Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Sci Rep ; 11(1): 24105, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34916557

RESUMEN

Thyroid hormone (TH) and thyroid hormone receptor (THR) regulate stem cell proliferation and differentiation during development, as well as during tissue renewal and repair in the adult. THR undergoes posttranslational modification by small ubiquitin-like modifier (SUMO). We generated the THRA (K283Q/K288R)-/- mouse model for in vivo studies and used human primary preadipocytes expressing the THRA sumoylation mutant (K283R/K288R) and isolated preadipocytes from mutant mice for in vitro studies. THRA mutant mice had reduced white adipose stores and reduced adipocyte cell diameter on a chow diet, compared to wild-type, and these differences were further enhanced after a high fat diet. Reduced preadipocyte proliferation in mutant mice, compared to wt, was shown after in vivo labeling of preadipocytes with EdU and in preadipocytes isolated from mice fat stores and studied in vitro. Mice with the desumoylated THRA had disruptions in cell cycle G1/S transition and this was associated with a reduction in the availability of cyclin D2 and cyclin-dependent kinase 2. The genes coding for cyclin D1, cyclin D2, cyclin-dependent kinase 2 and Culin3 are stimulated by cAMP Response Element Binding Protein (CREB) and contain CREB Response Elements (CREs) in their regulatory regions. We demonstrate, by Chromatin Immunoprecipitation (ChIP) assay, that in mice with the THRA K283Q/K288R mutant there was reduced CREB binding to the CRE. Mice with a THRA sumoylation mutant had reduced fat stores on chow and high fat diets and reduced adipocyte diameter.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Sumoilación/fisiología , Receptores alfa de Hormona Tiroidea/metabolismo , Receptores alfa de Hormona Tiroidea/fisiología , Adipocitos/patología , Adipocitos/fisiología , Tejido Adiposo Blanco/citología , Animales , Proteína de Unión a CREB/metabolismo , Proliferación Celular , Dieta Alta en Grasa/efectos adversos , Humanos , Ratones , Ratones Mutantes , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/fisiología
2.
Cell Rep ; 37(8): 110034, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34818558

RESUMEN

Endogenous metabolites, environmental agents, and therapeutic drugs promote formation of covalent DNA-protein crosslinks (DPCs). Persistent DPCs compromise genome integrity and are eliminated by multiple repair pathways. Aberrant Top1-DNA crosslinks, or Top1ccs, are processed by Tdp1 and Wss1 functioning in parallel pathways in Saccharomyces cerevisiae. It remains obscure how cells choose between diverse mechanisms of DPC repair. Here, we show that several SUMO biogenesis factors (Ulp1, Siz2, Slx5, and Slx8) control repair of Top1cc or an analogous DPC lesion. Genetic analysis reveals that SUMO promotes Top1cc processing in the absence of Tdp1 but has an inhibitory role if cells additionally lack Wss1. In the tdp1Δ wss1Δ mutant, the E3 SUMO ligase Siz2 stimulates sumoylation in the vicinity of the DPC, but not SUMO conjugation to Top1. This Siz2-dependent sumoylation inhibits alternative DPC repair mechanisms, including Ddi1. Our findings suggest that SUMO tunes available repair pathways to facilitate faithful DPC repair.


Asunto(s)
Reparación del ADN/fisiología , Proteínas de Unión al ADN/fisiología , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/fisiología , Cisteína Endopeptidasas/metabolismo , ADN/metabolismo , Reparación del ADN/genética , ADN-Topoisomerasas de Tipo I/metabolismo , Proteínas de Unión al ADN/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Proteína SUMO-1/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación/genética , Sumoilación/fisiología , Ubiquitina-Proteína Ligasas/metabolismo
3.
BMC Plant Biol ; 19(1): 593, 2019 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-31884953

