Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5049, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877064

RESUMEN

Type IV pili (T4P) represent one of the most common varieties of surface appendages in archaea. These filaments, assembled from small pilin proteins, can be many microns long and serve diverse functions, including adhesion, biofilm formation, motility, and intercellular communication. Here, we determine atomic structures of two distinct adhesive T4P from Saccharolobus islandicus via cryo-electron microscopy (cryo-EM). Unexpectedly, both pili were assembled from the same pilin polypeptide but under different growth conditions. One filament, denoted mono-pilus, conforms to canonical archaeal T4P structures where all subunits are equivalent, whereas in the other filament, the tri-pilus, the same polypeptide exists in three different conformations. The three conformations in the tri-pilus are very different from the single conformation found in the mono-pilus, and involve different orientations of the outer immunoglobulin-like domains, mediated by a very flexible linker. Remarkably, the outer domains rotate nearly 180° between the mono- and tri-pilus conformations. Both forms of pili require the same ATPase and TadC-like membrane pore for assembly, indicating that the same secretion system can produce structurally very different filaments. Our results show that the structures of archaeal T4P appear to be less constrained and rigid than those of the homologous archaeal flagellar filaments that serve as helical propellers.


Asunto(s)
Proteínas Arqueales , Microscopía por Crioelectrón , Proteínas Fimbrias , Proteínas Fimbrias/metabolismo , Proteínas Fimbrias/química , Proteínas Fimbrias/ultraestructura , Proteínas Arqueales/metabolismo , Proteínas Arqueales/química , Proteínas Arqueales/ultraestructura , Modelos Moleculares , Fimbrias Bacterianas/ultraestructura , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/química , Conformación Proteica , Secuencia de Aminoácidos
2.
Nature ; 609(7926): 335-340, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35853476

RESUMEN

Adhesive pili assembled through the chaperone-usher pathway are hair-like appendages that mediate host tissue colonization and biofilm formation of Gram-negative bacteria1-3. Archaic chaperone-usher pathway pili, the most diverse and widespread chaperone-usher pathway adhesins, are promising vaccine and drug targets owing to their prevalence in the most troublesome multidrug-resistant pathogens1,4,5. However, their architecture and assembly-secretion process remain unknown. Here, we present the cryo-electron microscopy structure of the prototypical archaic Csu pilus that mediates biofilm formation of Acinetobacter baumannii-a notorious multidrug-resistant nosocomial pathogen. In contrast to the thick helical tubes of the classical type 1 and P pili, archaic pili assemble into an ultrathin zigzag architecture secured by an elegant clinch mechanism. The molecular clinch provides the pilus with high mechanical stability as well as superelasticity, a property observed for the first time, to our knowledge, in biomolecules, while enabling a more economical and faster pilus production. Furthermore, we demonstrate that clinch formation at the cell surface drives pilus secretion through the outer membrane. These findings suggest that clinch-formation inhibitors might represent a new strategy to fight multidrug-resistant bacterial infections.


Asunto(s)
Acinetobacter baumannii , Microscopía por Crioelectrón , Fimbrias Bacterianas , Chaperonas Moleculares , Acinetobacter baumannii/citología , Acinetobacter baumannii/ultraestructura , Elasticidad , Proteínas Fimbrias/química , Proteínas Fimbrias/metabolismo , Proteínas Fimbrias/ultraestructura , Fimbrias Bacterianas/química , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/ultraestructura , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/ultraestructura
3.
J Biol Chem ; 294(43): 15698-15710, 2019 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-31471320

