Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 297
Filtrar
1.
Protein Sci ; 33(7): e5038, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38864725

RESUMEN

Peptidoglycan is a major constituent of the bacterial cell wall. Its integrity as a polymeric edifice is critical for bacterial survival and, as such, it is a preeminent target for antibiotics. The peptidoglycan is a dynamic crosslinked polymer that undergoes constant biosynthesis and turnover. The soluble lytic transglycosylase (Slt) of Pseudomonas aeruginosa is a periplasmic enzyme involved in this dynamic turnover. Using amber-codon-suppression methodology in live bacteria, we incorporated a fluorescent chromophore into the structure of Slt. Fluorescent microscopy shows that Slt populates the length of the periplasmic space and concentrates at the sites of septation in daughter cells. This concentration persists after separation of the cells. Amber-codon-suppression methodology was also used to incorporate a photoaffinity amino acid for the capture of partner proteins. Mass-spectrometry-based proteomics identified 12 partners for Slt in vivo. These proteomics experiments were complemented with in vitro pulldown analyses. Twenty additional partners were identified. We cloned the genes and purified to homogeneity 22 identified partners. Biophysical characterization confirmed all as bona fide Slt binders. The identities of the protein partners of Slt span disparate periplasmic protein families, inclusive of several proteins known to be present in the divisome. Notable periplasmic partners (KD < 0.5 µM) include PBPs (PBP1a, KD = 0.07 µM; PBP5 = 0.4 µM); other lytic transglycosylases (SltB2, KD = 0.09 µM; RlpA, KD = 0.4 µM); a type VI secretion system effector (Tse5, KD = 0.3 µM); and a regulatory protease for alginate biosynthesis (AlgO, KD < 0.4 µM). In light of the functional breadth of its interactome, Slt is conceptualized as a hub protein within the periplasm.


Asunto(s)
Proteínas Bacterianas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Periplasma/metabolismo , Periplasma/enzimología , Proteínas Periplasmáticas/metabolismo , Proteínas Periplasmáticas/genética , Proteínas Periplasmáticas/química , Glicosiltransferasas/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/química , Peptidoglicano/metabolismo , Peptidoglicano/química
2.
Biochem Biophys Res Commun ; 688: 149175, 2023 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-37976815

RESUMEN

Protein quality control mechanisms are essential for maintaining cellular integrity, and the HtrA family of serine proteases plays a crucial role in handling folding stress in prokaryotic periplasm. Escherichia coli harbors three HtrA members, namely, DegS, DegP, and DegQ, which share a common domain structure. MucD, a putative HtrA family member that resembles DegP, is involved in alginate biosynthesis regulation and the stress response. Pseudomonas syringae causes plant diseases and opportunistic infections in humans. This study presents the high-resolution structure of MucD from Pseudomonas syringae (psMucD), revealing its composition as a typical HtrA family serine protease with protease and PDZ domains. Its findings suggest that psMucD containing one PDZ domain is a trimer in solution, and psMucD trimerization is mediated by its N-terminal loop. Sequence and structural analyses revealed similarities and differences with other HtrA family members. Additionally, this study provides a model of psMucD's catalytic process, comparing it with other members of the HtrA family of serine proteases.


Asunto(s)
Proteínas de Escherichia coli , Proteínas Periplasmáticas , Humanos , Serina Proteasas , Pseudomonas syringae/metabolismo , Serina Endopeptidasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Periplasmáticas/química , Proteínas Bacterianas/metabolismo
3.
J Am Chem Soc ; 145(24): 13015-13026, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37282495