RESUMEN

BACKGROUND: Posttranslational modification of proteins by small ubiquitin like modifier (SUMO) proteins play an important role during the developmental process and in response to abiotic stresses in plants. However, little is known about SUMOylation in peanut (Arachis hypogaea L.), one of the world's major food legume crops. In this study, we characterized the SUMOylation system from the diploid progenitor genomes of peanut, Arachis duranensis (AA) and Arachis ipaensis (BB). RESULTS: Genome-wide analysis revealed the presence of 40 SUMO system genes in A. duranensis and A. ipaensis. Our results showed that peanut also encodes a novel class II isotype of the SCE1, which was previously reported to be uniquely present in cereals. RNA-seq data showed that the core components of the SUMOylation cascade SUMO1/2 and SCE1 genes exhibited pod-specific expression patterns, implying coordinated regulation during pod development. Furthermore, both transcripts and conjugate profiles revealed that SUMOylation has significant roles during the pod development. Moreover, dynamic changes in the SUMO conjugates were observed in response to abiotic stresses. CONCLUSIONS: The identification and organization of peanut SUMO system revealed SUMOylation has important roles during stress defense and pod development. The present study will serve as a resource for providing new strategies to enhance agronomic yield and reveal the mechanism of peanut pod development.


Asunto(s)
Proteínas de Plantas/fisiología , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/fisiología , Arachis/crecimiento & desarrollo , Flores/crecimiento & desarrollo , Desarrollo de la Planta/genética , Desarrollo de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Estrés Fisiológico , Sumoilación , Transcripción Genética
4.
Curr Biol ; 28(10): 1661-1669.e4, 2018 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-29754905

RESUMEN

The production of haploid gametes requires the maintenance of centromeric cohesion between sister chromatids through the transition between two successive meiotic divisions, meiosis I and meiosis II. One mechanism for the cohesion maintenance is shugoshin-dependent protection of centromeric cohesin at anaphase I onset [1-3]. However, how centromeric cohesion is maintained during late anaphase I and telophase I, when centromeric shugoshin is undetectable [1-3], remains largely unexplored. Here we show that the centromeric small ubiquitin-related modifier (SUMO) pathway is critical for the maintenance of centromeric cohesion during post-anaphase-I periods in mouse oocytes. SUMO2/3 and E3 ligase PIAS are enriched near centromeres during late anaphase I and telophase I. Specific perturbation of the centromeric SUMO pathway results in precocious loss of centromeric cohesin at telophase I, although shugoshin-dependent centromeric protection at anaphase I onset remains largely intact. Prevention of the SUMO perturbation during post-anaphase-I periods restores the maintenance of centromeric cohesion through the meiosis I-II transition. Thus, the post-anaphase-I centromeric SUMO pathway ensures continuous maintenance of centromeric cohesion through the meiosis I-II transition.


Asunto(s)
Centrómero/fisiología , Meiosis/fisiología , Oocitos/fisiología , Transducción de Señal , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/fisiología , Animales , Femenino , Ratones
5.
Lab Invest ; 98(6): 799-813, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29472640

RESUMEN

The intestinal epithelium constitutes a crucial defense to the potentially life-threatening effects of gut microbiota. However, due to a complex underlying vasculature, hypoperfusion and resultant tissue ischemia pose a particular risk to function and integrity of the epithelium. The small ubiquitin-like modifier (SUMO) conjugation pathway critically regulates adaptive responses to metabolic stress and is of particular significance in the gut, as inducible knockout of the SUMO-conjugating enzyme Ubc9 results in rapid intestinal epithelial disintegration. Here we analyzed the pattern of individual SUMO isoforms in intestinal epithelium and investigated their roles in intestinal ischemia/reperfusion (I/R) damage. Immunostaining revealed that epithelial SUMO2/3 expression was almost exclusively limited to crypt epithelial nuclei in unchallenged mice. However, intestinal I/R or overexpression of Ubc9 caused a remarkable enhancement of epithelial SUMO2/3 staining along the crypt-villus axis. Unexpectedly, a similar pattern was found in SUMO1 knockout mice. Ubc9 transgenic mice, but also SUMO1 knockout mice were protected from I/R injury as evidenced by better preserved barrier function and blunted inflammatory responses. PCR array analysis of microdissected villus-tip epithelia revealed a specific epithelial contribution to reduced inflammatory responses in Ubc9 transgenic mice, as key chemotactic signaling molecules such as IL17A were significantly downregulated. Together, our data indicate a critical role particularly of the SUMO2/3 isoforms in modulating responses to I/R and provide the first evidence that SUMO1 deletion activates a compensatory process that protects from ischemic damage.