RESUMEN

Virulent strains of the bacterial pathogen Vibrio cholerae cause the diarrheal disease cholera by releasing cholera toxin into the small intestine. V. cholerae acquired its cholera toxin genes by lysogenic infection with the filamentous bacteriophage CTXφ. CTXφ uses its minor coat protein pIII, located in multiple copies at the phage tip, to bind to the V. cholerae toxin-coregulated pilus (TCP). However, the molecular details of this interaction and the mechanism of phage internalization are not well-understood. The TCP filament is a polymer of major pilins, TcpA, and one or more minor pilin, TcpB. TCP are retractile, with both retraction and assembly initiated by TcpB. Consistent with these roles in pilus dynamics, we hypothesized that TcpB controls both binding and internalization of CTXφ. To test this hypothesis, we determined the crystal structure of the C-terminal half of TcpB and characterized its interactions with CTXφ pIII. We show that TcpB is a homotrimer in its crystallographic form as well as in solution and is present in multiple copies at the pilus tip, which likely facilitates polyvalent binding to pIII proteins at the phage tip. We further show that recombinant forms of TcpB and pIII interact in vitro, and both TcpB and anti-TcpB antibodies block CTXφ infection of V. cholerae Finally, we show that CTXφ uptake requires TcpB-mediated retraction. Our data support a model whereby CTXφ and TCP bind in a tip-to-tip orientation, allowing the phage to be drawn into the V. cholerae periplasm as an extension of the pilus filament.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacteriófagos/metabolismo , Toxina del Cólera/metabolismo , Proteínas Fimbrias/metabolismo , Vibrio cholerae/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Cristalografía por Rayos X , Proteínas Fimbrias/ultraestructura , Modelos Biológicos , Unión Proteica , Multimerización de Proteína , Proteínas Recombinantes/metabolismo , Vibrio cholerae/ultraestructura , Vibrio cholerae/virología
4.
Nat Commun ; 10(1): 3130, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31311931

RESUMEN

Single-stranded RNA bacteriophages (ssRNA phages) infect Gram-negative bacteria via a single maturation protein (Mat), which attaches to a retractile pilus of the host. Here we present structures of the ssRNA phage MS2 in complex with the Escherichia coli F-pilus, showing a network of hydrophobic and electrostatic interactions at the Mat-pilus interface. Moreover, binding of the pilus induces slight orientational variations of the Mat relative to the rest of the phage capsid, priming the Mat-connected genomic RNA (gRNA) for its release from the virions. The exposed tip of the attached Mat points opposite to the direction of the pilus retraction, which may facilitate the translocation of the gRNA from the capsid into the host cytosol. In addition, our structures determine the orientation of the assembled F-pilin subunits relative to the cell envelope, providing insights into the F-like type IV secretion systems.


Asunto(s)
Escherichia coli/virología , Levivirus/ultraestructura , Pared Celular/metabolismo , Pared Celular/ultraestructura , Pared Celular/virología , Microscopía por Crioelectrón , Escherichia coli/ultraestructura , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestructura , Proteínas Fimbrias/metabolismo , Proteínas Fimbrias/ultraestructura , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/ultraestructura , Fimbrias Bacterianas/virología , Levivirus/genética , ARN Guía de Kinetoplastida/metabolismo , ARN Viral/metabolismo , Proteínas Virales/ultraestructura
5.
Nat Microbiol ; 4(8): 1401-1410, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31110358

RESUMEN

Pili on the surface of Sulfolobus islandicus are used for many functions, and serve as receptors for certain archaeal viruses. The cells grow optimally at pH 3 and ~80 °C, exposing these extracellular appendages to a very harsh environment. The pili, when removed from cells, resist digestion by trypsin or pepsin, and survive boiling in sodium dodecyl sulfate or 5 M guanidine hydrochloride. We used electron cryo-microscopy to determine the structure of these filaments at 4.1 Å resolution. An atomic model was built by combining the electron density map with bioinformatics without previous knowledge of the pilin sequence-an approach that should prove useful for assemblies where all of the components are not known. The atomic structure of the pilus was unusual, with almost one-third of the residues being either threonine or serine, and with many hydrophobic surface residues. While the map showed extra density consistent with glycosylation for only three residues, mass measurements suggested extensive glycosylation. We propose that this extensive glycosylation renders these filaments soluble and provides the remarkable structural stability. We also show that the overall fold of the archaeal pilin is remarkably similar to that of archaeal flagellin, establishing common evolutionary origins.