RESUMEN

The periplasmic protein DegP, which is implicated in virulence factor transport leading to pathogenicity, is a bi-functional protease and chaperone that helps to maintain protein homeostasis in Gram-negative bacteria and is essential to bacterial survival under stress conditions. To perform these functions, DegP captures clients inside cage-like structures, which we have recently shown to form through the reorganization of high-order preformed apo oligomers, consisting of trimeric building blocks, that are structurally distinct from client-bound cages. Our previous studies suggested that these apo oligomers may allow DegP to encapsulate clients of various sizes under protein folding stresses by forming ensembles that can include extremely large cage particles, but how this occurs remains an open question. To explore the relation between cage and substrate sizes, we engineered a series of DegP clients of increasing hydrodynamic radii and analyzed their influence on DegP cage formation. We used dynamic light scattering and cryogenic electron microscopy to characterize the hydrodynamic properties and structures of the DegP cages that are adopted in response to each client. We present a series of density maps and structural models that include those for novel particles of approximately 30 and 60 monomers. Key interactions between DegP trimers and the bound clients that stabilize the cage assemblies and prime the clients for catalysis are revealed. We also provide evidence that DegP can form cages which approach subcellular organelles in terms of size.


Asunto(s)
Proteínas de Choque Térmico , Proteínas Periplasmáticas , Humanos , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Péptido Hidrolasas/metabolismo , Escherichia coli/metabolismo , Serina Endopeptidasas/química , Proteínas Periplasmáticas/química , Proteínas Periplasmáticas/metabolismo , Chaperonas Moleculares/metabolismo
4.
Nat Commun ; 13(1): 2818, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35595811

RESUMEN

Molecular chaperones play a central role in regulating protein homeostasis, and their active forms often contain intrinsically disordered regions (IDRs). However, how IDRs impact chaperone action remains poorly understood. Here, we discover that the disordered N terminus of the prototype chaperone Spy facilitates client release. With NMR spectroscopy and molecular dynamics simulations, we find that the N terminus can bind transiently to the client-binding cavity of Spy primarily through electrostatic interactions mediated by the N-terminal D26 residue. This intramolecular interaction results in a dynamic competition of the N terminus with the client for binding to Spy, which promotes client discharge. Our results reveal the mechanism by which Spy releases clients independent of energy input, thus enriching the current knowledge on how ATP-independent chaperones release their clients and highlighting the importance of synergy between IDRs and structural domains in regulating protein function.


Asunto(s)
Proteínas de Escherichia coli , Chaperonas Moleculares , Proteínas Periplasmáticas , Pliegue de Proteína , Adenosina Trifosfato/metabolismo , Proteínas de Escherichia coli/química , Proteínas Intrínsecamente Desordenadas , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Proteínas Periplasmáticas/química , Unión Proteica
5.
J Biol Chem ; 298(6): 101985, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35483450

RESUMEN

Ecotin is a homodimeric serine protease inhibitor produced by many commensal and pathogenic microbes. It functions as a virulence factor, enabling survival of various pathogens in the blood. The ecotin dimer binds two protease molecules, and each ecotin protomer has two protease-binding sites: site1 occupies the substrate-binding groove, whereas site2 engages a distinct secondary region. Owing to the twofold rotational symmetry within the ecotin dimer, sites 1 and 2 of a protomer bind to different protease molecules within the tetrameric complex. Escherichia coli ecotin inhibits trypsin-like, chymotrypsin-like, and elastase-like enzymes, including pancreatic proteases, leukocyte elastase, key enzymes of blood coagulation, the contact and complement systems, and other antimicrobial cascades. Here, we show that mannan-binding lectin-associated serine protease-1 (MASP-1) and MASP-2, essential activators of the complement lectin pathway, and MASP-3, an essential alternative pathway activator, are all inhibited by ecotin. We decipher in detail how the preorganization of site1 and site2 within the ecotin dimer contributes to the inhibition of each MASP enzyme. In addition, using mutated and monomeric ecotin variants, we show that site1, site2, and dimerization contribute to inhibition in a surprisingly target-dependent manner. We present the first ecotin:MASP-1 and ecotin:MASP-2 crystal structures, which provide additional insights and permit structural interpretation of the observed functional results. Importantly, we reveal that monomerization completely disables the MASP-2-inhibitory, MASP-3-inhibitory, and lectin pathway-inhibitory capacity of ecotin. These findings provide new opportunities to combat dangerous multidrug-resistant pathogens through development of compounds capable of blocking ecotin dimer formation.