Asunto(s)
Mucosa Intestinal/irrigación sanguínea , Daño por Reperfusión/prevención & control , Proteína SUMO-1/fisiología , Enzimas Ubiquitina-Conjugadoras/fisiología , Animales , Quimiocinas/análisis , Mucosa Intestinal/química , Captura por Microdisección con Láser , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína SUMO-1/deficiencia , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/análisis , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/fisiología , Enzimas Ubiquitina-Conjugadoras/genética , Ubiquitinas/análisis , Ubiquitinas/fisiología
6.
Nat Rev Mol Cell Biol ; 17(9): 581-95, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27435506

RESUMEN

Small ubiquitin-like modifiers (SUMOs) are essential for the regulation of several cellular processes and are potential therapeutic targets owing to their involvement in diseases such as cancer and Alzheimer disease. In the past decade, we have witnessed a rapid expansion of proteomic approaches for identifying sumoylated proteins, with recent advances in detecting site-specific sumoylation. In this Analysis, we combined all human SUMO proteomics data currently available into one cohesive database. We provide proteomic evidence for sumoylation of 3,617 proteins at 7,327 sumoylation sites, and insight into SUMO group modification by clustering the sumoylated proteins into functional networks. The data support sumoylation being a frequent protein modification (on par with other major protein modifications) with multiple nuclear functions, including in transcription, mRNA processing, DNA replication and the DNA-damage response.


Asunto(s)
Bases de Datos de Proteínas , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/clasificación , Humanos , Procesamiento Proteico-Postraduccional , Proteínas/química , Proteínas/metabolismo , Proteómica , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/fisiología , Sumoilación
7.
J Exp Bot ; 67(9): 2541-8, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-27012284

RESUMEN

Plants have evolved to cope with changing environmental conditions. One way plants achieve this is through post-translational modification of target proteins by ubiquitination and SUMOylation. These post-translational modifiers (PMs) can alter stability, protein-protein interactions, and the overall fate of the protein. Both of these systems have remarkable similarities in terms of the process leading to attachment of the PM to its substrate : having to undertake activation, conjugation, and finally ligation to the target. In the ubiquitin system, there are a vast number of ubiquitin ligase enzymes (E3s) that provide specificity for the attachment of ubiquitin. With the SUMO system, only a small number of SUMO E3 ligases have so far been identified in the fully sequenced plant genomes. In Arabidopsis thaliana, there are only two SUMO E3s, compared to over 1400 ubiquitin E3s, a trend also observed in crop species such as Oryza sativa and Zea mays Recent research indicates that removing SUMO from its substrate by the enzymatically active SUMO proteases is a vital part of this system. A class of SUMO proteases called ubiquitin-like proteases (ULPs) are widespread in all eukaryotes; within plants, both monocot and dicot kingdoms have conserved and divergent ULPs and ULP-like proteases. This paper examines the roles ULPs have in stress responses and highlights the 'fine-tuning' of SUMO attachment/removal in balancing growth versus stress.


Asunto(s)
Plantas/enzimología , Procesamiento Proteico-Postraduccional , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación , Proteasas Ubiquitina-Específicas/metabolismo , Plantas/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/fisiología , Sumoilación/fisiología , Proteasas Ubiquitina-Específicas/fisiología
8.
Asian Pac J Allergy Immunol ; 34(1): 77-85, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26994630