Asunto(s)
Archaea/metabolismo , Proteínas Fimbrias/química , Proteínas Fimbrias/metabolismo , Archaea/citología , Archaea/crecimiento & desarrollo , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Proteínas Arqueales/ultraestructura , Microscopía por Crioelectrón , Proteínas Fimbrias/ultraestructura , Glicosilación , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Pepsina A , Conformación Proteica , Estabilidad Proteica , Análisis de Secuencia de Proteína , Sulfolobus/química , Sulfolobus/citología , Sulfolobus/metabolismo , Tripsina
6.
Nature ; 562(7727): 444-447, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30283140

RESUMEN

Pathogenic bacteria such as Escherichia coli assemble surface structures termed pili, or fimbriae, to mediate binding to host-cell receptors1. Type 1 pili are assembled via the conserved chaperone-usher pathway2-5. The outer-membrane usher FimD recruits pilus subunits bound by the chaperone FimC via the periplasmic N-terminal domain of the usher. Subunit translocation through the ß-barrel channel of the usher occurs at the two C-terminal domains (which we label CTD1 and CTD2) of this protein. How the chaperone-subunit complex bound to the N-terminal domain is handed over to the C-terminal domains, as well as the timing of subunit polymerization into the growing pilus, have previously been unclear. Here we use cryo-electron microscopy to capture a pilus assembly intermediate (FimD-FimC-FimF-FimG-FimH) in a conformation in which FimD is in the process of handing over the chaperone-bound end of the growing pilus to the C-terminal domains. In this structure, FimF has already polymerized with FimG, and the N-terminal domain of FimD swings over to bind CTD2; the N-terminal domain maintains contact with FimC-FimF, while at the same time permitting access to the C-terminal domains. FimD has an intrinsically disordered N-terminal tail that precedes the N-terminal domain. This N-terminal tail folds into a helical motif upon recruiting the FimC-subunit complex, but reorganizes into a loop to bind CTD2 during handover. Because both the N-terminal and C-terminal domains of FimD are bound to the end of the growing pilus, the structure further suggests a mechanism for stabilizing the assembly intermediate to prevent the pilus fibre diffusing away during the incorporation of thousands of subunits.


Asunto(s)
Microscopía por Crioelectrón , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestructura , Escherichia coli/metabolismo , Escherichia coli/ultraestructura , Proteínas Fimbrias/metabolismo , Proteínas Fimbrias/ultraestructura , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/ultraestructura , Adhesinas de Escherichia coli/química , Adhesinas de Escherichia coli/metabolismo , Adhesinas de Escherichia coli/ultraestructura , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas Fimbrias/química , Fimbrias Bacterianas/química , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Unión Proteica , Dominios Proteicos , Estabilidad Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo
7.
Nat Commun ; 8: 15091, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28474682

RESUMEN

Type IVa pili are protein filaments essential for virulence in many bacterial pathogens; they extend and retract from the surface of bacterial cells to pull the bacteria forward. The motor ATPase PilB powers pilus assembly. Here we report the structures of the core ATPase domains of Geobacter metallireducens PilB bound to ADP and the non-hydrolysable ATP analogue, AMP-PNP, at 3.4 and 2.3 Å resolution, respectively. These structures reveal important differences in nucleotide binding between chains. Analysis of these differences reveals the sequential turnover of nucleotide, and the corresponding domain movements. Our data suggest a clockwise rotation of the central sub-pores of PilB, which through interactions with PilC, would support the assembly of a right-handed helical pilus. Our analysis also suggests a counterclockwise rotation of the C2 symmetric PilT that would enable right-handed pilus disassembly. The proposed model provides insight into how this family of ATPases can power pilus extension and retraction.


Asunto(s)
Adenosina Difosfato/metabolismo , Adenosina Trifosfatasas/ultraestructura , Adenilil Imidodifosfato/metabolismo , Proteínas Bacterianas/ultraestructura , Proteínas Fimbrias/ultraestructura , Fimbrias Bacterianas/metabolismo , Proteínas Motoras Moleculares/ultraestructura , Oxidorreductasas/ultraestructura , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Fimbrias/metabolismo , Geobacter , Modelos Moleculares , Proteínas Motoras Moleculares/metabolismo , Nucleótidos/metabolismo , Oxidorreductasas/metabolismo , Virulencia
8.
Trends Microbiol ; 23(12): 775-788, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26497940

RESUMEN

The bacterial type IV pilus (T4P) is a versatile molecular machine with a broad range of functions. Recent advances revealed that the molecular components and the biophysical properties of the machine are well conserved among phylogenetically distant bacterial species. However, its functions are diverse, and include adhesion, motility, and horizontal gene transfer. This review focusses on the role of T4P in surface motility and bacterial interactions. Different species have evolved distinct mechanisms for intracellular coordination of multiple pili and of pili with other motility machines, ranging from physical coordination to biochemical clocks. Coordinated behavior between multiple bacteria on a surface is achieved by active manipulation of surfaces and modulation of pilus-pilus interactions. An emerging picture is that the T4P actively senses and responds to environmental conditions.


