1) were found to be downregulated in night-time cases than day-time ones during the acute phase of onset. In addition, those mRNA levels also showed a correlation with raw scores for language and depression. However, the difference in incidence frequency along a day did not reveal any genetic correlation. Therefore, we suggest night-time stroke to be positively associated with higher immediate severity and poor cognitive outcome than day-time injury and propose downregulation of circadian genes during the acute phase could be the underlying molecular mechanism for this.
Asunto(s)
Proteínas CLOCK , Ritmo Circadiano , Criptocromos , Depresión , Accidente Cerebrovascular Isquémico , Humanos , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Masculino , Femenino , Persona de Mediana Edad , Criptocromos/genética , India/epidemiología , Anciano , Depresión/etiología , Depresión/genética , Proteínas CLOCK/genética , Accidente Cerebrovascular Isquémico/genética , Accidente Cerebrovascular Isquémico/complicaciones , Sobrevivientes , Polimorfismo de Nucleótido Simple , ARN Mensajero/genética , ARN Mensajero/biosíntesis , Predisposición Genética a la Enfermedad , Leucocitos Mononucleares , Genotipo , Factores de Tiempo , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/complicacionesRESUMEN
Daily behavioral and physiological rhythms are controlled by the brain's circadian timekeeping system, a synchronized network of neurons that maintains endogenous molecular oscillations. These oscillations are based on transcriptional feedback loops of clock genes, which in Drosophila include the transcriptional activators Clock (Clk) and cycle (cyc). While the mechanisms underlying this molecular clock are very well characterized, the roles that the core clock genes play in neuronal physiology and development are much less understood. The Drosophila timekeeping center is composed of ~150 clock neurons, among which the four small ventral lateral neurons (sLNvs) are the most dominant pacemakers under constant conditions. Here, we show that downregulating the clock gene cyc specifically in the Pdf-expressing neurons leads to decreased fasciculation both in larval and adult brains. This effect is due to a developmental role of cyc, as both knocking down cyc or expressing a dominant negative form of cyc exclusively during development lead to defasciculation phenotypes in adult clock neurons. Clk downregulation also leads to developmental effects on sLNv morphology. Our results reveal a non-circadian role for cyc, shedding light on the additional functions of circadian clock genes in the development of the nervous system.
Asunto(s)
Proteínas CLOCK , Relojes Circadianos , Proteínas de Drosophila , Drosophila melanogaster , Neuronas , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Neuronas/metabolismo , Relojes Circadianos/genética , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Drosophila melanogaster/genética , Ritmo Circadiano/genética , Regulación del Desarrollo de la Expresión Génica , Encéfalo/metabolismo , Encéfalo/crecimiento & desarrollo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Larva/genética , Larva/crecimiento & desarrollo , Factores de Transcripción ARNTLRESUMEN
Chronotypes play a crucial role in regulating sleep-wake cycles and overall health. The aim of this study was to investigate chronotype, sleep quality, polymorphisms of clock genes and the level of leptin in serum. We used standardized questionnaires to assess chronotype and sleep quality. Genetic analysis was performed to determine the selected clock gene polymorphism. Serum leptin level was measured by the Elisa method. The results showed that serum leptin concentration was elevated in women, as well as in men who had a high waist-to-hip ratio (WHR) and body mass index (BMI). The evidence indicated that younger students (<22 years old) were most likely to experience poor sleep quality. Nevertheless, our multivariate analysis revealed that young age and a morning-oriented chronotype were associated with better sleep quality. We noted that clock gene polymorphisms were present in 28.6% of the participants. Moreover, polymorphisms of PER1 c.2247C>T (rs2735611) and PER2 c.-12C>G (rs2304672) genes were associated with serum leptin level and chronotype, respectively. These findings provide insights into the relationships between chronotype, sleep quality, clock gene polymorphisms and obesity risk in biomedical students. Understanding these factors can contribute to better sleep management and potential interventions to improve health outcomes in humans.