RESUMEN

BACKGROUND: Autophagy-related genes ATG4B, ATG7, and ATG12 have been identified to play a critical role in viral replication. However, these genes have yet to be identified in hepatitis B virus (HBV). OBJECTIVE: To characterise the role of ATG4B, ATG7, and ATG12 genes in HBV infection. METHODS: The mRNA expression was examined by quantitative real-time RT-PCR and Western blotting. Short hairpin RNA (shRNA) of the target gene was used to examine the function of the gene in HBV replication. Evaluation of HBV DNA level was performed by real-time PCR. RESULTS: Our findings revealed that ATG12 gene expression was significantly up-regulated (p < 0.005), whereas ATG7 gene expression was down-regulated (p < 0.0001) in HepG2.2.15 cells when compared to HepG2 cells. However, no significant difference in mRNA level of ATG4B was observed. These results were consistent with protein level findings. Moreover, we analysed the function of ATG12 in HBV replication by using ATG12 shRNA and evaluated HBV DNA level. We found that the amount of HBV was decreased in ATG12-knockdown HepG2.2.15 cells when compared to control HepG2.2.15 cells (P < 0.05). The mRNA expression of interferon-alpha (IFN-α), interferon-beta (IFN-ß), and interferon-inducible genes (IFI) was also investigated. Our results showed that the expression of IFN-α, IFN-ß, and IFI27 genes were increased in ATG12-knockdown cells but not in Mx1 gene when compared to control cells (p < 0.005, p < 0.0001 and p < 0.005, respectively). CONCLUSION: These autophagy-related genes, ATG12 may play a role in HBV replication via impairing IFN pathway. However, the biological significance of other autophagic genes such as ATG7 warrants further study.


Asunto(s)
Autofagia , Virus de la Hepatitis B/fisiología , Interferones/fisiología , Transducción de Señal/fisiología , Replicación Viral , Proteína 12 Relacionada con la Autofagia , Proteína 7 Relacionada con la Autofagia , ADN Viral/análisis , Células Hep G2 , Humanos , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/fisiología , Enzimas Activadoras de Ubiquitina/fisiología
10.
FEBS J ; 281(21): 4935-50, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25205475

RESUMEN

Post-translational modification by the small ubiquitin-like modifier (SUMO) regulates the cellular response to different types of stress and plays a pivotal role in the control of oncogenic viral infections. Here we investigated the capacity of microRNAs (miRNAs) encoded by Epstein-Barr virus to interfere with the SUMO signaling network. Using a computational strategy that scores different properties of miRNA-mRNA target pairs, we identified a minimal set of 575 members of the SUMO interactome that may be targeted by one or more Epstein-Barr virus miRNAs. A significant proportion of the candidates cluster in a functional network that controls chromatin organization, stress, DNA damage and immune responses, apoptosis and transforming growth factor beta signaling. Multiple components of the transforming growth factor beta signaling pathway were inhibited upon upregulation of the BamHI-H rightward open reading frame 1 (BHRF1) encoded miRNAs in cells transduced with recombinant lentiviruses or entering the productive virus cycle. These findings point to the capacity of viral miRNAs to interfere with SUMO-regulated cellular functions that control key aspects of viral replication and pathogenesis.


Asunto(s)
Regulación Viral de la Expresión Génica , Herpesvirus Humano 4/fisiología , MicroARNs/farmacología , Procesamiento Proteico-Postraduccional , ARN Viral/farmacología , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/fisiología , Regiones no Traducidas 3'/genética , Apoptosis , Daño del ADN , Redes Reguladoras de Genes , Herpesvirus Humano 4/genética , Interacciones Huésped-Patógeno , Humanos , Sistemas de Lectura Abierta , ARN/fisiología , Transducción de Señal , Sumoilación , Transducción Genética , Factor de Crecimiento Transformador beta/fisiología , Replicación Viral
11.
J Biol Chem ; 289(31): 21289-95, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24966330

RESUMEN

Small ubiquitin-like modifier (SUMO) proteins act in DNA double-strand break (DSB) repair, but the pathway specificity of the three major isoforms has not been defined. In experiments in which we depleted the endogenous SUMO protein by RNAi, we found that SUMO1 functioned in all subpathways of either homologous recombination (HR) or non-homologous end joining (NHEJ), whereas SUMO2/3 was required for the major NHEJ pathway, called conservative NHEJ, but dispensable in other DSB repair pathways. To our surprise, we found that depletion of UBC9, the unique SUMO E2 enzyme, had no effect in HR or alternative NHEJ (Alt-NHEJ) but was required for conservative NHEJ. Consistent with this result, both non-conjugatable mutant and wild-type SUMO1 proteins functioned similarly in HR and Alt-NHEJ. These results detail the functional roles of specific SUMO isoforms in DSB repair in mammalian cells and reveal that SUMO1 functions in HR or Alt-NHEJ as a free protein and not as a protein conjugate.