Asunto(s)
Bacterias/citología , Proteínas Fimbrias/química , Proteínas Fimbrias/fisiología , Fimbrias Bacterianas/química , Fimbrias Bacterianas/fisiología , Adhesión Bacteriana/fisiología , Fenómenos Fisiológicos Bacterianos , Fenómenos Biomecánicos , Elasticidad , Evolución Molecular , Proteínas Fimbrias/metabolismo , Proteínas Fimbrias/ultraestructura , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/ultraestructura , Locomoción/fisiología , Modelos Moleculares , Mutación , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/fisiología
9.
Biomed Res Int ; 2015: 817134, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26064954

RESUMEN

Type IV pili (T4P) and T2SS (Type II Secretion System) pseudopili are filaments extending beyond microbial surfaces, comprising homologous subunits called "pilins." In this paper, we presented a new approach to predict pseudo atomic models of pili combining ambiguous symmetric constraints with sparse distance information obtained from experiments and based neither on electronic microscope (EM) maps nor on accurate a priori symmetric details. The approach was validated by the reconstruction of the gonococcal (GC) pilus from Neisseria gonorrhoeae, the type IVb toxin-coregulated pilus (TCP) from Vibrio cholerae, and pseudopilus of the pullulanase T2SS (the PulG pilus) from Klebsiella oxytoca. In addition, analyses of computational errors showed that subunits should be treated cautiously, as they are slightly flexible and not strictly rigid bodies. A global sampling in a wider range was also implemented and implied that a pilus might have more than one but fewer than many possible intact conformations.


Asunto(s)
Proteínas Fimbrias/ultraestructura , Fimbrias Bacterianas/ultraestructura , Sistemas de Secreción Tipo II/ultraestructura , Proteínas Fimbrias/química , Fimbrias Bacterianas/química , Glicósido Hidrolasas/química , Klebsiella oxytoca/química , Klebsiella oxytoca/ultraestructura , Modelos Moleculares , Neisseria gonorrhoeae/química , Neisseria gonorrhoeae/ultraestructura , Vibrio cholerae/química , Vibrio cholerae/ultraestructura
10.
PLoS Pathog ; 10(8): e1004316, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25122114

RESUMEN

Adhesive pili on the surface of pathogenic bacteria comprise polymerized pilin subunits and are essential for initiation of infections. Pili assembled by the chaperone-usher pathway (CUP) require periplasmic chaperones that assist subunit folding, maintain their stability, and escort them to the site of bioassembly. Until now, CUP chaperones have been classified into two families, FGS and FGL, based on the short and long length of the subunit-interacting loops between its F1 and G1 ß-strands, respectively. CfaA is the chaperone for assembly of colonization factor antigen I (CFA/I) pili of enterotoxigenic E. coli (ETEC), a cause of diarrhea in travelers and young children. Here, the crystal structure of CfaA along with sequence analyses reveals some unique structural and functional features, leading us to propose a separate family for CfaA and closely related chaperones. Phenotypic changes resulting from mutations in regions unique to this chaperone family provide insight into their function, consistent with involvement of these regions in interactions with cognate subunits and usher proteins during pilus assembly.


Asunto(s)
Escherichia coli Enterotoxigénica/patogenicidad , Escherichia coli Enterotoxigénica/ultraestructura , Fimbrias Bacterianas/ultraestructura , Chaperonas Moleculares/ultraestructura , Escherichia coli Enterotoxigénica/metabolismo , Infecciones por Escherichia coli/metabolismo , Proteínas Fimbrias/química , Proteínas Fimbrias/metabolismo , Proteínas Fimbrias/ultraestructura , Fimbrias Bacterianas/química , Fimbrias Bacterianas/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica
11.
Environ Microbiol ; 14(12): 3188-202, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23078543