Asunto(s)
Proteínas de Escherichia coli/química , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/química , Proteínas Periplasmáticas/química , Sitios de Unión , Lectina de Unión a Manosa de la Vía del Complemento , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Lectinas/genética , Lectinas/metabolismo , Lectina de Unión a Manosa/metabolismo , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , Péptido Hidrolasas/metabolismo , Proteínas Periplasmáticas/metabolismo , Subunidades de Proteína
6.
J Inorg Biochem ; 229: 111728, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35066349

RESUMEN

Bacteria maintain copper balance by various copper response mechanisms. A plasmid gene encoding a methionine rich protein targeted to periplasm is adjacent to the sil operon that confers heavy metal resistance. However, the gene product Orf91 has not been characterized before. Using X-ray crystallography, we solved the structures of Orf91 in apo, cuprous ion-bound, and cupric ion-bound forms. An Orf91 protomer consists of three helices of which the C-terminal two helices belong to domain of unknown function 305 (DUF305), and two Orf91s dimerize into a six-helical bundle. The MxxHH motif specific for DUF305 is critical for cuprous ion binding, and the MxxMxxMHxxMM motif in the N-terminal helix contributes to cupric ion binding. The first histidine of MxxHH shows alternative conformations related to the redox state of copper ion. We suggest that Orf91 is an adaptable copper sponge in the periplasmic space.


Asunto(s)
Cobre/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Periplasmáticas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Cobre/química , Cristalografía por Rayos X , Escherichia coli/química , Proteínas de Escherichia coli/química , Histidina/química , Histidina/metabolismo , Metionina/química , Metionina/metabolismo , Proteínas Periplasmáticas/química , Unión Proteica , Conformación Proteica en Hélice alfa , Multimerización de Proteína
7.
PLoS Comput Biol ; 17(12): e1009756, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34965245

RESUMEN

The spatial localisation of proteins is critical for most cellular function. In bacteria, this is typically achieved through capture by established landmark proteins. However, this requires that the protein is diffusive on the appropriate timescale. It is therefore unknown how the localisation of effectively immobile proteins is achieved. Here, we investigate the localisation to the division site of the slowly diffusing lipoprotein Pal, which anchors the outer membrane to the cell wall of Gram-negative bacteria. While the proton motive force-linked TolQRAB system is known to be required for this repositioning, the underlying mechanism is unresolved, especially given the very low mobility of Pal. We present a quantitative, mathematical model for Pal relocalisation in which dissociation of TolB-Pal complexes, powered by the proton motive force across the inner membrane, leads to the net transport of Pal along the outer membrane and its deposition at the division septum. We fit the model to experimental measurements of protein mobility and successfully test its predictions experimentally against mutant phenotypes. Our model not only explains a key aspect of cell division in Gram-negative bacteria, but also presents a physical mechanism for the transport of low-mobility proteins that may be applicable to multi-membrane organelles, such as mitochondria and chloroplasts.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa , Proteínas de Escherichia coli , Espacio Intracelular , Lipoproteínas , Peptidoglicano , Proteínas Periplasmáticas , Transporte de Proteínas/fisiología , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , División Celular , Pared Celular/química , Pared Celular/metabolismo , Escherichia coli/química , Escherichia coli/citología , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Espacio Intracelular/química , Espacio Intracelular/metabolismo , Lipoproteínas/química , Lipoproteínas/metabolismo , Peptidoglicano/química , Peptidoglicano/metabolismo , Proteínas Periplasmáticas/química , Proteínas Periplasmáticas/metabolismo , Unión Proteica/fisiología
8.
EMBO J ; 40(21): e108610, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34515361

RESUMEN

Bacteria deploy weapons to kill their neighbours during competition for resources and to aid survival within microbiomes. Colicins were the first such antibacterial system identified, yet how these bacteriocins cross the outer membrane (OM) of Escherichia coli is unknown. Here, by solving the structures of translocation intermediates via cryo-EM and by imaging toxin import, we uncover the mechanism by which the Tol-dependent nuclease colicin E9 (ColE9) crosses the bacterial OM. We show that threading of ColE9's disordered N-terminal domain through two pores of the trimeric porin OmpF causes the colicin to disengage from its primary receptor, BtuB, and reorganises the translocon either side of the membrane. Subsequent import of ColE9 through the lumen of a single OmpF subunit is driven by the proton-motive force, which is delivered by the TolQ-TolR-TolA-TolB assembly. Our study answers longstanding questions, such as why OmpF is a better translocator than OmpC, and reconciles the mechanisms by which both Tol- and Ton-dependent bacteriocins cross the bacterial outer membrane.