Asunto(s)
Daño del ADN , Reparación del ADN , Isoformas de Proteínas/fisiología , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/fisiología , Secuencia de Bases , Isoformas de Proteínas/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética
12.
Int J Clin Exp Pathol ; 7(4): 1502-13, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24817946

RESUMEN

UNLABELLED: Cisplatin resistance is a major problem affecting ovarian carcinoma treatment. NF-E2-related factor 2 (Nrf2), a nuclear transcription factor, plays an important role in chemotherapy resistance. However, the underlying mechanism by which Nrf2 mediates cisplatin chemoresistance is unclear. METHODS: The human ovarian carcinoma cell line, A2780, and its cisplatin-resistant variant, A2780cp were cultivated. Cell viability was determined with WST-8 assay. Western blot was applied to detect the expression of Nrf2, Nrf2 target genes, and autophagy-related proteins. RNA interference was used to knock down target genes. Annexin V and propidium iodide (PI) staining was utilized to quantify apoptosis. The ultrastructural analysis of autophagosomes was performed by transmission electron microscopy (TEM). RESULTS: Nrf2 and its targeting genes, NQO1 and HO-1, are overexpressed in A2780cp cells compared with A2780 cells. Knocking down Nrf2 sensitized A2780cp cells to cisplatin treatment and decreased autophagy-related genes, Atg3, Atg6, Atg12 and p62 in both mRNA and protein levels. Furthermore, we demonstrated that in both cell lines cisplatin could induce the formation of autophagosomes and upregulate the expression of autophagy-related genes Atg3, Atg6 and Atg12. Treatment with an autophagy inhibitor, 3-Methyladenine (3-MA), or beclin 1 siRNA enhanced cisplatin-induced cell death in A2780cp cells, suggesting that inhibition of autophagy renders resistant cells to be more sensitive to cisplatin. Taken together, Nrf2 signaling may regulate cisplatin resistance by activating autophagy. CONCLUSIONS: Nrf2-activated autophagy may function as a novel mechanism causing cisplatin-resistance.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Autofagia/fisiología , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos/fisiología , Factor 2 Relacionado con NF-E2/fisiología , Neoplasias Ováricas/tratamiento farmacológico , Adenina/análogos & derivados , Adenina/farmacología , Adenocarcinoma/fisiopatología , Autofagia/efectos de los fármacos , Proteína 12 Relacionada con la Autofagia , Proteínas Relacionadas con la Autofagia , Biomarcadores de Tumor/fisiología , Línea Celular Tumoral , Femenino , Hemo-Oxigenasa 1/fisiología , Humanos , NAD(P)H Deshidrogenasa (Quinona)/fisiología , Neoplasias Ováricas/fisiopatología , Proteínas de Unión al ARN/fisiología , Transducción de Señal/fisiología , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/fisiología , Enzimas Ubiquitina-Conjugadoras/fisiología
14.
Nat Struct Mol Biol ; 21(4): 308-16, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24699079

RESUMEN

Ubiquitin and ubiquitin-like modifications are central to virtually all cellular signaling pathways. They occur primarily on lysine residues of target proteins and stimulate a large number of downstream signals. The diversity of these signals depends on the type, location and dynamics of the modification, but the role of the exact site of modification and the selectivity for specific lysines are poorly understood. Here we review the current literature on lysine specificity in these modifications, and we highlight the known signaling mechanisms and the open questions that pose future challenges to ubiquitin research.


Asunto(s)
Lisina/metabolismo , Modelos Biológicos , Ubiquitina-Proteína Ligasas/fisiología , Ubiquitina/metabolismo , Humanos , Lisina/química , Transducción de Señal , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/fisiología , Especificidad por Sustrato , Ubiquitina/química , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
16.
Neuromolecular Med ; 15(4): 707-19, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24052421

RESUMEN

Redox species are produced during the physiological cellular metabolism of a normal tissue. In turn, their presence is also attributed to pathological conditions including neurodegenerative diseases. Many are the molecular changes that occur during the unbalance of the redox homeostasis. Interestingly, posttranslational protein modifications (PTMs) play a remarkable role. In fact, several target proteins are modified in their activation, localization, aggregation, and expression after the cellular stress. Among PTMs, protein SUMOylation represents a very important molecular modification pathway during "oxidative stress". It has been reported that this ubiquitin-like modification is a fine sensor for redox species. Indeed, SUMOylation pathway efficiency is affected by the exposure to oxidative species in a different manner depending on the concentration and time of application. Thus, we here report updated evidence that states the role of SUMOylation in several pathological conditions, and we also outline the key involvement of c-Jun N-terminal kinase and small ubiquitin modifier pathway cross talk.


Asunto(s)
Estrés Oxidativo/fisiología , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/fisiología , Sumoilación/fisiología , Animales , Diabetes Mellitus/metabolismo , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Ubiquitina/fisiología , Complejos de Ubiquitina-Proteína Ligasa/fisiología
17.
Neuromolecular Med ; 15(4): 760-70, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24062161

RESUMEN

Emerging lines of evidence suggest a relationship between amyotrophic lateral sclerosis (ALS) and protein sumoylation. Multiple studies have demonstrated that several of the proteins involved in the pathogenesis of ALS, including superoxide dismutase 1, fused in liposarcoma, and TAR DNA-binding protein 43 (TDP-43), are substrates for sumoylation. Additionally, recent studies in cellular and animal models of ALS revealed that sumoylation of these proteins impact their localization, longevity, and how they functionally perform in disease, providing novel areas for mechanistic investigations and therapeutics. In this article, we summarize the current literature examining the impact of sumoylation of critical proteins involved in ALS and discuss the potential impact for the pathogenesis of the disease. In addition, we report and discuss the implications of new evidence demonstrating that sumoylation of a fragment derived from the proteolytic cleavage of the astroglial glutamate transporter, EAAT2, plays a direct role in downregulating the expression levels of full-length EAAT2 by binding to a regulatory region of its promoter.


Asunto(s)
Esclerosis Amiotrófica Lateral/etiología , Proteínas del Tejido Nervioso/fisiología , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/fisiología , Sumoilación/fisiología , Secuencia de Aminoácidos , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Astrocitos/metabolismo , Señalización del Calcio , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Transportador 2 de Aminoácidos Excitadores , Proteínas de Transporte de Glutamato en la Membrana Plasmática/metabolismo , Ácido Glutámico/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Neuronas Motoras/metabolismo , Trastornos Musculares Atróficos/metabolismo , Conformación Proteica , Proteína FUS de Unión a ARN/metabolismo , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1
18.
Neuromolecular Med ; 15(4): 692-706, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23934328

RESUMEN

Timely and efficient information transfer at synapses is fundamental to brain function. Synapses are highly dynamic structures that exhibit long-lasting activity-dependent alterations to their structure and transmission efficiency, a phenomenon termed synaptic plasticity. These changes, which occur through alterations in presynaptic release or in the trafficking of postsynaptic receptor proteins, underpin the formation and stabilisation of neural circuits during brain development, and encode, process and store information essential for learning, memory and cognition. In recent years, it has emerged that the ubiquitin-like posttranslational modification SUMOylation is an important mediator of several aspects of neuronal and synaptic function. Through orchestrating synapse formation, presynaptic release and the trafficking of postsynaptic receptor proteins during forms of synaptic plasticity such as long-term potentiation, long-term depression and homeostatic scaling, SUMOylation is being increasingly appreciated to play a central role in neurotransmission. In this review, we outline key discoveries in this relatively new field, provide an update on recent progress regarding the targets and consequences of protein SUMOylation in synaptic function and plasticity, and highlight key outstanding questions regarding the roles of protein SUMOylation in the brain.


Asunto(s)
Proteínas del Tejido Nervioso/fisiología , Plasticidad Neuronal , Transporte de Proteínas/fisiología , Receptores de Neurotransmisores/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/fisiología , Sumoilación/fisiología , Transmisión Sináptica/fisiología , Animales , Glucógeno Sintasa Quinasa 3/fisiología , Glucógeno Sintasa Quinasa 3 beta , Guanilato-Quinasas/fisiología , Humanos , Factores de Transcripción MEF2/fisiología , Neurogénesis , Neuronas/metabolismo , Fosfohidrolasa PTEN/fisiología , Canales de Potasio/metabolismo , Receptor Cannabinoide CB1/metabolismo , Receptores de Ácido Kaínico/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Receptores Presinapticos/fisiología , Complejos de Ubiquitina-Proteína Ligasa/fisiología
19.
Neuromolecular Med ; 15(4): 720-36, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23979993

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline and is the most common cause of dementia in the elderly. Histopathologically, AD features insoluble aggregates of two proteins in the brain, amyloid-ß (Aß) and the microtubule-associated protein tau, both of which have been linked to the small ubiquitin-like modifier (SUMO). A large body of research has elucidated many of the molecular and cellular pathways that underlie AD, including those involving the abnormal Aß and tau aggregates. However, a full understanding of the etiology and pathogenesis of the disease has remained elusive. Consequently, there are currently no effective therapeutic options that can modify the disease progression and slow or stop the decline of cognitive functioning. As part of the effort to address this lacking, there needs a better understanding of the signaling pathways that become impaired under AD pathology, including the regulatory mechanisms that normally control those networks. One such mechanism involves SUMOylation, which is a post-translational modification (PTM) that is involved in regulating many aspects of cell biology and has also been found to have several critical neuron-specific roles. Early studies have indicated that the SUMO system is likely altered with AD-type pathology, which may impact Aß levels and tau aggregation. Although still a relatively unexplored topic, SUMOylation will likely emerge as a significant factor in AD pathogenesis in ways which may be somewhat analogous to other regulatory PTMs such as phosphorylation. Thus, in addition to the upstream effects on tau and Aß processing, there may also be downstream effects mediated by Aß aggregates or other AD-related factors on SUMO-regulated signaling pathways. Multiple proteins that have functions relevant to AD pathology have been identified as SUMO substrates, including those involved in synaptic physiology, mitochondrial dynamics, and inflammatory signaling. Ongoing studies will determine how these SUMO-regulated functions in neurons and glial cells may be impacted by Aß and AD pathology. Here, we present a review of the current literature on the involvement of SUMO in AD, as well as an overview of the SUMOylated proteins and pathways that are potentially dysregulated with AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Proteínas del Tejido Nervioso/fisiología , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/fisiología , Sumoilación/fisiología , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Astrocitos/metabolismo , Astrocitos/patología , Encéfalo/metabolismo , Encéfalo/patología , Humanos , Ratones , Ovillos Neurofibrilares/metabolismo , Placa Amiloide/metabolismo , Transducción de Señal/fisiología , Sinapsis/fisiología , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Proteínas tau/metabolismo
20.
Neuromolecular Med ; 15(4): 737-59, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23979994

RESUMEN

Parkinson's disease (PD) is one of the most common degenerative disorders of the central nervous system that produces motor and non-motor symptoms. The majority of cases are idiopathic and characterized by the presence of Lewy bodies containing fibrillar α-synuclein. Small ubiquitin-related modifier (SUMO) immunoreactivity was observed among others in cases with PD. Key disease-associated proteins are SUMO-modified, linking this posttranslational modification to neurodegeneration. SUMOylation and SUMO-mediated mechanisms have been intensively studied in recent years, revealing nuclear and extranuclear functions for SUMO in a variety of cellular processes, including the regulation of transcriptional activity, modulation of signal transduction pathways, and response to cellular stress. This points to a role for SUMO more than just an antagonist to ubiquitin and proteasomal degradation. The identification of risk and age-at-onset gene loci was a breakthrough in PD and promoted the understanding of molecular mechanisms in the pathology. PD has been increasingly linked with mitochondrial dysfunction and impaired mitochondrial quality control. Interestingly, SUMO is involved in many of these processes and up-regulated in response to cellular stress, further emphasizing the importance of SUMOylation in physiology and disease.


Asunto(s)
Proteínas del Tejido Nervioso/fisiología , Enfermedad de Parkinson/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/fisiología , Sumoilación/fisiología , Neuronas Dopaminérgicas/metabolismo , Regulación de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mitocondrias/fisiología , Proteínas del Tejido Nervioso/genética , Neurotoxinas/toxicidad , Proteínas Oncogénicas/metabolismo , Estrés Oxidativo , Enfermedad de Parkinson/epidemiología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Proteína Desglicasa DJ-1 , Transducción de Señal/fisiología , Transcripción Genética , Ubiquitina/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , alfa-Sinucleína/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...