RESUMEN

Archaea display a variety of type IV pili on their surface and employ them in different physiological functions. In the crenarchaeon Sulfolobus acidocaldarius the most abundant surface structure is the aap pilus (archaeal adhesive pilus). The construction of in frame deletions of the aap genes revealed that all the five genes (aapA, aapX, aapE, aapF, aapB) are indispensible for assembly of the pilus and an impact on surface motility and biofilm formation was observed. Our analyses revealed that there exists a regulatory cross-talk between the expression of aap genes and archaella (formerly archaeal flagella) genes during different growth phases. The structure of the aap pilus is entirely different from the known bacterial type IV pili as well as other archaeal type IV pili. An aap pilus displayed 3 stranded helices where there is a rotation per subunit of ∼138° and a rise per subunit of ∼5.7 Å. The filaments have a diameter of ∼110 Å and the resolution was judged to be ∼9 Å. We concluded that small changes in sequence might be amplified by large changes in higher-order packing. Our finding of an extraordinary stability of aap pili possibly represents an adaptation to harsh environments that S. acidocaldarius encounters.


Asunto(s)
Fimbrias Bacterianas/fisiología , Sulfolobus acidocaldarius/citología , Sulfolobus acidocaldarius/fisiología , Adhesividad , Biopelículas , Proteínas Fimbrias/química , Proteínas Fimbrias/ultraestructura , Fimbrias Bacterianas/ultraestructura , Microscopía Electrónica de Transmisión , Mutación , Sulfolobus acidocaldarius/genética
12.
J Mol Biol ; 415(5): 918-28, 2012 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-22178477

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) are a major cause of diarrheal disease worldwide. Adhesion pili (or fimbriae), such as the CFA/I (colonization factor antigen I) organelles that enable ETEC to attach efficiently to the host intestinal tract epithelium, are critical virulence factors for initiation of infection. We characterized the intrinsic biomechanical properties and kinetics of individual CFA/I pili at the single-organelle level, demonstrating that weak external forces (7.5 pN) are sufficient to unwind the intact helical filament of this prototypical ETEC pilus and that it quickly regains its original structure when the force is removed. While the general relationship between exertion of force and an increase in the filament length for CFA/I pili associated with diarrheal disease is analogous to that of P pili and type 1 pili, associated with urinary tract and other infections, the biomechanical properties of these different pili differ in key quantitative details. Unique features of CFA/I pili, including the significantly lower force required for unwinding, the higher extension speed at which the pili enter a dynamic range of unwinding, and the appearance of sudden force drops during unwinding, can be attributed to morphological features of CFA/I pili including weak layer-to-layer interactions between subunits on adjacent turns of the helix and the approximately horizontal orientation of pilin subunits with respect to the filament axis. Our results indicate that ETEC CFA/I pili are flexible organelles optimized to withstand harsh motion without breaking, resulting in continued attachment to the intestinal epithelium by the pathogenic bacteria that express these pili.


Asunto(s)
Adhesinas de Escherichia coli/fisiología , Adhesión Bacteriana , Proteínas Fimbrias/fisiología , Fimbrias Bacterianas/fisiología , Adhesinas de Escherichia coli/ultraestructura , Fenómenos Biomecánicos , Escherichia coli/fisiología , Escherichia coli/ultraestructura , Proteínas Fimbrias/ultraestructura , Fimbrias Bacterianas/ultraestructura , Estructura Secundaria de Proteína
13.
Mol Microbiol ; 81(5): 1205-20, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21696465

RESUMEN

By combining X-ray crystallography and modelling, we describe here the atomic structure of distinct adhesive moieties of FimA, the shaft fimbrillin of Actinomyces type 2 fimbriae, which uniquely mediates the receptor-dependent intercellular interactions between Actinomyces and oral streptococci as well as host cells during the development of oral biofilms. The FimA adhesin is built with three IgG-like domains, each of which harbours an intramolecular isopeptide bond, previously described in several Gram-positive pilins. Genetic and biochemical studies demonstrate that although these isopeptide bonds are dispensable for fimbrial assembly, cell-cell interactions and biofilm formation, they contribute significantly to the proteolytic stability of FimA. Remarkably, FimA harbours two autonomous adhesive modules, which structurally resemble the Staphylococcus aureus Cna B domain. Each isolated module can bind the plasma glycoprotein asialofetuin as well as the polysaccharide receptors present on the surface of oral streptococci and epithelial cells. Thus, FimA should serve as an excellent paradigm for the development of therapeutic strategies and elucidating the precise molecular mechanisms underlying the interactions between cellular receptors and Gram-positive fimbriae.