Asunto(s)
Bacteriocinas/química , Colicinas/química , Escherichia coli/metabolismo , Porinas/química , Membrana Externa Bacteriana/química , Membrana Externa Bacteriana/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Bacteriocinas/genética , Bacteriocinas/metabolismo , Sitios de Unión , Colicinas/genética , Colicinas/metabolismo , Microscopía por Crioelectrón , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Cinética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Modelos Moleculares , Proteínas Periplasmáticas/química , Proteínas Periplasmáticas/genética , Proteínas Periplasmáticas/metabolismo , Porinas/genética , Porinas/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Termodinámica
9.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34362850

RESUMEN

DegP is an oligomeric protein with dual protease and chaperone activity that regulates protein homeostasis and virulence factor trafficking in the periplasm of gram-negative bacteria. A number of oligomeric architectures adopted by DegP are thought to facilitate its function. For example, DegP can form a "resting" hexamer when not engaged to substrates, mitigating undesired proteolysis of cellular proteins. When bound to substrate proteins or lipid membranes, DegP has been shown to populate a variety of cage- or bowl-like oligomeric states that have increased proteolytic activity. Though a number of DegP's substrate-engaged structures have been robustly characterized, detailed mechanistic information underpinning its remarkable oligomeric plasticity and the corresponding interplay between these dynamics and biological function has remained elusive. Here, we have used a combination of hydrodynamics and NMR spectroscopy methodologies in combination with cryogenic electron microscopy to shed light on the apo-DegP self-assembly mechanism. We find that, in the absence of bound substrates, DegP populates an ensemble of oligomeric states, mediated by self-assembly of trimers, that are distinct from those observed in the presence of substrate. The oligomeric distribution is sensitive to solution ionic strength and temperature and is shifted toward larger oligomeric assemblies under physiological conditions. Substrate proteins may guide DegP toward canonical cage-like structures by binding to these preorganized oligomers, leading to changes in conformation. The properties of DegP self-assembly identified here suggest that apo-DegP can rapidly shift its oligomeric distribution in order to respond to a variety of biological insults.


Asunto(s)
Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Proteínas Periplasmáticas/química , Proteínas Periplasmáticas/metabolismo , Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Microscopía por Crioelectrón , Dispersión Dinámica de Luz , Proteínas de Choque Térmico/genética , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Mutación , Resonancia Magnética Nuclear Biomolecular/métodos , Concentración Osmolar , Proteínas Periplasmáticas/genética , Dominios Proteicos , Replegamiento Proteico , Serina Endopeptidasas/genética , Temperatura
10.
J Am Soc Mass Spectrom ; 32(6): 1336-1344, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-33725447

RESUMEN

Labeling approaches using isobaric chemical tags (e.g., isobaric tagging for relative and absolute quantification, iTRAQ and tandem mass tag, TMT) have been widely applied for the quantification of peptides and proteins in bottom-up MS. However, until recently, successful applications of these approaches to top-down proteomics have been limited because proteins tend to precipitate and "crash" out of solution during TMT labeling of complex samples making the quantification of such samples difficult. In this study, we report a top-down TMT MS platform for confidently identifying and quantifying low molecular weight intact proteoforms in complex biological samples. To reduce the sample complexity and remove large proteins from complex samples, we developed a filter-SEC technique that combines a molecular weight cutoff filtration step with high-performance size exclusion chromatography (SEC) separation. No protein precipitation was observed in filtered samples under the intact protein-level TMT labeling conditions. The proposed top-down TMT MS platform enables high-throughput analysis of intact proteoforms, allowing for the identification and quantification of hundreds of intact proteoforms from Escherichia coli cell lysates. To our knowledge, this represents the first high-throughput TMT labeling-based, quantitative, top-down MS analysis suitable for complex biological samples.