Asunto(s)
Proteínas CLOCK , Leptina , Proteínas Circadianas Period , Humanos , Masculino , Femenino , Leptina/sangre , Leptina/genética , Proteínas Circadianas Period/genética , Proteínas CLOCK/genética , Adulto , Adulto Joven , Índice de Masa Corporal , Polimorfismo de Nucleótido Simple , Obesidad/genética , Calidad del Sueño , Ritmo Circadiano/genética , Relación Cintura-Cadera , Adolescente , Sueño/genéticaRESUMEN
Disruption of circadian rhythms contributes to deficits in cognitive functions during aging. Up to date, the biochemical, molecular and chronobiological bases of such deterioration have not been completely elucidated. Here, we aim: 1) to investigate the endogenous nature of 24 h-rhythms of antioxidant defenses, oxidative stress, clock's, and neurotrophic factors expression, in the rat temporal cortex (TC), and 2) to study the consequences of aging on the circadian organization of those factors. We observed a circadian organization of antioxidant enzymes activity, lipoperoxidation and the clock, BMAL1 and RORa, proteins, in the TC of young rats. Such temporal organization suggests the existence of a two-way communication among clock transcription factors and antioxidant defenses. This might generate the rhythmic and circadian expression of Bdnf and Rc3 genes involved in the TC-depending cognitive function. Noteworthy, such circadian organization disappears in the TC of aged rats. Aging also reduces glutathione peroxidase activity and expression, and it increases lipid peroxidation, throughout a 24 h-period. An increased oxidative stress makes the cellular redox environment change into an oxidative status which alters the endogenous clock activity and disrupts the circadian organization of, at least part, of the molecular basis of the synaptic plasticity in the TC.
Asunto(s)
Factores de Transcripción ARNTL , Envejecimiento , Proteínas CLOCK , Ritmo Circadiano , Peroxidación de Lípido , Estrés Oxidativo , Ratas Wistar , Lóbulo Temporal , Animales , Envejecimiento/metabolismo , Envejecimiento/fisiología , Masculino , Ritmo Circadiano/fisiología , Lóbulo Temporal/metabolismo , Proteínas CLOCK/metabolismo , Proteínas CLOCK/genética , Factores de Transcripción ARNTL/metabolismo , Factores de Transcripción ARNTL/genética , Ratas , Estrés Oxidativo/fisiología , Peroxidación de Lípido/fisiología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Antioxidantes/metabolismo , Glutatión Peroxidasa/metabolismo , Glutatión Peroxidasa/genética , Factores de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/genética , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Expresión GénicaRESUMEN
Hypericum perforatum, also known as "natural fluoxetine," is a commonly used herbal remedy for treating depression. It is unclear whether melatonin in plants regulated by the endogenous circadian clock system is like in vertebrates. In this work, we found that the melatonin signal and melatonin biosynthesis gene, serotonin N-acetyltransferase HpSNAT1, oscillates in a 24-hour cycle in H. perforatum. First, we constructed a yeast complementary DNA library of H. perforatum and found a clock protein HpLHY that can directly bind to the HpSNAT1 promoter. Second, it was confirmed that HpLHY inhibits the expression of HpSNAT1 by targeting the Evening Element. Last, it indicated that HpLHY-overexpressing plants had reduced levels of melatonin in 12-hour light/12-hour dark cycle photoperiod, while loss-of-function mutants exhibited high levels, but this rhythm seems to disappear as well. The results revealed the regulatory role of LHY in melatonin biosynthesis, which may make an important contribution to the field of melatonin synthesis regulation.
