Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Pept Sci ; 25(10): e3216, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31713950

RESUMEN

Deciphering the pathophysiologic events in prion diseases is challenging, and the role of posttranslational modifications (PTMs) such as glypidation and glycosylation remains elusive due to the lack of homogeneous protein preparations. So far, experimental studies have been limited in directly analyzing the earliest events of the conformational change of cellular prion protein (PrPC ) into scrapie prion protein (PrPSc ) that further propagates PrPC misfolding and aggregation at the cellular membrane, the initial site of prion infection, and PrP misfolding, by a lack of suitably modified PrP variants. PTMs of PrP, especially attachment of the glycosylphosphatidylinositol (GPI) anchor, have been shown to be crucially involved in the PrPSc formation. To this end, semisynthesis offers a unique possibility to understand PrP behavior invitro and invivo as it provides access to defined site-selectively modified PrP variants. This approach relies on the production and chemoselective linkage of peptide segments, amenable to chemical modifications, with recombinantly produced protein segments. In this article, advances in understanding PrP conversion using semisynthesis as a tool to obtain homogeneous posttranslationally modified PrP will be discussed.


Asunto(s)
Proteínas PrPC/síntesis química , Proteínas PrPSc/síntesis química , Pliegue de Proteína , Procesamiento Proteico-Postraduccional , Animales , Humanos , Proteínas PrPC/química , Proteínas PrPC/metabolismo , Proteínas PrPSc/química , Proteínas PrPSc/metabolismo , Enfermedades por Prión/metabolismo , Enfermedades por Prión/patología , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/patología
2.
Curr Med Chem ; 19(34): 5907-21, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22834819

RESUMEN

The aggregation behavior of the amyloid peptide Aß(1-28) and the prion peptide PrP(185-208) - both responsible for neurodegenerative disorders - was analyzed in the absence and in the presence of poly(propylene imine) (PPI) dendrimers at generation 5 (G5) with a dense shell of maltose and maltotriose units. Thioflavin T (ThT) fluorescence assay and circular dichroism (CD) experiments indicated that fibril formation is enhanced at low dendrimer concentration, while it is prevented at relatively high dendrimer concentrations. Computer aided EPR analysis by means of the selected spin probe 4-octyl-dimethylammonium,2,2,6,6-tetramethyl-piperidine-1-oxyl bromide (CAT8) further demonstrated this behavior, but also provided detailed information on the mechanism of fibril formation and on the different behavior of the differently decorated dendrimers. The CAT8 radicals were progressively trapped at the peptide interphase when peptide aggregates were formed, also monitoring pre-fibrillar structures. At later time, a phase separation of the CAT8 radicals monitors the formation of further supramolecular structures where the probes become squeezed among fibrillar aggregates. The addition of small amounts of dendrimers promotes the formation of peptide fibrils breaking them and providing a larger amount of ends that serve as sites of replications. Conversely, a high amount of dendrimers allows the peptides to well separate from each other such preventing their aggregation. EPR results also indicate that the perturbation played by PPI(G5)-Maltose are more effective onto PrP(185-208) than onto Aß(1-28), while PPI(G5)-Maltotriose is less effective towards PrP(185-208) in both promoting aggregation and preventing it by changing the dendrimer concentration. These results provide useful information about the mechanism and interactions which regulate the ability of macromolecules like the dendrimers to favor, prevent or cure neurodegenerative diseases.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Dendrímeros/química , Maltosa/química , Fragmentos de Péptidos/metabolismo , Proteínas PrPC/metabolismo , Trisacáridos/química , Péptidos beta-Amiloides/síntesis química , Péptidos beta-Amiloides/química , Dicroismo Circular , Espectroscopía de Resonancia por Spin del Electrón , Cinética , Fragmentos de Péptidos/síntesis química , Fragmentos de Péptidos/química , Polimerizacion , Polipropilenos/química , Proteínas PrPC/síntesis química , Proteínas PrPC/química , Estructura Secundaria de Proteína
3.
Chem Pharm Bull (Tokyo) ; 59(8): 965-71, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21804240