Asunto(s)
Proteínas de Escherichia coli/análisis , Proteínas de Escherichia coli/química , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Cromatografía en Gel , Cromatografía Liquida/métodos , Peso Molecular , Proteínas Periplasmáticas/análisis , Proteínas Periplasmáticas/química , Peroxidasas/análisis , Peroxidasas/química , Proteínas Ribosómicas/análisis , Proteínas Ribosómicas/química
11.
Cell Chem Biol ; 28(6): 813-824.e6, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-33529581

RESUMEN

Antibodies are essential tools in research and diagnostics. Although antibody fragments typically obtained from in vitro selection can be rapidly produced in bacteria, the generation of full-length antibodies or the modification of antibodies with probes is time and labor intensive. Protein ligation such as SpyTag technology could covalently attach domains and labels to antibody fragments equipped with a SpyTag. However, we found that the established periplasmic expression of antibody fragments in E. coli led to quantitative cleavage of the SpyTag by the proteases Tsp and OmpT. Here we report successful periplasmic expression of SpyTagged Fab fragments and demonstrate the coupling to separately prepared SpyCatcher modules. We used this modular toolbox of SpyCatcher proteins to generate reagents for a variety of immunoassays and measured their performance in comparison with traditional reagents. Furthermore, we demonstrate surface immobilization, high-throughput screening of antibody libraries, and rapid prototyping of antibodies based on modular antibody assembly.


Asunto(s)
Anticuerpos/metabolismo , Fragmentos de Inmunoglobulinas/genética , Péptido Hidrolasas/genética , Proteínas Periplasmáticas/genética , Anticuerpos/química , Línea Celular Tumoral , Femenino , Humanos , Fragmentos de Inmunoglobulinas/aislamiento & purificación , Fragmentos de Inmunoglobulinas/metabolismo , Péptido Hidrolasas/química , Péptido Hidrolasas/metabolismo , Proteínas Periplasmáticas/química , Proteínas Periplasmáticas/metabolismo
12.
Nat Commun ; 12(1): 851, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33558474

RESUMEN

ATP-independent chaperones are usually considered to be holdases that rapidly bind to non-native states of substrate proteins and prevent their aggregation. These chaperones are thought to release their substrate proteins prior to their folding. Spy is an ATP-independent chaperone that acts as an aggregation inhibiting holdase but does so by allowing its substrate proteins to fold while they remain continuously chaperone bound, thus acting as a foldase as well. The attributes that allow such dual chaperoning behavior are unclear. Here, we used the topologically complex protein apoflavodoxin to show that the outcome of Spy's action is substrate specific and depends on its relative affinity for different folding states. Tighter binding of Spy to partially unfolded states of apoflavodoxin limits the possibility of folding while bound, converting Spy to a holdase chaperone. Our results highlight the central role of the substrate in determining the mechanism of chaperone action.


Asunto(s)
Adenosina Trifosfato/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Periplasmáticas/metabolismo , Anabaena/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Azotobacter/metabolismo , Escherichia coli/metabolismo , Flavodoxina/química , Flavodoxina/metabolismo , Cinética , Espectroscopía de Resonancia Magnética , Conformación Molecular , Proteínas Mutantes/metabolismo , Proteínas Periplasmáticas/química , Unión Proteica , Pliegue de Proteína , Especificidad por Sustrato
13.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 12): 609-615, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33263573

RESUMEN

The crystal structure of the 268-residue periplasmic protein PA1624 from the opportunistic pathogen Pseudomonas aeruginosa PAO1 was determined to high resolution using the Se-SAD method for initial phasing. The protein was found to be monomeric and the structure consists of two domains, domains 1 and 2, comprising residues 24-184 and 185-268, respectively. The fold of these domains could not be predicted even using state-of-the-art prediction methods, and similarity searches revealed only a very distant homology to known structures, namely to Mog1p/PsbP-like and OmpA-like proteins for the N- and C-terminal domains, respectively. Since PA1624 is only present in an important human pathogen, its unique structure and periplasmic location render it a potential drug target. Consequently, the results presented here may open new avenues for the discovery and design of antibacterial drugs.


