Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Mol Genet Genomics ; 297(1): 125-145, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34978004

RESUMEN

The MYB transcription factors comprise one of the largest superfamilies in plants that have been implicated in the regulation of plant-specific metabolites and responses to biotic and abiotic stresses. Here, we present the first comprehensive genome-wide analysis and functional characterization of the CtMYB family in Carthamus tinctorius. A total of 272 CtMYBs were identified and classified into 12 subgroups using comparative phylogenetic analysis with Arabidopsis and rice orthologs. The overview of conserved motifs, gene structures, and cis elements as well as the expression pattern of CtMYB genes indicated the diverse roles of these transcription factors during plant growth, regulation of secondary metabolites, and various abiotic stress responses. The subcellular localization and transactivation analysis of four CtMYB proteins indicated predominant localization in the nuclei with enhanced transcriptional activation in yeast. The expression of CtMYB63 induced with various abiotic stress conditions showed upregulation in its transcription level. In addition, the expression analysis of the core structural genes of anthocyanin biosynthetic pathway under drought and cold stress in CtMYB63 overexpressed transgenic lines also supports the notion of CtMYB63 transcriptional reprogramming in response to abiotic stress by upregulating the anthocyanin biosynthesis. Together, our findings revealed the underlying regulatory mechanism of CtMYB TF network involving enhanced cold and drought stress tolerance through activating the rapid biosynthesis of anthocyanin in C. tinctorius. This study also presents useful insights towards the establishment of new strategies for crop improvements.


Asunto(s)
Antocianinas/metabolismo , Carthamus tinctorius/genética , Proteínas Proto-Oncogénicas c-myb/genética , Estrés Fisiológico/genética , Antocianinas/biosíntesis , Antocianinas/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Carthamus tinctorius/clasificación , Carthamus tinctorius/crecimiento & desarrollo , Reprogramación Celular/genética , Respuesta al Choque por Frío , Sequías , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Estudio de Asociación del Genoma Completo , Familia de Multigenes , Filogenia , Plantas Modificadas Genéticamente , Proteínas Proto-Oncogénicas c-myb/fisiología
2.
J Plant Physiol ; 263: 153465, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34225176

RESUMEN

Tea is one of the most consumed beverages worldwide, and trichome formation in tea plant leaves impairs their commercial value. In Arabidopsis thaliana leaves, trichome formation is negatively regulated by the CPC family genes, which encode R3-type MYB transcription factors. Here, we identified six CPC-like genes in a tea plant (Camellia sinensis var. sinensis) for the first time. Simulated three-dimensional structure of the MYB domains of all the six CPC-like proteins exhibited negative charge on the surface, as observed on that of the Arabidopsis CPC protein that does not bind to DNA, indicating their similarity with regard to molecular interaction. We further found that the six CPC-like genes were differentially expressed in different developmental stages of tea leaves, and four out of the six genes were upregulated in the youngest 1st leaves, which formed more trichomes than other older leaves. Although it does not establish a causal link, the correlation between differential expression of CPC-like genes and variable trichome formation suggests that the R3-type MYB transcription factors are potential precipitating factors in affecting the value of tea leaf.


Asunto(s)
Camellia sinensis/genética , Camellia sinensis/fisiología , Genes de Plantas , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas Proto-Oncogénicas c-myb/genética , Tricomas/genética , Tricomas/fisiología , Productos Agrícolas/genética , Productos Agrícolas/fisiología , Regulación de la Expresión Génica de las Plantas , Variación Genética , Japón , Proteínas Proto-Oncogénicas c-myb/fisiología
3.
Blood ; 137(5): 610-623, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33538795