Asunto(s)
Actinomyces/metabolismo , Adhesinas Bacterianas/metabolismo , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/metabolismo , Streptococcus oralis/metabolismo , Streptococcus pneumoniae/metabolismo , Adhesinas Bacterianas/genética , Secuencia de Aminoácidos , Asialoglicoproteínas/metabolismo , Adhesión Bacteriana , Biopelículas , Cristalografía por Rayos X , Fetuínas/metabolismo , Proteínas Fimbrias/química , Proteínas Fimbrias/genética , Proteínas Fimbrias/ultraestructura , Fimbrias Bacterianas/genética , Inmunoglobulina G/metabolismo , Receptores de Superficie Celular/metabolismo , Alineación de Secuencia , Streptococcus oralis/citología , Streptococcus oralis/genética , Streptococcus pneumoniae/citología , Diente/microbiología
14.
PLoS One ; 6(1): e16624, 2011 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-21304951

RESUMEN

Structures of the type IV pili secretin complexes from Neisseria gonorrhoeae and Neisseria meningitidis, embedded in outer membranes were investigated by transmission electron microscopy. Single particle averaging revealed additional domains not observed previously. Secretin complexes of N. gonorrhoeae showed a double ring structure with a 14-15-fold symmetry in the central ring, and a 14-fold symmetry of the peripheral ring with 7 spikes protruding. In secretin complexes of N. meningitidis, the spikes were absent and the peripheral ring was partly or completely lacking. When present, it had a 19-fold symmetry. The structures of the complexes in several pil mutants were determined. Structures obtained from the pilC1/C2 adhesin and the pilW minor pilin deletion strains were similar to wild-type, whereas deletion of the homologue of N. meningitidis PilW resulted in the absence of secretin structures. Remarkably, the pilE pilin subunit and pilP lipoprotein deletion mutants showed a change in the symmetry of the peripheral ring from 14 to 19 and loss of spikes. The pilF ATPase mutant also lost the spikes, but maintained 14-fold symmetry. These results show that secretin complexes contain previously unidentified large and flexible extra domains with a probable role in stabilization or assembly of type IV pili.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas Fimbrias/química , Fimbrias Bacterianas/química , Neisseria/química , Proteínas de la Membrana Bacteriana Externa/ultraestructura , Proteínas Bacterianas , Proteínas Fimbrias/ultraestructura , Fimbrias Bacterianas/ultraestructura , Microscopía Electrónica de Transmisión , Complejos Multiproteicos/química , Neisseria gonorrhoeae/química , Neisseria meningitidis/química , Conformación Proteica
15.
Can J Microbiol ; 56(11): 959-67, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21076487

RESUMEN

The gram-negative anaerobic bacterium Porphyromonas gingivalis is an etiologically important pathogen for chronic periodontal diseases in adults. Our previous study suggested that the major structural components of both Fim and Mfa fimbriae in this organism are secreted through their lipidated precursors. In this study, we constructed Escherichia coli strains expressing various fimA genes with or without the 5'-terminal DNA region encoding the signal peptide, and we determined whether lipidation of recombinant FimA proteins occurred in E. coli. Lipidation occurred for a recombinant protein from the fimA gene with the 5'-terminal DNA region encoding the signal peptide but not for a recombinant protein from the fimA gene without the signal-peptide-encoding region, as revealed by [3H]palmitic acid labeling experiments. A TLR2-dependent signaling response was induced by the recombinant protein from the fimA gene with the signal-peptide-encoding region but not by a recombinant protein from the fimA gene with the signal-peptide-encoding region that had a base substitution causing an amino acid substitution (C19A). Electron microscopic analysis revealed that recombinant FimA (A-47 - W-383) protein was autopolymerized to form filamentous structures of about 80 nm in length in vitro. The results suggest that FimA protein, a major subunit of Fim fimbriae, is transported to the outer membrane by the lipoprotein sorting system, and a mature or processed FimA protein on the outer membrane is autopolymerized to form Fim fimbriae.