Asunto(s)
Regulación de la Expresión Génica de las Plantas , Hypericum , Melatonina , Proteínas de Plantas , Melatonina/biosíntesis , Melatonina/metabolismo , Hypericum/metabolismo , Hypericum/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Regiones Promotoras Genéticas , Ritmo Circadiano , FotoperiodoRESUMEN
To explore the action mechanism of berberine in improving adipocytic insulin resistance(IR) by mediating brain and muscle arnt-like 1(BMAL1): circadian locomotor output cycles kaput(CLOCK) complex and regulating glucose and lipid metabolism. After the IR-3T3-L1 adipocyte model was established by dexamethasone induction for 96 h, 0.5, 1, 5, 10, and 20 µmol·L~(-1) berberine was administered for 24 h. The glucose oxidase method and cell counting kit-8(CCK-8) were used to detect extracellular glucose content and cell viability, respectively. The triglyceride(TG) and glycerol contents were detected by enzyme colorimetry. Oil red O staining was used to detect lipid droplets, and fluorescence staining was used to detect Ca~(2+), mitochondrial structure, and reactive oxygen species(ROS). Adiponectin(ADPN), BMAL1, CLOCK, hormone-sensitive triglyceride lipase(HSL), carbohydrate-response element-binding protein(ChREBP), sterol regulatory element-binding protein 1C(SREBP-1C), peroxisome proliferator-activated receptor γ coactivator 1α(PGC1α), carnitine palmitoyl transferase 1α(CPT1α), and peroxisome proliferator-activated receptor α(PPARα) were detected by Western blot(WB). Moreover, the nuclear localization of BMAL1 was detected by immunofluorescence. In addition, 20 µmol·L~(-1) CLK8 inhibitor was added to detect glucose consumption and BMAL1/ChREBP/PPARα protein. The results showed that berberine increased glucose consumption in IR-3T3-L1 adipocytes without affecting cell viability and reduced TG content. In addition, 5 µmol·L~(-1) berberine increased glycerol content and reduced lipid droplet accumulation due to enhanced lipolysis, while 10 µmol·L~(-1) berberine did not affect glycerol content, and fewer lipid droplets were observed due to enhanced lipolysis and glycerol utilization. Berberine improved mitochondrial function by reducing intracellular Ca~(2+) and ROS in IR-3T3-L1 adipocytes and upregulated PGC1α to improve the mitochondrial structure. The results also showed that berberine elevated ADPN to increase the insulin sensitivity of IR-3T3-L1 adipocytes, upregulated peripheral rhythm-related proteins BMAL1 and CLOCK, and strengthened the nuclear localization of BMAL1. In addition, berberine increased key lipolysis protein and lipid oxidation rate-limiting enzyme CPT1α and downregulated the key protein of TG synthesis, SREBP-1C. Moreover, ChREBP and PPARα in IR-3T3-L1 adipocytes were upregula-ted. All the above results suggested that berberine may transform glucose into lipids to enhance the hypoglycemic effect. By considering that CLK8 specifically inhibited the CLOCK acylation to modify BMAL1 and form complex, the results showed that the addition of CLK8 to the berberine group reduced glucose consumption, which suggested that berberine upregulated the formation of BMAL1:CLOCK complex to improve glucose metabolism. The addition of CLK8 to the berberine group upregulated BMAL1 but downregulated ChREBP and PPARα, which suggested that berberine mediated BMAL1:CLOCK complex for the regulation of glucose and lipid metabo-lism to improve adipocytic IR.
Asunto(s)
Células 3T3-L1 , Factores de Transcripción ARNTL , Adipocitos , Berberina , Proteínas CLOCK , Glucosa , Resistencia a la Insulina , Metabolismo de los Lípidos , Animales , Ratones , Metabolismo de los Lípidos/efectos de los fármacos , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Berberina/farmacología , Adipocitos/metabolismo , Adipocitos/efectos de los fármacos , Adipocitos/citología , Glucosa/metabolismo , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Triglicéridos/metabolismoRESUMEN
Pseudo-Response Regulator (PRR) proteins constitute a fundamental set of circadian clock components in plants. PRRs have an amino acid sequence stretch with similarity to the receiver (REC) domain of response regulators (RRs) in the Multi-Step Phosphorelay (MSP). However, it has never been elucidated whether PRRs interact with Histidine-containing Phosphotransfer (HPt) proteins, which transfer a phosphate to RRs. Here, we studied whether PRRs interact with HPts in the moss Physcomitrium patens by the Yeast Two-Hybrid system and Bimolecular Fluorescence Complementation. P. patens PRR1/2/3 interacted with HPt1/2 in the nucleus, but not with HPt3, suggesting that P. patens PRRs function as authentic RRs. We discuss these results in relation to the evolution and diversity of the plant circadian clocks.
Asunto(s)
Bryopsida , Núcleo Celular , Proteínas de Plantas , Bryopsida/metabolismo , Bryopsida/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Núcleo Celular/metabolismo , Relojes Circadianos/fisiología , Proteínas CLOCK/metabolismo , Proteínas CLOCK/genética , Histidina/metabolismo , Técnicas del Sistema de Dos Híbridos , Regulación de la Expresión Génica de las PlantasRESUMEN
INTRODUCTION: This study aimed to investigate the relationship between obstructive sleep apnea (OSA), circadian rhythms, and individual sleep-wake preferences, as measured by chronotype, and to assess the association between circadian clock gene expression and subjective sleep-related variables. METHODS: A total of 184 individuals were recruited, underwent polysomnography (PSG), and completed questionnaires including a chronotype questionnaire (CQ), insomnia severity index (ISI), and Epworth sleepiness scale (ESS). Blood samples were collected in the evening before and morning after PSG. Gene expression analysis included BMAL1, CLOCK, PER1, CRY1, NPAS2, and NR1D1. RESULTS: In the OSA group, the subjective amplitude (AM score of CQ) positively correlated with all circadian clock genes in the morning (R ≥ 0.230 and p < 0.05 for each one), while the morningness-eveningness (ME score of CQ) was only associated with the evening BMAL1 level (R = 0.192; p = 0.044). In healthy controls, insomnia severity correlated with evening expression of BMAL1, PER1, and CRY1. CONCLUSIONS: The findings highlight the complex interplay between OSA, circadian rhythms, and sleep-related variables, suggesting potential determinants of morning chronotype in OSA and implicating disrupted circadian clock function in subjective feelings of energy throughout the day. Further research is warranted to elucidate underlying mechanisms and guide personalized management strategies.
Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Apnea Obstructiva del Sueño , Trastornos del Inicio y del Mantenimiento del Sueño , Humanos , Masculino , Trastornos del Inicio y del Mantenimiento del Sueño/genética , Trastornos del Inicio y del Mantenimiento del Sueño/metabolismo , Femenino , Apnea Obstructiva del Sueño/genética , Apnea Obstructiva del Sueño/fisiopatología , Apnea Obstructiva del Sueño/metabolismo , Persona de Mediana Edad , Relojes Circadianos/genética , Adulto , Ritmo Circadiano/genética , Polisomnografía , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Regulación de la Expresión Génica , Somnolencia , Encuestas y Cuestionarios , Cronotipo , CriptocromosRESUMEN
Prenatal alcohol-exposed (AE) infants and children often demonstrate disrupted sleep patterns, including more frequent awakenings, reduced total sleep time, and more night-to-night sleep variability. Despite the strong connection between sleep patterns and circadian rhythmicity, relatively little is known about circadian rhythm disruptions in individuals with AE. Recently, several reports demonstrated that evaluating the expression patterns of human clock genes in biological fluids could reveal an individual's circadian phenotype. Human saliva offers an emerging and easily available physiological sample that can be collected non-invasively for core-clock gene transcript analyses. We compared the expression patterns of core-clock genes and their regulatory genes in salivary samples of children aged 6-10 years-old with and without AE during the light cycle between ZT0-ZT11. We isolated the RNA from the samples and measured the expression patterns of core clock genes and clock regulating genes using the human specific primers with quantitative real-time PCR. Analysis of core clock genes expression levels in saliva samples from AE children indicates significantly altered levels in expression of core-clock BMAL1, CLOCK, PER1-3 and CRY1,2, as compared to those in age-matched control children. We did not find any sex difference in levels of clock genes in AE and control groups. Cosinor analysis was used to evaluate the rhythmic pattern of these clock genes, which identified circadian patterns in the levels of core clock genes in the control group but absent in the AE group. The gene expression profile of a salivary circadian biomarker ARRB1 was rhythmic in saliva of control children but was arhythmic in AE children. Altered expression patterns were also observed in clock regulatory genes: NPAS2, NFL3, NR1D1, DEC1, DEC2, and DBP, as well as chromatin modifiers: MLL1, P300, SIRT1, EZH2, HDAC3, and ZR1D1, known to maintain rhythmic expression of core-clock genes. Overall, these findings provide the first evidence that AE disturbs the circadian patten expression of core clock genes and clock-regulatory chromatin modifiers in saliva.
Asunto(s)
Ritmo Circadiano , Epigénesis Genética , Trastornos del Espectro Alcohólico Fetal , Saliva , Humanos , Saliva/metabolismo , Niño , Femenino , Masculino , Trastornos del Espectro Alcohólico Fetal/genética , Trastornos del Espectro Alcohólico Fetal/metabolismo , Ritmo Circadiano/genética , Embarazo , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Regulación de la Expresión Génica , Relojes Circadianos/genéticaRESUMEN
Breast cancer (BC) is the leading cause of cancer death among women worldwide. Women employed in shift jobs face heightened BC risk due to prolonged exposure to night shift work (NSW), classified as potentially carcinogenic by the International Agency for Research on Cancer (IARC). This risk is linked to disruptions in circadian rhythms governed by clock genes at the cellular level. However, the molecular mechanisms are unclear. This study aimed to assess clock genes as potential BC biomarkers among women exposed to long-term NSW. Clock gene expression was analysed in paired BC and normal breast tissues within Nurses' Health Studies I and II GEO datasets. Validation was performed on additional gene expression datasets from healthy night shift workers and women with varying BC susceptibility, as well as single-cell sequencing datasets. Post-transcriptional regulators of clock genes were identified through miRNA analyses. Significant alterations in clock gene expression in BC compared to normal tissues were found. BHLHE40, CIART, CLOCK, PDPK1, and TIMELESS were over-expressed, while HLF, NFIL3, NPAS3, PER1, PER3, SIM1, and TEF were under-expressed. The downregulation of PER1 and TEF and upregulation of CLOCK correlated with increased BC risk in healthy women. Also, twenty-six miRNAs, including miR-10a, miR-21, miR-107, and miR-34, were identified as potential post-transcriptional regulators influenced by NSW. In conclusion, a panel of clock genes and circadian miRNAs are suggested as BC susceptibility biomarkers among night shift workers, supporting implications for risk stratification and early detection strategies.
Asunto(s)
Neoplasias de la Mama , Regulación Neoplásica de la Expresión Génica , Horario de Trabajo por Turnos , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/etiología , Horario de Trabajo por Turnos/efectos adversos , Proteínas CLOCK/genética , Biología Computacional/métodos , Biomarcadores de Tumor/genética , Ritmo Circadiano/genética , MicroARNs/genética , Adulto , Persona de Mediana EdadRESUMEN
Breast cancer (BC) is one of the most common and fatal malignancies among women worldwide. Circadian rhythms have emerged in recent studies as being involved in the pathogenesis of breast cancer. In this paper, we reviewed the molecular mechanisms by which the dysregulation of the circadian genes impacts the development of BC, focusing on the critical clock genes, brain and muscle ARNT-like protein 1 (BMAL1) and circadian locomotor output cycles kaput (CLOCK). We discussed how the circadian rhythm disruption (CRD) changes the tumor microenvironment (TME), immune responses, inflammation, and angiogenesis. The CRD compromises immune surveillance and features and activities of immune effectors, including CD8+ T cells and tumor-associated macrophages, that are important in an effective anti-tumor response. Meanwhile, in this review, we discuss bidirectional interactions: age and circadian rhythms, aging further increases the risk of breast cancer through reduced vasoactive intestinal polypeptide (VIP), affecting suprachiasmatic nucleus (SCN) synchronization, reduced ability to repair damaged DNA, and weakened immunity. These complex interplays open new avenues toward targeted therapies by the combination of clock drugs with chronotherapy to potentiate the immune response while reducing tumor progression for better breast cancer outcomes. This review tries to cover the broad area of emerging knowledge on the tumor-immune nexus affected by the circadian rhythm in breast cancer.
Asunto(s)
Envejecimiento , Neoplasias de la Mama , Ritmo Circadiano , Microambiente Tumoral , Humanos , Microambiente Tumoral/inmunología , Neoplasias de la Mama/inmunología , Ritmo Circadiano/inmunología , Femenino , Envejecimiento/inmunología , Animales , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Relojes BiológicosRESUMEN
Alcohol use disorder accounts for a growing worldwide health system concern. Alcohol causes damages to various organs, including intestine and liver, primarily involved in its absorption and metabolism. However, alcohol-related organ damage risk varies significantly among individuals, even when they report consuming comparable dosages of alcohol. Factor(s) that may modulate the risk of organ injuries from alcohol consumption could be responsible for inter-individual variations in susceptibility to alcohol-related organ damages. Accumulating evidence suggests disruptions in circadian rhythm can exacerbate alcohol-related organ damages. Here we investigated the interplay between alcohol, circadian rhythm, and key tissue cellular processes at baseline, after a regular and a shift in the light/dark cycle (LCD) in mice. Central/peripheral clock expression of core clock genes (CoClGs) was analyzed. We also studied circadian homeostasis of tissue cellular processes that are involved in damages from alcohol. These experiments reveal that alcohol affects the expression of CoClGs causing a central-peripheral dyssynchrony, amplified by shift in LCD. The observed circadian clock dyssynchrony was linked to circadian disorganization of key processes involved in the alcohol-related damages, particularly when alcohol was combined with LCD. These results offer insights into the mechanisms by which alcohol interacts with circadian rhythm disruption to promote organ injury.
Asunto(s)
Ritmo Circadiano , Etanol , Homeostasis , Ratones Endogámicos C57BL , Animales , Homeostasis/efectos de los fármacos , Ritmo Circadiano/efectos de los fármacos , Masculino , Etanol/farmacología , Relojes Circadianos/efectos de los fármacos , Ratones , Hígado/efectos de los fármacos , Hígado/metabolismo , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Fotoperiodo , Consumo de Bebidas Alcohólicas/efectos adversos , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismoRESUMEN
The dysregulation of circadian rhythm oscillation is a prominent feature of various solid tumors. Thus, clarifying the molecular mechanisms that maintain the circadian clock is important. In the present study, we revealed that the transcription factor forkhead box FOXK1 functions as an oncogene in breast cancer. We showed that FOXK1 recruits multiple transcription corepressor complexes, including NCoR/SMRT, SIN3A, NuRD, and REST/CoREST. Among them, the FOXK1/NCoR/SIN3A complex transcriptionally regulates a cohort of genes, including CLOCK, PER2, and CRY2, that are critically involved in the circadian rhythm. The complex promoted the proliferation of breast cancer cells by disturbing the circadian rhythm oscillation. Notably, the nuclear expression of FOXK1 was positively correlated with tumor grade. Insulin resistance gradually became more severe with tumor progression and was accompanied by the increased expression of OGT, which caused the nuclear translocation and increased expression of FOXK1. Additionally, we found that metformin downregulates FOXK1 and exports it from the nucleus, while HDAC inhibitors (HDACi) inhibit the FOXK1-related enzymatic activity. Combined treatment enhanced the expression of circadian clock genes through the regulation of FOXK1, thereby exerting an antitumor effect, indicating that highly nuclear FOXK1-expressing breast cancers are potential candidates for the combined application of metformin and HDACi.
Asunto(s)
Neoplasias de la Mama , Ritmo Circadiano , Factores de Transcripción Forkhead , Regulación Neoplásica de la Expresión Génica , Resistencia a la Insulina , Humanos , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Animales , Ritmo Circadiano/genética , Criptocromos/genética , Criptocromos/metabolismo , Complejo Correpresor Histona Desacetilasa y Sin3/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Proliferación Celular , Línea Celular Tumoral , Co-Represor 1 de Receptor Nuclear/metabolismo , Co-Represor 1 de Receptor Nuclear/genética , Inhibidores de Histona Desacetilasas/farmacología , Ratones , Carcinogénesis/genética , Células MCF-7 , Ratones DesnudosRESUMEN
AIMS/HYPOTHESIS: Alterations in circadian rhythms increase the likelihood of developing type 2 diabetes and CVD. Circadian rhythms are controlled by several core clock genes, which are expressed in nearly every cell, including immune cells. Immune cells are key players in the pathophysiology of type 2 diabetes, and participate in the atherosclerotic process that underlies cardiovascular risk in these patients. The role of the core clock in the leukocytes of people with type 2 diabetes and the inflammatory process associated with it are unknown. We aimed to evaluate whether the molecular clock system is impaired in the leukocytes of type 2 diabetes patients and to explore the mechanism by which this alteration leads to an increased cardiovascular risk in this population. METHODS: This is an observational cross-sectional study performed in 25 participants with type 2 diabetes and 28 healthy control participants. Clinical and biochemical parameters were obtained. Peripheral blood leukocytes were isolated using magnetic bead technology. RNA and protein lysates were obtained to assess clock-related gene transcript and protein levels using real-time PCR and western blot, respectively. Luminex XMAP technology was used to assess levels of inflammatory markers. Leukocyte-endothelial interaction assays were performed by perfusing participants' leukocytes or THP-1 cells (with/without CLK8) over a HUVEC monolayer in a parallel flow chamber using a dynamic adhesion system. RESULTS: Participants with type 2 diabetes showed increased BMAL1 and NR1D1 mRNA levels and decreased protein levels of circadian locomotor output cycles kaput (CLOCK), cryptochrome 1 (CRY1), phosphorylated basic helix-loop-helix ARNT like 1 (p-BMAL1) and period circadian protein homologue 2 (PER2). Correlation studies revealed that these alterations in clock proteins were negatively associated with glucose, HbA1c, insulin and HOMA-IR levels and leukocyte cell counts. The leukocyte rolling velocity was reduced and rolling flux and adhesion were enhanced in individuals with type 2 diabetes compared with healthy participants. Interestingly, inhibition of CLOCK/BMAL1 activity in leukocytes using the CLOCK inhibitor CLK8 mimicked the effects of type 2 diabetes on leukocyte-endothelial interactions. CONCLUSIONS/INTERPRETATION: Our study demonstrates alterations in the molecular clock system in leukocytes of individuals with type 2 diabetes, manifested in increased mRNA levels and decreased protein levels of the core clock machinery. These alterations correlated with the impaired metabolic and proinflammatory profile of the participants with type 2 diabetes. Our findings support a causal role for decreased CLOCK/BMAL1 activity in the increased level of leukocyte-endothelial interactions. Overall, our data suggest that alterations in core clock proteins accelerate the inflammatory process, which may ultimately precipitate the onset of CVD in patients with type 2 diabetes.
Asunto(s)
Relojes Circadianos , Diabetes Mellitus Tipo 2 , Leucocitos , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/inmunología , Leucocitos/metabolismo , Masculino , Relojes Circadianos/genética , Persona de Mediana Edad , Femenino , Estudios Transversales , Factores de Transcripción ARNTL/metabolismo , Factores de Transcripción ARNTL/genética , Proteínas CLOCK/metabolismo , Proteínas CLOCK/genética , Criptocromos/metabolismo , Proteínas Circadianas Period/metabolismo , Proteínas Circadianas Period/genética , Ritmo Circadiano/fisiología , Adulto , AncianoRESUMEN
Circadian rhythm is a master process observed in nearly every type of cell throughout the body, and it macroscopically regulates daily physiology. Recent clinical trials have revealed the effects of circadian variation on the incidence, pathophysiological processes, and prognosis of acute ischemic stroke. Furthermore, core clock genes, the cell-autonomous pacemakers of the circadian rhythm, affect the neurovascular unit-composing cells in a nonparallel manner after the same pathophysiological processes of ischemia/reperfusion. In this review, we discuss the influence of circadian rhythms and clock genes on each type of neurovascular unit cell in the pathophysiological processes of acute ischemic stroke.