RESUMEN

This study was conducted to determine the dosage effect of c-Myc on hematopoiesis and its distinct role in mediating the Wnt/ß-catenin pathway in hematopoietic stem cell (HSC) and bone marrow niche cells. c-Myc haploinsufficiency led to ineffective hematopoiesis by inhibiting HSC self-renewal and quiescence and by promoting apoptosis. We have identified Nr4a1, Nr4a2, and Jmjd3, which are critical for the maintenance of HSC functions, as previously unrecognized downstream targets of c-Myc in HSCs. c-Myc directly binds to the promoter regions of Nr4a1, Nr4a2, and Jmjd3 and regulates their expression. Our results revealed that Nr4a1 and Nr4a2 mediates the function of c-Myc in regulating HSC quiescence, whereas all 3 genes contribute to the function of c-Myc in the maintenance of HSC survival. Adenomatous polyposis coli (Apc) is a negative regulator of the Wnt/ß-catenin pathway. We have provided the first evidence that Apc haploinsufficiency induces a blockage of erythroid lineage differentiation through promoting secretion of IL6 in bone marrow endothelial cells. We found that c-Myc haploinsufficiency failed to rescue defective function of Apc-deficient HSCs in vivo but it was sufficient to prevent the development of severe anemia in Apc-heterozygous mice and to significantly prolong the survival of those mice. Furthermore, we showed that c-Myc-mediated Apc loss induced IL6 secretion in endothelial cells, and c-Myc haploinsufficiency reversed the negative effect of Apc-deficient endothelial cells on erythroid cell differentiation. Our studies indicate that c-Myc has a context-dependent role in mediating the function of Apc in hematopoiesis.


Asunto(s)
Genes myc , Hematopoyesis/fisiología , Proteínas Proto-Oncogénicas c-myb/fisiología , Proteína de la Poliposis Adenomatosa del Colon/fisiología , Anemia/genética , Anemia/prevención & control , Animales , Apoptosis/fisiología , Trasplante de Médula Ósea , Autorrenovación de las Células/fisiología , Ensayo de Unidades Formadoras de Colonias , Células Endoteliales/patología , Células Eritroides/patología , Eliminación de Gen , Genes APC , Haploinsuficiencia , Hematopoyesis/genética , Células Madre Hematopoyéticas , Interleucina-6/fisiología , Histona Demetilasas con Dominio de Jumonji/fisiología , Ratones Mutantes , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/fisiología , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/fisiología , Poli I-C/farmacología , Quimera por Radiación , Vía de Señalización Wnt/fisiología
4.
Plant Sci ; 303: 110796, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33487333

RESUMEN

Flavonoids are small molecular secondary metabolites, which have a variety of biological functions. Transcriptional regulations of key enzyme genes play critical roles in the flavonoid biosynthesis. In this study, an R2R3-MYB transcription factor gene, SlMYB14, was isolated from tomato and characterized. The nucleus-localized SlMYB14 functions as a transcriptional activator in yeast. The expression of SlMYB14 could be induced by methyl jasmonic acid, wounding and ABA. SlMYB14 works downstream of SlMYC2 in the jasmonate signaling pathway. Overexpression of SlMYB14 under the control of CaMV35S promoter in tomato led to increased accumulation of flavonoids. RNA-sequencing analysis revealed that the transcript levels of several structural genes associated with flavonoid biosynthesis were up-regulated in transgenic tomato plants. Gel-shift assays confirmed that SlMYB14 protein could bind to the promoter regions of SlPAL genes. It was also found that overexpression of SlMYB14 improved the tolerance of transgenic plants to 2,4,6-trichlorophenol (2,4,6-TCP), an environmental organic pollutant which could cause serious oxidative damage to plant. These results suggest that SlMYB14 participates in the regulation of flavonoid biosynthesis and might play a role in maintaining reactive oxygen species homeostasis in plant. SlMYB14 gene also has the potential to contribute to the phytoremediation of 2,4,6-TCP-contaminated soils.