Asunto(s)
Proteínas Periplasmáticas/química , Pseudomonas aeruginosa/química , Cristalografía por Rayos X , Modelos Moleculares , Proteínas Periplasmáticas/genética , Proteínas Periplasmáticas/metabolismo , Dominios Proteicos , Pliegue de Proteína
14.
Commun Biol ; 3(1): 547, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33005001

RESUMEN

Rising antibiotic resistance urgently begs for novel targets and strategies for antibiotic discovery. Here, we report that over-activation of the periplasmic DegP protease, a member of the highly conserved HtrA family, can be a viable strategy for antibiotic development. We demonstrate that tripodal peptidyl compounds that mimic DegP-activating lipoprotein variants allosterically activate DegP and inhibit the growth of an Escherichia coli strain with a permeable outer membrane in a DegP-dependent fashion. Interestingly, these compounds inhibit bacterial growth at a temperature at which DegP is not essential for cell viability, mainly by over-proteolysis of newly synthesized proteins. Co-crystal structures show that the peptidyl arms of the compounds bind to the substrate-binding sites of DegP. Overall, our results represent an intriguing example of killing bacteria by activating a non-essential enzyme, and thus expand the scope of antibiotic targets beyond the traditional essential proteins or pathways.


Asunto(s)
Antibacterianos/farmacología , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas Periplasmáticas/metabolismo , Serina Endopeptidasas/metabolismo , Sitios de Unión , Activación Enzimática , Activadores de Enzimas/farmacología , Escherichia coli/efectos de los fármacos , Polarización de Fluorescencia , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Péptidos/metabolismo , Péptidos/farmacología , Proteínas Periplasmáticas/química , Proteínas Periplasmáticas/efectos de los fármacos , Estructura Terciaria de Proteína , Serina Endopeptidasas/química , Serina Endopeptidasas/efectos de los fármacos
15.
J Biol Chem ; 295(42): 14488-14500, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-32817055

RESUMEN

Chaperones are essential components of the protein homeostasis network. There is a growing interest in optimizing chaperone function, but exactly how to achieve this aim is unclear. Here, using a model chaperone, the bacterial protein Spy, we demonstrate that substitutions that alter the electrostatic potential of Spy's concave, client-binding surface enhance Spy's anti-aggregation activity. We show that this strategy is more efficient than one that enhances the hydrophobicity of Spy's surface. Our findings thus challenge the traditional notion that hydrophobic interactions are the major driving forces that guide chaperone-substrate binding. Kinetic data revealed that both charge- and hydrophobicity-enhanced Spy variants release clients more slowly, resulting in a greater "holdase" activity. However, increasing short-range hydrophobic interactions deleteriously affected Spy's ability to capture substrates, thus reducing its in vitro chaperone activity toward fast-aggregating substrates. Our strategy in chaperone surface engineering therefore sought to fine-tune the different molecular forces involved in chaperone-substrate interactions rather than focusing on enhancing hydrophobic interactions. These results improve our understanding of the mechanistic basis of chaperone-client interactions and illustrate how protein surface-based mutational strategies can facilitate the rational improvement of molecular chaperones.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Proteínas Periplasmáticas/metabolismo , Agregado de Proteínas , Animales , Bovinos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Lactalbúmina/química , Lactalbúmina/metabolismo , Mutagénesis Sitio-Dirigida , Proteínas Periplasmáticas/química , Proteínas Periplasmáticas/genética , Unión Proteica , Electricidad Estática , Especificidad por Sustrato
16.
Structure ; 28(12): 1344-1357.e4, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32857964

RESUMEN

Insertions and deletions (indels) in protein sequences alter the residue spacing along the polypeptide backbone and consequently open up possibilities for tuning protein function in a way that is inaccessible by amino acid substitution alone. We describe an optimization-based computational protein redesign approach centered around predicting beneficial combinations of indels along with substitutions and also obtain putative substrate-docked structures for these protein variants. This modified algorithmic capability would be of interest for enzyme engineering and broadly inform other protein design tasks. We highlight this capability by (1) identifying active variants of a bacterial thioesterase enzyme ('TesA) with experimental corroboration, (2) recapitulating existing active TEM-1 ß-Lactamase sequences of different sizes, and (3) identifying shorter 4-Coumarate:CoA ligases with enhanced in vitro activities toward non-native substrates. A separate PyRosetta-based open-source tool, Indel-Maker (http://www.maranasgroup.com/software.htm), has also been created to construct computational models of user-defined protein variants with specific indels and substitutions.