Asunto(s)
Proteínas Fimbrias/metabolismo , Precursores de Proteínas/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fimbrias/genética , Proteínas Fimbrias/ultraestructura , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/ultraestructura , Humanos , Metabolismo de los Lípidos , Porphyromonas gingivalis/genética , Precursores de Proteínas/genética , Señales de Clasificación de Proteína , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Receptor Toll-Like 2/metabolismo
16.
FEMS Microbiol Rev ; 34(3): 317-78, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20070375

RESUMEN

This review summarizes current knowledge on the structure, function, assembly and biomedical applications of the superfamily of adhesive fimbrial organelles exposed on the surface of Gram-negative pathogens with the classical chaperone/usher machinery. High-resolution three-dimensional (3D) structure studies of the minifibers assembling with the FGL (having a long F1-G1 loop) and FGS (having a short F1-G1 loop) chaperones show that they exploit the same principle of donor-strand complementation for polymerization of subunits. The 3D structure of adhesive subunits bound to host-cell receptors and the final architecture of adhesive fimbrial organelles reveal two functional families of the organelles, respectively, possessing polyadhesive and monoadhesive binding. The FGL and FGS chaperone-assembled polyadhesins are encoded exclusively by the gene clusters of the γ3- and κ-monophyletic groups, respectively, while gene clusters belonging to the γ1-, γ2-, γ4-, and π-fimbrial clades exclusively encode FGS chaperone-assembled monoadhesins. Novel approaches are suggested for a rational design of antimicrobials inhibiting the organelle assembly or inhibiting their binding to host-cell receptors. Vaccines are currently under development based on the recombinant subunits of adhesins.


Asunto(s)
Adhesión Bacteriana , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/metabolismo , Bacterias Gramnegativas/fisiología , Bacterias Gramnegativas/patogenicidad , Proteínas Fimbrias/ultraestructura , Fimbrias Bacterianas/ultraestructura , Bacterias Gramnegativas/ultraestructura , Humanos , Sustancias Macromoleculares/metabolismo , Sustancias Macromoleculares/ultraestructura , Proteínas de Transporte de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Multimerización de Proteína , Transporte de Proteínas
17.
J Mol Biol ; 395(3): 491-503, 2010 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-19895819

RESUMEN

Pseudomonas aeruginosa type IV pili, composed of PilA subunits, are used for attachment and twitching motility on surfaces. P. aeruginosa strains express one of five phylogenetically distinct PilA proteins, four of which are associated with accessory proteins that are involved either in pilin posttranslational modification or in modulation of pilus retraction dynamics. Full understanding of pilin diversity is crucial for the development of a broadly protective pilus-based vaccine. Here, we report the 1.6-A X-ray crystal structure of an N-terminally truncated form of the novel PilA from strain Pa110594 (group V), which represents the first non-group II pilin structure solved. Although it maintains the typical T4a pilin fold, with a long N-terminal alpha-helix and four-stranded antiparallel beta-sheet connected to the C-terminus by a disulfide-bonded loop, the presence of an extra helix in the alphabeta-loop and a disulfide-bonded loop with helical character gives the structure T4b pilin characteristics. Despite the presence of T4b features, the structure of PilA from strain Pa110594 is most similar to the Neisseria gonorrhoeae pilin and is also predicted to assemble into a fiber similar to the GC pilus, based on our comparative pilus modeling. Interactions between surface-exposed areas of the pilin are suggested to contribute to pilus fiber stability. The non-synonymous sequence changes between group III and V pilins are clustered in the same surface-exposed areas, possibly having an effect on accessory protein interactions. However, based on our high-confidence model of group III PilA(PA14), compensatory changes allow for maintenance of a similar shape.


Asunto(s)
Proteínas Fimbrias/química , Pseudomonas aeruginosa/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Proteínas Fimbrias/clasificación , Proteínas Fimbrias/genética , Proteínas Fimbrias/ultraestructura , Microscopía Electrónica de Transmisión , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Estructura Secundaria de Proteína , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/ultraestructura , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Homología de Secuencia de Aminoácido , Homología Estructural de Proteína
18.
Cell ; 133(4): 640-52, 2008 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-18485872

RESUMEN

Gram-negative pathogens commonly exhibit adhesive pili on their surfaces that mediate specific attachment to the host. A major class of pili is assembled via the chaperone/usher pathway. Here, the structural basis for pilus fiber assembly and secretion performed by the outer membrane assembly platform--the usher--is revealed by the crystal structure of the translocation domain of the P pilus usher PapC and single particle cryo-electron microscopy imaging of the FimD usher bound to a translocating type 1 pilus assembly intermediate. These structures provide molecular snapshots of a twinned-pore translocation machinery in action. Unexpectedly, only one pore is used for secretion, while both usher protomers are used for chaperone-subunit complex recruitment. The translocating pore itself comprises 24 beta strands and is occluded by a folded plug domain, likely gated by a conformationally constrained beta-hairpin. These structures capture the secretion of a virulence factor across the outer membrane of gram-negative bacteria.