RESUMEN

The structural conversion of the prion protein (PrP) from the normal cellular isoform (PrP(C)) to the posttranslationally modified form (PrP(Sc)) is thought to relate to Cu²âº binding to histidine (H) residues. Traditionally, the binding of metals to PrP has been investigated by monitoring the conformational conversion using circular dichroism (CD). In this study, the metal-binding ability of 21 synthetic peptides representing regions of human PrP(C) was investigated by column switch high-performance liquid chromatography (CS-HPLC). The CS-HPLC system is composed of a metal chelate affinity column and an octadecylsilica (ODS) reversed-phase column that together enable the identification of metal-binding regardless of conformational conversion. Synthetic peptides were designed with respect to the position of H residues as well as the secondary structure of human PrP (hPrP). The ability of the octapeptide (PHGGGWGQ)-repeating region (OP-repeat) to bind metals was analyzed by CS-HPLC and supported by CD analysis, and indicated that CS-HPLC is a reliable and useful method for measuring peptide metal-binding. Peptides from the middle region of hPrP showed a high affinity for Cu²âº, but binding to Zn²âº, Ni²âº, and Co²âº was dependent on peptide length. C-Terminal peptides had a lower affinity for Cu²âº, Zn²âº, Ni²âº, and Co²âº than OP-repeat region peptides. Interestingly, hPrP193-230, which contained no H residues, also bound to Cu²âº, Zn²âº, Ni²âº, and Co²âº, indicating that this region is a novel metal-binding site in the C-terminal region of PrP(C). The CS-HPLC method described in this study is useful and convenient for assessing metal-binding affinity and characterizing metal-binding peptides or proteins.


Asunto(s)
Metales/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Proteínas PrPC/química , Proteínas PrPC/metabolismo , Secuencia de Aminoácidos , Cromatografía Líquida de Alta Presión , Humanos , Datos de Secuencia Molecular , Fragmentos de Péptidos/síntesis química , Proteínas PrPC/síntesis química , Unión Proteica
5.
Proc Natl Acad Sci U S A ; 104(28): 11551-6, 2007 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-17601775

RESUMEN

On our initial discovery that prion protein (PrP)-derived peptides were capable of capturing the pathogenic prion protein (PrP(Sc)), we have been interested in how these peptides interact with PrP(Sc). After screening peptides from the entire human PrP sequence, we found two peptides (PrP(19-30) and PrP(100-111)) capable of binding full-length PrP(Sc) in plasma, a medium containing a complex mixture of other proteins including a vast excess of the normal prion protein (PrP(C)). The limit of detection for captured PrP(Sc) was calculated to be 8 amol from a approximately 10(5)-fold dilution of 10% (wt/vol) human variant Creutzfeldt-Jakob disease brain homogenate, with >3,800-fold binding specificity to PrP(Sc) over PrP(C). Through extensive analyses, we show that positively charged amino acids play an important, but not exclusive, role in the interaction between the peptides and PrP(Sc). Neither hydrophobic nor polar interactions appear to correlate with binding activity. The peptide-PrP(Sc) interaction was not sequence-specific, but amino acid composition affected binding. Binding occurs through a conformational domain that is only present in PrP(Sc), is species-independent, and is not affected by proteinase K digestion. These and other findings suggest a mechanism by which cationic domains of PrP(C) may play a role in the recruitment of PrP(C) to PrP(Sc).


Asunto(s)
Fragmentos de Péptidos/síntesis química , Proteínas PrPC/síntesis química , Proteínas PrPSc/síntesis química , Anticuerpos/metabolismo , Humanos , Inmunoglobulina G/metabolismo , Microesferas , Fragmentos de Péptidos/sangre , Fragmentos de Péptidos/inmunología , Proteínas PrPC/sangre , Proteínas PrPC/clasificación , Proteínas PrPC/inmunología , Proteínas PrPSc/sangre , Proteínas PrPSc/clasificación , Proteínas PrPSc/inmunología , Enfermedades por Prión/diagnóstico , Enfermedades por Prión/inmunología , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...