Asunto(s)
Mutación INDEL , Ingeniería de Proteínas/métodos , Análisis de Secuencia de Proteína/métodos , Programas Informáticos , Dominio Catalítico , Coenzima A Ligasas/química , Coenzima A Ligasas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Lisofosfolipasa/química , Lisofosfolipasa/metabolismo , Simulación del Acoplamiento Molecular/métodos , Proteínas Periplasmáticas/química , Proteínas Periplasmáticas/metabolismo , Unión Proteica , beta-Lactamasas/química , beta-Lactamasas/metabolismo
17.
Metallomics ; 12(10): 1530-1541, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-32780051

RESUMEN

Campylobacter jejuni is a leading cause of food-borne gastrointestinal disease in humans and uropathogenic Escherichia coli is a leading cause of urinary tract infections. Both human pathogens harbour a homologous iron uptake system (termed cjFetM-P19 in C. jejuni and ecFetM-FetP in E. coli). Although these systems are important for growth under iron limitation, the mechanisms by which these systems function during iron transport remain undefined. The copper ions bound to P19 and FetP, the homologous periplasmic proteins, are coordinated in an uncommon penta-dentate manner involving a Met-Glu-His3 motif and exhibit positional plasticity. Here we demonstrate the function of the Met and Glu residues in modulating copper binding and controlling copper positioning through site-directed variants, binding assays, and crystal structures. Growth of C. jejuni strains with these p19 variants is impaired under iron limited conditions as compared to the wild-type strain. Additionally, an acidic residue-rich secondary site is required for binding iron and function in vivo. Finally, western blot analyses demonstrate direct and specific interactions between periplasmic P19 and FetP with the large periplasmic domain of their respective inner membrane transporters cjFetM and ecFetM.


Asunto(s)
Proteínas Bacterianas/metabolismo , Campylobacter jejuni/metabolismo , Hierro/metabolismo , Proteínas Periplasmáticas/metabolismo , Escherichia coli Uropatógena/metabolismo , Proteínas Bacterianas/química , Sitios de Unión , Transporte Biológico , Infecciones por Campylobacter/microbiología , Campylobacter jejuni/química , Cobre/metabolismo , Cristalografía por Rayos X , Infecciones por Escherichia coli/microbiología , Humanos , Modelos Moleculares , Proteínas Periplasmáticas/química , Escherichia coli Uropatógena/química
18.
Protein Expr Purif ; 175: 105689, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32698044

RESUMEN

Lipopolysaccharides are central elements of the outer leaflet of the outer membrane of Gram-negative bacteria and as such, of cyanobacteria. In the past, the structural analysis of the system in proteobacteria like Escherichia coli has contributed to a deep understanding of the transport of lipopolysaccharides from plasma membrane to the outer membrane. While many components of the transport system are conserved between proteobacteria and cyanobacteria, the periplasmic LptC appears to be distinct. The cyanobacterial proteins are twice as long as the proteobacterial proteins or proteins from firmicutes. This prompted the question whether the structure of the cyanobacterial proteins is comparable the one of the proteobacterial proteins. To address this question, we expressed LptC from Anabaena sp. PCC 7120 in E. coli as truncated protein without the transmembrane segment. We purified the protein utilizing HIS-tag based affinity chromatography and polished the protein after removal of the tag by size exclusion chromatography. The purified recombinant protein was crystallized by the sitting-drop vapor diffusion technique and best crystals, despite being twinned, diffracted to a resolution of 2.6 Å.