Asunto(s)
Ritmo Circadiano , Humanos , Ritmo Circadiano/fisiología , Animales , Accidente Cerebrovascular Isquémico/fisiopatología , Encéfalo/fisiopatología , Isquemia Encefálica/fisiopatología , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Accidente Cerebrovascular/fisiopatologíaRESUMEN
A growing body of research has identified circadian-rhythm disruption as a risk factor for metabolic health. However, the underlying biological basis remains complex, and complete molecular mechanisms are unknown. There is emerging evidence from animal and human research to suggest that the expression of core circadian genes, such as circadian locomotor output cycles kaput gene (CLOCK), brain and muscle ARNT-Like 1 gene (BMAL1), period (PER), and cyptochrome (CRY), and the consequent expression of hundreds of circadian output genes are integral to the regulation of cellular metabolism. These circadian mechanisms represent potential pathophysiological pathways linking circadian disruption to adverse metabolic health outcomes, including obesity, metabolic syndrome, and type 2 diabetes. Here, we aim to summarize select evidence from in vivo animal models and compare these results with epidemiologic research findings to advance understanding of existing foundational evidence and potential mechanistic links between circadian disruption and altered clock gene expression contributions to metabolic health-related pathologies. Findings have important implications for the treatment, prevention, and control of metabolic pathologies underlying leading causes of death and disability, including diabetes, cardiovascular disease, and cancer.
Asunto(s)
Proteínas CLOCK , Ritmo Circadiano , Diabetes Mellitus Tipo 2 , Humanos , Animales , Ritmo Circadiano/genética , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Obesidad/genética , Obesidad/metabolismo , Síndrome Metabólico/genética , Síndrome Metabólico/metabolismo , Relojes Circadianos/genéticaRESUMEN
INTRODUCTION: Circadian rhythms (CRs) orchestrate intrinsic 24-hour oscillations which synchronize an organism's physiology and behaviour with respect to daily cycles. CR disruptions have been linked to Parkinson's Disease (PD), the second most prevalent neurodegenerative disorder globally, and are associated to several PD-symptoms such as sleep disturbances. Studying molecular changes of CR offers a potential avenue for unravelling novel insights into the PD progression, symptoms, and can be further used for optimization of treatment strategies. Yet, a comprehensive characterization of the alterations at the molecular expression level for core-clock and clock-controlled genes in PD is still missing. METHODS AND ANALYSIS: The proposed study protocol will be used to characterize expression profiles of circadian genes obtained from saliva samples in PD patients and controls. For this purpose, 20 healthy controls and 70 PD patients will be recruited. Data from clinical assessment, questionnaires, actigraphy tracking and polysomnography will be collected and clinical evaluations will be repeated as a follow-up in one-year time. We plan to carry out sub-group analyses considering several clinical factors (e.g., biological sex, treatment dosages, or fluctuation of symptoms), and to correlate reflected changes in CR of measured genes with distinct PD phenotypes (diffuse malignant and mild/motor-predominant). Additionally, using NanoStringâ multiplex technology on a subset of samples, we aim to further explore potential CR alterations in hundreds of genes involved in neuropathology pathways. DISCUSSION: CLOCK4PD is a mono-centric, non-interventional observational study aiming at the molecular characterization of CR alterations in PD. We further plan to determine physiological modifications in sleep and activity patterns, and clinical factors correlating with the observed CR changes. Our study may provide valuable insights into the intricate interplay between CR and PD with a potential to be used as a predictor of circadian alterations reflecting distinct disease phenotypes, symptoms, and progression outcomes.