Asunto(s)
Vías Biosintéticas , Escherichia coli/química , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/ultraestructura , Chaperonas Moleculares/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestructura , Proteínas Fimbrias/química , Proteínas Fimbrias/ultraestructura , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Porinas/química , Porinas/metabolismo
19.
J Bacteriol ; 189(17): 6389-96, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17616599

RESUMEN

Type IV pili are surface-exposed retractable fibers which play a key role in the pathogenesis of Neisseria meningitidis and other gram-negative pathogens. PilG is an integral inner membrane protein and a component of the type IV pilus biogenesis system. It is related by sequence to the extensive GspF family of secretory proteins, which are involved in type II secretion processes. PilG was overexpressed and purified from Escherichia coli membranes by detergent extraction and metal ion affinity chromatography. Analysis of the purified protein by perfluoro-octanoic acid polyacrylamide gel electrophoresis showed that PilG formed dimers and tetramers. A three-dimensional (3-D) electron microscopy structure of the PilG multimer was determined using single-particle averaging applied to samples visualized by negative staining. Symmetry analysis of the unsymmetrized 3-D volume provided further evidence that the PilG multimer is a tetramer. The reconstruction also revealed an asymmetric bilobed structure approximately 125 A in length and 80 A in width. The larger lobe within the structure was identified as the N terminus by location of Ni-nitrilotriacetic acid nanogold particles to the N-terminal polyhistidine tag. We propose that the smaller lobe corresponds to the periplasmic domain of the protein, with the narrower "waist" region being the transmembrane section. This constitutes the first report of a 3-D structure of a member of the GspF family and suggests a physical basis for the role of the protein in linking cytoplasmic and periplasmic protein components of the type II secretion and type IV pilus biogenesis systems.


Asunto(s)
Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/ultraestructura , Proteínas Fimbrias/aislamiento & purificación , Proteínas Fimbrias/ultraestructura , Neisseria meningitidis/química , Proteínas Bacterianas/química , Cromatografía de Afinidad , Clonación Molecular , Dimerización , Electroforesis en Gel de Poliacrilamida/métodos , Escherichia coli/genética , Proteínas Fimbrias/química , Expresión Génica , Procesamiento de Imagen Asistido por Computador , Microscopía Electrónica de Transmisión , Modelos Moleculares , NAD/metabolismo , Coloración Negativa , Estructura Terciaria de Proteína , Ácido Pirúvico/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/ultraestructura
20.
Biochem Biophys Res Commun ; 340(4): 1028-38, 2006 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-16403447

RESUMEN

PilF is a requisite protein involved in the type 4 pilus biogenesis system from the Gram-negative human pathogenic bacteria, Pseudomonas aeruginosa. We determined the PilF structure at a 2.2A resolution; this includes six tandem tetratrico peptide repeat (TPR) units forming right-handed superhelix. PilF structure was similar to the heat shock protein organizing protein, which interacts with the C-terminal peptide of Hsp90 and Hsp70 via a concave Asn ladder in the inner groove of TPR superhelix. After simulated screening, the C-terminal pentapeptides of PilG, PilU, PilY, and PilZ proved to be a likely candidate binding to PilF, which are ones of 25 necessary components involved in the type 4 pilus biogenesis system. We proposed that PilF would be critical as a bridgehead in protein-protein interaction and thereby, PilF may bind a necessary molecule in type 4 pilus biogenesis system such as PilG, PilU, PilY, and PilZ.


Asunto(s)
Proteínas Fimbrias/química , Proteínas Fimbrias/ultraestructura , Fimbrias Bacterianas/química , Modelos Moleculares , Pseudomonas aeruginosa/química , Secuencia de Aminoácidos , Sitios de Unión , Simulación por Computador , Cristalografía , Dimerización , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/fisiología , Fimbrias Bacterianas/ultraestructura , Modelos Biológicos , Datos de Secuencia Molecular , Complejos Multiproteicos/química , Complejos Multiproteicos/ultraestructura , Unión Proteica , Conformación Proteica , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas aeruginosa/ultraestructura , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA