Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 616(7957): 590-597, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36991122

RESUMEN

Gasdermins (GSDMs) are pore-forming proteins that play critical roles in host defence through pyroptosis1,2. Among GSDMs, GSDMB is unique owing to its distinct lipid-binding profile and a lack of consensus on its pyroptotic potential3-7. Recently, GSDMB was shown to exhibit direct bactericidal activity through its pore-forming activity4. Shigella, an intracellular, human-adapted enteropathogen, evades this GSDMB-mediated host defence by secreting IpaH7.8, a virulence effector that triggers ubiquitination-dependent proteasomal degradation of GSDMB4. Here, we report the cryogenic electron microscopy structures of human GSDMB in complex with Shigella IpaH7.8 and the GSDMB pore. The structure of the GSDMB-IpaH7.8 complex identifies a motif of three negatively charged residues in GSDMB as the structural determinant recognized by IpaH7.8. Human, but not mouse, GSDMD contains this conserved motif, explaining the species specificity of IpaH7.8. The GSDMB pore structure shows the alternative splicing-regulated interdomain linker in GSDMB as a regulator of GSDMB pore formation. GSDMB isoforms with a canonical interdomain linker exhibit normal pyroptotic activity whereas other isoforms exhibit attenuated or no pyroptotic activity. Overall, this work sheds light on the molecular mechanisms of Shigella IpaH7.8 recognition and targeting of GSDMs and shows a structural determinant in GSDMB critical for its pyroptotic activity.


Asunto(s)
Proteínas Bacterianas , Gasderminas , Proteínas Citotóxicas Formadoras de Poros , Animales , Humanos , Ratones , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Sitios de Unión , Secuencia Conservada , Microscopía por Crioelectrón , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Proteínas Citotóxicas Formadoras de Poros/ultraestructura , Dominios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/ultraestructura , Piroptosis , Shigella , Especificidad de la Especie , Gasderminas/química , Gasderminas/metabolismo , Gasderminas/ultraestructura
2.
Nature ; 616(7957): 598-605, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36991125

RESUMEN

Cytotoxic lymphocyte-derived granzyme A (GZMA) cleaves GSDMB, a gasdermin-family pore-forming protein1,2, to trigger target cell pyroptosis3. GSDMB and the charter gasdermin family member GSDMD4,5 have been inconsistently reported to be degraded by the Shigella flexneri ubiquitin-ligase virulence factor IpaH7.8 (refs. 6,7). Whether and how IpaH7.8 targets both gasdermins is undefined, and the pyroptosis function of GSDMB has even been questioned recently6,8. Here we report the crystal structure of the IpaH7.8-GSDMB complex, which shows how IpaH7.8 recognizes the GSDMB pore-forming domain. We clarify that IpaH7.8 targets human (but not mouse) GSDMD through a similar mechanism. The structure of full-length GSDMB suggests stronger autoinhibition than in other gasdermins9,10. GSDMB has multiple splicing isoforms that are equally targeted by IpaH7.8 but exhibit contrasting pyroptotic activities. Presence of exon 6 in the isoforms dictates the pore-forming, pyroptotic activity in GSDMB. We determine the cryo-electron microscopy structure of the 27-fold-symmetric GSDMB pore and depict conformational changes that drive pore formation. The structure uncovers an essential role for exon-6-derived elements in pore assembly, explaining pyroptosis deficiency in the non-canonical splicing isoform used in recent studies6,8. Different cancer cell lines have markedly different isoform compositions, correlating with the onset and extent of pyroptosis following GZMA stimulation. Our study illustrates fine regulation of GSDMB pore-forming activity by pathogenic bacteria and mRNA splicing and defines the underlying structural mechanisms.


Asunto(s)
Gasderminas , Proteínas Citotóxicas Formadoras de Poros , Animales , Humanos , Ratones , Línea Celular Tumoral , Microscopía por Crioelectrón , Cristalografía por Rayos X , Gasderminas/química , Gasderminas/genética , Gasderminas/metabolismo , Gasderminas/ultraestructura , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/ultraestructura , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Proteínas Citotóxicas Formadoras de Poros/ultraestructura , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/ultraestructura , Piroptosis , Shigella flexneri , Especificidad de la Especie , Empalme Alternativo
3.
Elife ; 72018 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-30010541

RESUMEN

α-Xenorhabdolysins (Xax) are α-pore-forming toxins (α-PFT) that form 1-1.3 MDa large pore complexes to perforate the host cell membrane. PFTs are used by a variety of bacterial pathogens to attack host cells. Due to the lack of structural information, the molecular mechanism of action of Xax toxins is poorly understood. Here, we report the cryo-EM structure of the XaxAB pore complex from Xenorhabdus nematophila and the crystal structures of the soluble monomers of XaxA and XaxB. The structures reveal that XaxA and XaxB are built similarly and appear as heterodimers in the 12-15 subunits containing pore, classifying XaxAB as bi-component α-PFT. Major conformational changes in XaxB, including the swinging out of an amphipathic helix are responsible for membrane insertion. XaxA acts as an activator and stabilizer for XaxB that forms the actual transmembrane pore. Based on our results, we propose a novel structural model for the mechanism of Xax intoxication.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/ultraestructura , Toxinas Bacterianas/química , Membrana Celular/química , Membrana Celular/ultraestructura , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/ultraestructura , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Membrana Celular/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Conformación Proteica , Multimerización de Proteína
4.
Nat Commun ; 9(1): 1806, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29728606

RESUMEN

Pore-forming toxins (PFT) are virulence factors that transform from soluble to membrane-bound states. The Yersinia YaxAB system represents a family of binary α-PFTs with orthologues in human, insect, and plant pathogens, with unknown structures. YaxAB was shown to be cytotoxic and likely involved in pathogenesis, though the molecular basis for its two-component lytic mechanism remains elusive. Here, we present crystal structures of YaxA and YaxB, together with a cryo-electron microscopy map of the YaxAB complex. Our structures reveal a pore predominantly composed of decamers of YaxA-YaxB heterodimers. Both subunits bear membrane-active moieties, but only YaxA is capable of binding to membranes by itself. YaxB can subsequently be recruited to membrane-associated YaxA and induced to present its lytic transmembrane helices. Pore formation can progress by further oligomerization of YaxA-YaxB dimers. Our results allow for a comparison between pore assemblies belonging to the wider ClyA-like family of α-PFTs, highlighting diverse pore architectures.


Asunto(s)
Toxinas Bacterianas/química , Proteínas Citotóxicas Formadoras de Poros/química , Conformación Proteica en Hélice alfa , Multimerización de Proteína , Animales , Toxinas Bacterianas/metabolismo , Microscopía por Crioelectrón , Humanos , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Proteínas Citotóxicas Formadoras de Poros/ultraestructura , Virulencia , Yersinia/metabolismo , Yersinia/patogenicidad , Yersiniosis/microbiología
5.
Nat Commun ; 7: 12062, 2016 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-27405240

RESUMEN

Owing to their pathogenical role and unique ability to exist both as soluble proteins and transmembrane complexes, pore-forming toxins (PFTs) have been a focus of microbiologists and structural biologists for decades. PFTs are generally secreted as water-soluble monomers and subsequently bind the membrane of target cells. Then, they assemble into circular oligomers, which undergo conformational changes that allow membrane insertion leading to pore formation and potentially cell death. Aerolysin, produced by the human pathogen Aeromonas hydrophila, is the founding member of a major PFT family found throughout all kingdoms of life. We report cryo-electron microscopy structures of three conformational intermediates and of the final aerolysin pore, jointly providing insight into the conformational changes that allow pore formation. Moreover, the structures reveal a protein fold consisting of two concentric ß-barrels, tightly kept together by hydrophobic interactions. This fold suggests a basis for the prion-like ultrastability of aerolysin pore and its stoichiometry.


Asunto(s)
Microscopía por Crioelectrón , Proteínas Citotóxicas Formadoras de Poros/ultraestructura , Estructura Terciaria de Proteína , Aeromonas hydrophila , Toxinas Bacterianas , Cristalografía por Rayos X , Interacciones Hidrofóbicas e Hidrofílicas , Procesamiento de Imagen Asistido por Computador , Modelos Moleculares , Pliegue de Proteína
6.
Biochem Biophys Res Commun ; 478(1): 307-313, 2016 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-27381865

RESUMEN

Crystal (Cry) proteins from Bacillus thuringiensis (Bt) are globally used in agriculture as proteinaceous insecticides. Numerous crystal structures have been determined, and most exhibit conserved three-dimensional architectures. Recently, we have identified a novel nematicidal mechanism by which Cry6Aa triggers cell death through a necrosis-signaling pathway via an interaction with the host protease ASP-1. However, we found little sequence conservation of Cry6Aa in our functional study. Here, we report the 1.90 angstrom (Å) resolution structure of the proteolytic form of Cry6Aa (1-396), determined by X-ray crystallography. The structure of Cry6Aa is highly similar to those of the pathogenic toxin family of ClyA-type α-pore-forming toxins (α-PFTs), which are characterized by a bipartite structure comprising a head domain and a tail domain, thus suggesting that Cry6Aa exhibits a previously undescribed nematicidal mode of action. This structure also provides a framework for the functional study of other nematicidal toxins.


Asunto(s)
Antinematodos/química , Bacillus thuringiensis/metabolismo , Proteínas Bacterianas/ultraestructura , Proteínas Hemolisinas/ultraestructura , Proteínas Citotóxicas Formadoras de Poros/ultraestructura , Secuencia de Aminoácidos , Toxinas de Bacillus thuringiensis , Sitios de Unión , Endotoxinas , Datos de Secuencia Molecular , Porosidad , Unión Proteica , Conformación Proteica
7.
Anal Chem ; 88(10): 5046-9, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27120503

RESUMEN

Aerolysin has been used as a biological nanopore for studying peptides, proteins, and oligosaccharides in the past two decades. Here, we report that wild-type aerolysin could be utilized for polynucleotide analysis. Driven a short polynucleotide of four nucleotides length through aerolysin occludes nearly 50% amplitude of the open pore current. Furthermore, the result of total internal reflection fluorescence measurement provides direct evidence for the driven translocation of single polynucleotide through aerolysin.


Asunto(s)
Toxinas Bacterianas/química , ADN de Cadena Simple/análisis , Polinucleótidos/análisis , Proteínas Citotóxicas Formadoras de Poros/química , ADN de Cadena Simple/química , Técnicas Electroquímicas , Fluoresceínas/química , Fluorescencia , Colorantes Fluorescentes/química , Polinucleótidos/química , Proteínas Citotóxicas Formadoras de Poros/ultraestructura
8.
Arch Biochem Biophys ; 600: 1-11, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27001423

RESUMEN

The cotton pests Lygus hesperus and Lygus lineolaris can be controlled by expressing Cry51Aa2.834_16 in cotton. Insecticidal activity of pore-forming proteins is generally associated with damage to the midgut epithelium due to pores, and their biological specificity results from a set of key determinants including proteolytic activation and receptor binding. We conducted mechanistic studies to gain insight into how the first Lygus-active ß-pore forming protein variant functions. Biophysical characterization revealed that the full-length Cry51Aa2.834_16 was a stable dimer in solution, and when exposed to Lygus saliva or to trypsin, the protein underwent proteolytic cleavage at the C-terminus of each of the subunits, resulting in dissociation of the dimer to two separate monomers. The monomer showed tight binding to a specific protein in Lygus brush border membranes, and also formed a membrane-associated oligomeric complex both in vitro and in vivo. Chemically cross-linking the ß-hairpin to the Cry51Aa2.834_16 body rendered the protein inactive, but still competent to compete for binding sites with the native protein in vivo. Our study suggests that disassociation of the Cry51Aa2.834_16 dimer into monomeric units with unoccupied head-region and sterically unhindered ß-hairpin is required for brush border membrane binding, oligomerization, and the subsequent steps leading to insect mortality.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/ultraestructura , Endotoxinas/química , Proteínas Hemolisinas/química , Proteínas Hemolisinas/ultraestructura , Heterópteros/química , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/ultraestructura , Saliva/química , Animales , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/toxicidad , Sitios de Unión , Endotoxinas/toxicidad , Proteínas Hemolisinas/toxicidad , Proteínas de Insectos , Proteínas Citotóxicas Formadoras de Poros/toxicidad , Unión Proteica , Conformación Proteica , Sobrevida , Tripsina/química
9.
Biochim Biophys Acta ; 1858(3): 500-11, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26577274

RESUMEN

A number of pore-forming toxins (PFTs) can assemble on lipid membranes through their specific interactions with lipids. The oligomeric assemblies of some PFTs have been successfully revealed either by electron microscopy (EM) and/or atomic force microscopy (AFM). Unlike EM, AFM imaging can be performed under physiological conditions, enabling the real-time visualization of PFT assembly and the transition from the prepore state, in which the toxin does not span the membrane, to the pore state. In addition to characterizing PFT oligomers, AFM has also been used to examine toxin-induced alterations in membrane organization. In this review, we summarize the contributions of AFM to the understanding of both PFT assembly and PFT-induced membrane reorganization. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.


Asunto(s)
Membrana Celular/ultraestructura , Microscopía de Fuerza Atómica , Proteínas Citotóxicas Formadoras de Poros/ultraestructura , Multimerización de Proteína , Animales , Membrana Celular/química , Membrana Celular/metabolismo , Humanos , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Estructura Cuaternaria de Proteína
10.
Nature ; 495(7442): 520-3, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-23515159

RESUMEN

Photorhabdus luminescens is an insect pathogenic bacterium that is symbiotic with entomopathogenic nematodes. On invasion of insect larvae, P. luminescens is released from the nematodes and kills the insect through the action of a variety of virulence factors including large tripartite ABC-type toxin complexes (Tcs). Tcs are typically composed of TcA, TcB and TcC proteins and are biologically active only when complete. Functioning as ADP-ribosyltransferases, TcC proteins were identified as the actual functional components that induce actin-clustering, defects in phagocytosis and cell death. However, little is known about the translocation of TcC into the cell by the TcA and TcB components. Here we show that TcA in P. luminescens (TcdA1) forms a transmembrane pore and report its structure in the prepore and pore state determined by cryoelectron microscopy. We find that the TcdA1 prepore assembles as a pentamer forming an α-helical, vuvuzela-shaped channel less than 1.5 nanometres in diameter surrounded by a large outer shell. Membrane insertion is triggered not only at low pH as expected, but also at high pH, explaining Tc action directly through the midgut of insects. Comparisons with structures of the TcdA1 pore inserted into a membrane and in complex with TcdB2 and TccC3 reveal large conformational changes during membrane insertion, suggesting a novel syringe-like mechanism of protein translocation. Our results demonstrate how ABC-type toxin complexes bridge a membrane to insert their lethal components into the cytoplasm of the host cell. We believe that the proposed mechanism is characteristic of the whole ABC-type toxin family. This explanation of toxin translocation is a step towards understanding the host-pathogen interaction and the complex life cycle of P. luminescens and other pathogens, including human pathogenic bacteria, and serves as a strong foundation for the development of biopesticides.


Asunto(s)
Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Photorhabdus/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , ADP Ribosa Transferasas/química , ADP Ribosa Transferasas/metabolismo , ADP Ribosa Transferasas/ultraestructura , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/ultraestructura , Toxinas Bacterianas/química , Membrana Celular/metabolismo , Microscopía por Crioelectrón , Citoplasma/metabolismo , Interacciones Huésped-Patógeno , Insectos/citología , Insectos/metabolismo , Insectos/microbiología , Modelos Biológicos , Modelos Moleculares , Photorhabdus/patogenicidad , Photorhabdus/ultraestructura , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/ultraestructura , Conformación Proteica , Transporte de Proteínas
11.
Structure ; 19(2): 181-91, 2011 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-21300287

RESUMEN

Pore-forming toxins (PFTs) are proteins that are secreted as soluble molecules and are inserted into membranes to form oligomeric transmembrane pores. In this paper, we report the crystal structure of Fragaceatoxin C (FraC), a PFT isolated from the sea anemone Actinia fragacea, at 1.8 Å resolution. It consists of a crown-shaped nonamer with an external diameter of about 11.0 nm and an internal diameter of approximately 5.0 nm. Cryoelectron microscopy studies of FraC in lipid bilayers reveal the pore structure that traverses the membrane. The shape and dimensions of the crystallographic oligomer are fully consistent with the membrane pore. The FraC structure provides insight into the interactions governing the assembly process and suggests the structural changes that allow for membrane insertion. We propose a nonameric pore model that spans the membrane by forming a lipid-free α-helical bundle pore.


Asunto(s)
Venenos de Cnidarios/metabolismo , Membrana Dobles de Lípidos/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Proteínas Citotóxicas Formadoras de Poros/ultraestructura , Animales , Membrana Celular/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Membrana Dobles de Lípidos/química , Modelos Moleculares , Multimerización de Proteína , Estructura Secundaria de Proteína , Anémonas de Mar/química
12.
Nature ; 468(7322): 447-51, 2010 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-21037563

RESUMEN

Natural killer cells and cytotoxic T lymphocytes accomplish the critically important function of killing virus-infected and neoplastic cells. They do this by releasing the pore-forming protein perforin and granzyme proteases from cytoplasmic granules into the cleft formed between the abutting killer and target cell membranes. Perforin, a 67-kilodalton multidomain protein, oligomerizes to form pores that deliver the pro-apoptopic granzymes into the cytosol of the target cell. The importance of perforin is highlighted by the fatal consequences of congenital perforin deficiency, with more than 50 different perforin mutations linked to familial haemophagocytic lymphohistiocytosis (type 2 FHL). Here we elucidate the mechanism of perforin pore formation by determining the X-ray crystal structure of monomeric murine perforin, together with a cryo-electron microscopy reconstruction of the entire perforin pore. Perforin is a thin 'key-shaped' molecule, comprising an amino-terminal membrane attack complex perforin-like (MACPF)/cholesterol dependent cytolysin (CDC) domain followed by an epidermal growth factor (EGF) domain that, together with the extreme carboxy-terminal sequence, forms a central shelf-like structure. A C-terminal C2 domain mediates initial, Ca(2+)-dependent membrane binding. Most unexpectedly, however, electron microscopy reveals that the orientation of the perforin MACPF domain in the pore is inside-out relative to the subunit arrangement in CDCs. These data reveal remarkable flexibility in the mechanism of action of the conserved MACPF/CDC fold and provide new insights into how related immune defence molecules such as complement proteins assemble into pores.


Asunto(s)
Membrana Celular/metabolismo , Linfocitos/metabolismo , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Animales , Colesterol/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Factor de Crecimiento Epidérmico/química , Granzimas/metabolismo , Humanos , Ratones , Modelos Moleculares , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/ultraestructura , Estructura Terciaria de Proteína
13.
J Struct Biol ; 169(3): 370-8, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19963066

RESUMEN

Among the state-of-the-art techniques that provide experimental information at atomic scale for membrane proteins, electron crystallography, atomic force microscopy and solid state NMR make use of two-dimensional crystals. We present a cyclodextrin-driven method for detergent removal implemented in a fully automated robot. The kinetics of the reconstitution processes is precisely controlled, because the detergent complexation by cyclodextrin is of stoichiometric nature. The method requires smaller volumes and lower protein concentrations than established 2D crystallization methods, making it possible to explore more conditions with the same amount of protein. The method yielded highly ordered 2D crystals diffracting to high resolution from the pore-forming toxin Aeromonas hydrophila aerolysin (2.9A), the plant aquaporin SoPIP2;1 (3.1A) and the human aquaporin-8 (hAQP8; 3.3A). This new method outperforms traditional 2D crystallization approaches in terms of accuracy, flexibility, throughput, and allows the usage of detergents having low critical micelle concentration (CMC), which stabilize the structure of membrane proteins in solution.


Asunto(s)
Cristalización/métodos , Proteínas de la Membrana/química , Aeromonas hydrophila/metabolismo , Animales , Acuaporinas/química , Acuaporinas/aislamiento & purificación , Acuaporinas/ultraestructura , Toxinas Bacterianas/química , Toxinas Bacterianas/aislamiento & purificación , Microscopía por Crioelectrón , Cristalización/instrumentación , Ciclodextrinas/química , Humanos , Proteínas de la Membrana/aislamiento & purificación , Proteínas de la Membrana/ultraestructura , Microscopía Electrónica de Transmisión , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/aislamiento & purificación , Proteínas Citotóxicas Formadoras de Poros/ultraestructura
15.
Autophagy ; 3(4): 363-5, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17404497

RESUMEN

Vibrio cholerae is the causative agent of cholera in humans. In addition to the criticalvirulence factors cholera toxin and toxin coregulated pilus, V. cholerae secretes V.cholerae cytolysin (VCC), a pore-forming exotoxin able to induce cell lysis and extensivevacuolation. We have shown that this vacuolation is related to the activation of autophagyin response to VCC action. Furthermore, we found that the autophagic pathway wasrequired to protect cells upon VCC intoxication. Based on additional data presented here,we propose a model aimed to explain the mechanism of cell protection. We postulatethat VCC-induced autophagic vacuoles, which display features of multivesicular bodies and enclose the toxin, are implicated in cell defense through VCC degradation involvingfusion with lysosomes.


Asunto(s)
Autofagia/fisiología , Glicoproteínas de Membrana/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Vibrio cholerae/fisiología , Animales , Células CHO , Células CACO-2 , Supervivencia Celular/fisiología , Cricetinae , Cricetulus , Humanos , Lisosomas/metabolismo , Glicoproteínas de Membrana/ultraestructura , Modelos Biológicos , Perforina , Proteínas Citotóxicas Formadoras de Poros/ultraestructura , Vacuolas/metabolismo , Vacuolas/ultraestructura , Vibrio cholerae/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...