Asunto(s)
Anabaena/genética , Expresión Génica , Proteínas Periplasmáticas , Cristalografía por Rayos X , Proteínas Periplasmáticas/biosíntesis , Proteínas Periplasmáticas/química , Proteínas Periplasmáticas/genética , Proteínas Periplasmáticas/aislamiento & purificación , Dominios Proteicos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación
19.
Biochem J ; 477(16): 2949-2965, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32729902

RESUMEN

The biogenesis of outer membrane proteins (OMPs) is an extremely challenging process. In the periplasm of Escherichia coli, a group of quality control factors work together to exercise the safe-guard and quality control of OMPs. DegP, Skp and SurA are the three most prominent ones. Although extensive investigations have been carried out, the molecular mechanism regarding the networking among these proteins remains mostly mysterious. Our group has previously studied the molecular interactions of OMPs with SurA and Skp, using single-molecule detection (SMD). In this work, again using SMD, we studied how OmpC, a representative of OMPs, interacts with DegP, Skp and SurA collectively. Several important discoveries were made. The self-oligomerization of DegP to form hexamer occurs over hundred micromolars. When OmpC is in a monomer state at a low concentration, the OmpC·DegP6 and OmpC·DegP24 complexes form when the DegP concentration is around sub-micromolars and a hundred micromolars, respectively. High OmpC concentration promotes the binding affinity of DegP to OmpC by ∼100 folds. Skp and SurA behave differently when they interact synergistically with DegP in the presence of substrate. DegP can degrade SurA-protected OmpC, but Skp-protected OmpC forms the ternary complex OmpC·(Skp3)n·DegP6 (n = 1,2) to resist the DegP-mediated degradation. Combined with previous results, we were able to depict a comprehensive picture regarding the molecular mechanism of the networking among DegP, Skp and SurA in the periplasm for the OMPs biogenesis under physiological and stressed conditions.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Proteínas Periplasmáticas/metabolismo , Serina Endopeptidasas/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas Portadoras/química , Proteínas de Unión al ADN/química , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/química , Proteínas de Choque Térmico/química , Chaperonas Moleculares/química , Isomerasa de Peptidilprolil/química , Proteínas Periplasmáticas/química , Pliegue de Proteína , Serina Endopeptidasas/química
20.
Biochemistry ; 59(30): 2788-2795, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32657577

RESUMEN

Human neutrophil elastase (hNE) is a serine protease that plays a major role in defending the bacterial infection. However, elevated expression of hNE is reported in lung and breast cancer, among others. Moreover, hNE is a target for the treatment of cardiopulmonary diseases. Ecotin (ET) is a serine protease inhibitor present in many Gram-negative bacteria, and it plays a physiological role in inhibiting host proteases, including hNE. Despite this known interaction, the structure of the hNE-ET complex has not been reported, and the mechanism of ecotin inhibition is not available. We determined the structure of the hNE-ET complex by molecular replacement method. The structure of the hNE-ET complex revealed the presence of six interface regions comprising 50s, 60s, and 80s loops, between the ET dimer and two independent hNE monomers, which explains the high affinity of ecotin for hNE (12 pM). Notably, we observed a secondary binding site of hNE located 24 Å from the primary binding site. Comparison of the closely related trypsin-ecotin complex with our hNE-ET complex shows movement of the backbone atoms of the 80s and 50s loops by 4.6 Å, suggesting the flexibility of these loops in inhibiting a range of proteases. Through a detailed structural analysis, we demonstrate the flexibility of the hNE subsites to dock various side chains concomitant with inhibition, indicating the broad specificity of hNE against various inhibitors. These findings will aid in the design of chimeric inhibitors that target both sites of hNE and in the development of therapeutics for controlling hNE-mediated pathogenesis.


Asunto(s)
Dominio Catalítico , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/farmacología , Elastasa de Leucocito/antagonistas & inhibidores , Elastasa de Leucocito/química , Proteínas Periplasmáticas/química , Proteínas Periplasmáticas/farmacología , Sitios de Unión , Humanos , Modelos Moleculares , Homología Estructural de Proteína , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...