Asunto(s)
Clorofenoles/farmacología , Contaminantes Ambientales/farmacología , Flavonoides/metabolismo , Proteínas de Plantas/fisiología , Proteínas Proto-Oncogénicas c-myb/fisiología , Solanum lycopersicum/metabolismo , Acetatos/metabolismo , Western Blotting , Mapeo Cromosómico , Ciclopentanos/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Genes de Plantas/genética , Solanum lycopersicum/genética , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteínas Proto-Oncogénicas c-myb/genética , Proteínas Proto-Oncogénicas c-myb/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Análisis de Secuencia de ARN , Transducción de Señal , Transcriptoma , Tricomas/metabolismo
5.
Plant Sci ; 302: 110704, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33288017

RESUMEN

Arabidopsis thaliana TRY is a negative regulator of trichome differentiation that promotes root hair differentiation. Here, we established that LbTRY, from the recretohalophyte Limonium bicolor, is a typical MYB transcription factor that exhibits transcriptional activation activity and locates in nucleus. By in situ hybridization in L. bicolor, LbTRY may be specifically positioned in salt gland of the expanded leaves. LbTRY expression was the highest in mature leaves and lowest under NaCl treatment. For functional assessment, we heterologously expressed LbTRY in wild-type and try29760 mutant Arabidopsis plants. Epidermal differentiation was remarkably affected in the transgenic wild-type line, as was increased root hair development. Complementation of try29760 with LbTRY under both 35S and LbTRY specific promoter restored the wild-type phenotype. qRT-PCR analysis suggested that AtGL3 and AtZFP5 promote root hair cell fate in lines heterologously producing LbTRY. In addition, four genes (AtRHD6, AtRSL1, AtLRL2, and AtLRL3) involved in root hair initiation and elongation were upregulated in the transgenic lines. Furthermore, LbTRY specifically increased the salt sensitivity of the transgenic lines. The transgenic and complementation lines showed poor germination rates and reduced root lengths, whereas the mutant unexpectedly fared the best under a range of NaCl treatments. Under salt stress, the transgenic seedlings accumulated more MDA and Na+ and less proline and soluble sugar than try29760. Thus, when heterologously expressed in Arabidopsis, LbTRY participates in hair development, similar to other MYB proteins, and specifically reduces salt tolerance by increasing ion accumulation and reducing osmolytes. The expression of salt-tolerance marker genes (SOS1, SOS2, SOS3 and P5CS1) was significant reduced in the transgenic lines. More will be carried by downregulating expression of TRY homologs in crops to improve salt tolerance.


Asunto(s)
Osmorregulación/genética , Proteínas de Plantas/fisiología , Raíces de Plantas/crecimiento & desarrollo , Plumbaginaceae/genética , Proteínas Proto-Oncogénicas c-myb/fisiología , Plantas Tolerantes a la Sal/genética , Arabidopsis , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Hibridación in Situ , Osmorregulación/fisiología , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Plantas Modificadas Genéticamente , Plumbaginaceae/crecimiento & desarrollo , Plumbaginaceae/metabolismo , Plumbaginaceae/fisiología , Proteínas Proto-Oncogénicas c-myb/genética , Proteínas Proto-Oncogénicas c-myb/metabolismo , Tolerancia a la Sal , Plantas Tolerantes a la Sal/crecimiento & desarrollo , Plantas Tolerantes a la Sal/metabolismo , Plantas Tolerantes a la Sal/fisiología
6.
Plant Sci ; 302: 110668, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33288032

RESUMEN

MYB transcription factors are important in abiotic stress responses; however, the detailed mechanisms are unclear. Tamarix hispida contains multiple MYB genes. The present study characterized T. hispida MYB8 (ThMYB8) during salt stress using transgenic T. hispida and Arabidopsis assays. ThMYB8 overexpression and ThMYB8 RNAi analysis demonstrated that ThMYB8 enhanced the salt stress tolerance. Transgenic Arabidopsis ectopic expression of ThMYB8 significantly increased root growth, fresh weight, and seed germination rate compared with that of the wild-type under salt stress. Physiological parameters analysis in T. hispida and Arabidopsis showed that ThMYB8 overexpressing plants had the lowest levels of O2, H2O2, cell death, malondialdehyde, and electrolyte leakage. Overexpression of ThMYB8 regulated Na+ and K+ concentrations in plant tissues while maintaining K+/Na+ homeostasis. Analysis using qRT-PCR and ChIP-PCR identified possible downstream ThMYB8-regulated genes. ThMYB8 regulated the expression of ThCYP450-2 (cytochrome p450-2), Thltk (leucine-rich repeat transmembrane protein kinase), and ThTIP (aquaporin TIP) by binding to the MBSI motif ('CAACTG') in their promoters. The results indicated that ThMYB8 enhanced salt stress tolerance in T. hispida by regulating gene expression related to the activation of stress-associated physiological changes, such as enhanced reactive oxygen species scavenging capability, maintaining K+/Na+ homeostasis, and decreasing the malondialdehyde content and lipid peroxidation cell membranes.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Plantas/fisiología , Proteínas Proto-Oncogénicas c-myb/fisiología , Plantas Tolerantes a la Sal/metabolismo , Tamaricaceae/fisiología , Árabes , Inmunoprecipitación de Cromatina , Perfilación de la Expresión Génica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteínas Proto-Oncogénicas c-myb/genética , Proteínas Proto-Oncogénicas c-myb/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Estrés Salino , Plantas Tolerantes a la Sal/genética , Análisis de Secuencia de ADN , Tamaricaceae/genética , Tamaricaceae/metabolismo , Técnicas del Sistema de Dos Híbridos
7.
Plant Cell Physiol ; 61(9): 1590-1599, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32579215

RESUMEN

Many polypetalous plants have a constriction at the base of the petal that leaves a small gap that can provide entry into the young flower bud before the reproductive organs are fully developed. In cotton (Gossypium hirsutum L.), this gap is occluded by tufts of short unicellular trichomes superficially resembling the fibers found on cotton seeds. We are just beginning to understand the developmental regulation of the seed fibers and have previously characterized several MIXTA-like MYB transcription factors (TFs) that are critical for correct seed fiber development but know little about the molecular regulation of other types of cotton trichomes. Here, using RNAi or dominant suppression transgenic cotton lines and natural fiber mutants, we investigated the development and regulation of the petal base trichomes. Petal base trichomes and seed trichomes were also examined across several different species within and outside of the Malvoideae. We found that the petal base trichomes are regulated by the same MYB TFs as cotton seed fibers and, since they are more widely distributed across different taxa than the seed fibers, could have preceded them in the evolution of these important textile fibers produced by some cotton species.


Asunto(s)
Flores/metabolismo , Gossypium/metabolismo , Proteínas de Plantas/fisiología , Semillas/metabolismo , Factores de Transcripción/fisiología , Tricomas/metabolismo , Fibra de Algodón , Flores/fisiología , Gossypium/fisiología , Proteínas de Plantas/metabolismo , Proteínas Proto-Oncogénicas c-myb/metabolismo , Proteínas Proto-Oncogénicas c-myb/fisiología , Semillas/fisiología , Factores de Transcripción/metabolismo , Tricomas/fisiología
8.
PLoS One ; 15(5): e0233375, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32421756

RESUMEN

MYB-related transcription factors play important roles in plant development and response to various environmental stresses. In the present study, a novel MYB gene, designated as BnMYB2 (GenBank accession number: MF741319.1), was isolated from Boehmeria nivea using rapid amplification of cDNA ends (RACE) and RT-PCR on a sequence fragment from a ramie transcriptome. BnMYB2 has a 945 bp open reading frame encoding a 314 amino acid protein that contains a DNA-binding domain and shares high sequence identity with MYB proteins from other plant species. The BnMYB2 promoter contains several putative cis-acting elements involved in stress or phytohormone responses. A translational fusion of BnMYB2 with enhanced green fluorescent protein (eGFP) showed nuclear and cytosolic subcellular localization. Real-time PCR results indicated that BnMYB2 expression was induced by Cadmium (Cd) stress. Overexpression of BnMYB2 in Arabidopsis thaliana resulted in a significant increase of Cd tolerance and accumulation. Thus, BnMYB2 positively regulated Cd tolerance and accumulation in Arabidopsis, and could be used to enhance the efficiency of Cd removal with plants.


Asunto(s)
Boehmeria/genética , Cadmio/metabolismo , Factores de Transcripción/fisiología , Arabidopsis/metabolismo , Cadmio/farmacología , Tolerancia a Medicamentos/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/fisiología , Proteínas Proto-Oncogénicas c-myb/metabolismo , Proteínas Proto-Oncogénicas c-myb/fisiología , Estrés Fisiológico/efectos de los fármacos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Oncogene ; 38(26): 5239-5249, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30971760

RESUMEN

Over 70% of human breast cancers are estrogen receptor-positive (ER+), most of which express MYB. In these and other cell types, the MYB transcription factor regulates the expression of many genes involved in cell proliferation, differentiation, tumorigenesis, and apoptosis. So far, no clear link has been established between MYB and the DNA damage response in breast cancer. Here, we found that silencing MYB in the ER+ breast cancer cell line MCF-7 led to increased DNA damage accumulation, as marked by increased γ-H2AX foci following induction of double-stranded breaks. We further found that this was likely mediated by decreased homologous recombination-mediated repair (HRR), since silencing MYB impaired the formation of RAD51 foci in response to DNA damage. Moreover, cells depleted for MYB exhibited reduced expression of several key genes involved in HRR including BRCA1, PALB2, and TOPBP1. Taken together, these data imply that MYB and its targets play an important role in the response of ER+ breast cancer cells to DNA damage, and suggest that induction of DNA damage along with inhibition of MYB activity could offer therapeutic benefits for ER+ breast cancer and possibly other cancer types.


Asunto(s)
Neoplasias de la Mama/genética , Daño del ADN/genética , Proteínas Proto-Oncogénicas c-myb/fisiología , Receptores de Estrógenos/genética , Reparación del ADN por Recombinación/genética , Proteína BRCA1/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Reparación del ADN/genética , Femenino , Humanos , Células MCF-7 , Recombinasa Rad51/genética
10.
Plant Cell Environ ; 42(3): 832-845, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-29929211

RESUMEN

Dehydroascorbate reductase (DHAR) plays an important role in stress responses, but the transcriptional regulation of DHAR in response to abiotic stress is still poorly understood. In this study, we isolated a novel R2R3-type MYB transcription factor from Pyrus betulaefolia by yeast one-hybrid screening, designated as PbrMYB5. PbrMYB5 was localized in the nucleus and could bind specifically to the promoter of PbrDHAR2. PbrMYB5 was greatly induced by cold and salt but slightly by dehydration. Overexpression of PbrMYB5 in tobacco conferred enhanced tolerance to chilling stresses, whereas down-regulation of PbrMYB5 in P. betulaefolia by virus-induced gene silencing resulted in elevated chilling sensitivity. Transgenic tobacco exhibited higher expression levels of NtDHAR2 and accumulated larger amount of ascorbic acid (AsA) than the wild-type plants. Virus-induced gene silencing of PbrMYB5 in P. betulaefolia down-regulated PbrDHAR2 abundance and decreased AsA level, accompanied by an increased sensitivity to the chilling stress. Taken together, these results demonstrated that PbrMYB5 was an activator of AsA biosynthesis and may play a positive role in chilling tolerance, at least in part, due to the modulation of AsA synthesis by regulating the PbrDHAR2 expression.


Asunto(s)
Ácido Ascórbico/biosíntesis , Proteínas de Plantas/fisiología , Proteínas Proto-Oncogénicas c-myb/fisiología , Pyrus/fisiología , Adaptación Fisiológica/genética , Adaptación Fisiológica/fisiología , Respuesta al Choque por Frío , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Proteínas Proto-Oncogénicas c-myb/genética , Pyrus/genética , Pyrus/metabolismo , Nicotiana/metabolismo , Nicotiana/fisiología , Técnicas del Sistema de Dos Híbridos
11.
Plant J ; 92(2): 305-316, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28771873

RESUMEN

Root hairs are specialized cells that are important for nutrient uptake. It is well established that nutrients such as phosphate have a great influence on root hair development in many plant species. Here we investigated the role of nitrate on root hair development at a physiological and molecular level. We showed that nitrate increases root hair density in Arabidopsis thaliana. We found that two different root hair defective mutants have significantly less nitrate than wild-type plants, suggesting that in A. thaliana root hairs have an important role in the capacity to acquire nitrate. Nitrate reductase-null mutants exhibited nitrate-dependent root hair phenotypes comparable with wild-type plants, indicating that nitrate is the signal that leads to increased formation of root hairs. We examined the role of two key regulators of root hair cell fate, CPC and WER, in response to nitrate treatments. Phenotypic analyses of these mutants showed that CPC is essential for nitrate-induced responses of root hair development. Moreover, we showed that NRT1.1 and TGA1/TGA4 are required for pathways that induce root hair development by suppression of longitudinal elongation of trichoblast cells in response to nitrate treatments. Our results prompted a model where nitrate signaling via TGA1/TGA4 directly regulates the CPC root hair cell fate specification gene to increase formation of root hairs in A. thaliana.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/fisiología , Nitratos/fisiología , Raíces de Plantas/crecimiento & desarrollo , Proteínas Proto-Oncogénicas c-myb/fisiología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Nitratos/metabolismo , Transducción de Señal/fisiología
12.
Oncotarget ; 7(52): 86300-86312, 2016 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-27863435

RESUMEN

SETBP1 missense mutations have been frequently identified in multiple myeloid neoplasms; however, their oncogenic potential remains unclear. Here we show that expression of Setbp1 mutants carrying two such mutations in mouse bone marrow progenitors efficiently induced development of acute myeloid leukemias (AMLs) in irradiated recipient mice with significantly shorter latencies and greater penetrance than expression of wild-type Setbp1, suggesting that these mutations are highly oncogenic. The increased oncogenicity of Setbp1 missense mutants could be due in part to their capability to drive significantly higher target gene transcription. We further identify Myb as a critical mediator of Setbp1-induced self-renewal as its knockdown caused efficient differentiation of myeloid progenitors immortalized by wild-type Setbp1 and Setbp1 missense mutants. Interestingly, Myb is also a direct transcriptional target of Setbp1 and Setbp1 missense mutants as they directly bind to the Myb locus in immortalized cells and dramatically activate a critical enhancer/promoter region of Myb in luciferase reporter assays. Furthermore, Myb knockdown in Setbp1 and Setbp1 missense mutations-induced AML cells also efficiently induced their differentiation in culture and significantly prolonged the survival of their secondary recipient mice, suggesting that targeting MYB pathway could be a promising strategy for treating human myeloid neoplasms with SETBP1 activation.


Asunto(s)
Proteínas Portadoras/fisiología , Leucemia Mieloide Aguda/etiología , Proteínas Nucleares/fisiología , Proteínas Proto-Oncogénicas c-myb/fisiología , Animales , Proteínas Portadoras/genética , Femenino , Proteínas Homeobox A10 , Proteínas de Homeodominio/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Ratones , Ratones Endogámicos C57BL , Mutación Missense , Proteínas Nucleares/genética , Proteínas Proto-Oncogénicas c-myb/antagonistas & inhibidores
13.
J Dent Res ; 95(4): 430-8, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26661713

RESUMEN

Diabetes mellitus is closely related to oral-complicated diseases by oxidative stress. This study investigates whether cellular myeloblastosis (c-myb) could protect human dental pulp cells against glucose oxidative stress and regulate autophagy activity for pulp vitality. Diabetes mellitus was induced by streptozotocin in Sprague-Dawley rats, and their pulp tissue in teeth was analyzed in terms of pulp cavity and molecules by hematoxylin and eosin and immunohistochemistry staining. Human dental pulp cells were serially subcultured and treated with glucose oxidase in the presence of elevated glucose to generate glucose oxidative stress. The replication-deficient adenovirus c-myb and small interfering RNA c-myb were introduced for c-myb expression. The pulp tissue from the diabetic rats was structurally different from normal tissue in terms of narrow pulp capacity, reduced c-myb, and dentinogenesis molecules. Glucose oxidase treatment decreased c-myb and dentinogenesis molecules (bone morphogenetic protein 2 and 7, dentin matrix protein 1, and dentin sialophosphoprotein) in human dental pulp cells. However, overexpression of c-myb by adenovirus c-myb increased dentinogenesis, autophagy molecules (autophagy protein 5, microtubule-associated protein 1A/1B-light chain 3, and Beclin-1), and cell survival via p-AMPK/AKT signaling even with glucose oxidative stress. In contrast, the lack of c-myb decreased the above molecules and cell survival by downregulating p-AMPK/AKT signaling. The results indicate that diabetes leads to irreversible damage to dental pulp, which is related to downexpression of autophagy via the p-AMPK/AKT pathway by decline of c-myb. The findings of this study provide a new insight that c-myb could ameliorate autophagy activity and that it is applicable for monitoring complicated diseases of dental pulp. The involvement of c-myb in pulp pathology could serve a therapeutic target in oral-complicated diseases.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia/fisiología , Pulpa Dental/citología , Diabetes Mellitus Experimental/metabolismo , Glucosa/metabolismo , Estrés Oxidativo/fisiología , Proteínas Proto-Oncogénicas c-myb/fisiología , Animales , Western Blotting , Células Cultivadas , Dentinogénesis/efectos de los fármacos , Glucosa Oxidasa/farmacología , Humanos , Inmunohistoquímica , Masculino , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Transfección
14.
Methods Mol Biol ; 1357: 183-93, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-25540117

RESUMEN

Induced pluripotent stem cells from nonhuman primates (NHPs) have unique roles in cell biology and regenerative medicine. Because of the relatedness of NHPs to humans, NHP iPS cells can serve as a source of differentiated derivatives that can be used to address important questions in the comparative biology of primates. Additionally, when used as a source of cells for regenerative medicine, NHP iPS cells serve an invaluable role in translational experiments in cell therapy. Reprogramming of NHP somatic cells requires the same conditions as previously established for human cells. However, throughout the process, a variety of modifications to the human cell protocols must be made to accommodate significant species differences.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Primates , Transgenes , Animales , Callithrix , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Reprogramación Celular , Técnicas de Reprogramación Celular/métodos , Fibroblastos/citología , Genes myc , Vectores Genéticos/genética , Humanos , Células Madre Pluripotentes Inducidas/trasplante , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/fisiología , Ratones , Ratones Noqueados , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/fisiología , Proteínas Proto-Oncogénicas c-myb/fisiología , Retroviridae/genética , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/fisiología , Especificidad de la Especie , Teratoma/patología
15.
Methods Mol Biol ; 1357: 173-82, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-25410287

RESUMEN

Induced pluripotent stem (iPS) cells that are potentially similar to embryonic stem (ES) cells can be artificially established by introduction into somatic cells of the transgenes POU5F1 (also known as Oct3/4), SOX2, KLF4, and c-MYC. In cynomolgus monkeys (Macaca fascicularis), iPS cells generated by using these four allogeneic transgenes should be an important resource for various types of biomedical research because the use of xenogeneic transgenes may cause complications. To establish such iPS cells, cynomolgus monkey somatic cells were infected with amphotropic retroviral vectors, which were derived from Plat-A cells, containing cDNA for the cynomolgus monkey genes POU5F1, SOX2, KLF4, and c-MYC. As a result, iPS cells could be established from somatic cells from fetal liver and newborn skin of cynomolgus monkeys, similarly to the case for mouse and human somatic cells.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Macaca fascicularis , Transgenes , Animales , Técnicas de Cultivo de Célula , Células Cultivadas , Reprogramación Celular , Técnicas de Reprogramación Celular/métodos , Criopreservación , ADN Complementario/genética , Fibroblastos/citología , Genes myc , Vectores Genéticos/genética , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/fisiología , Hígado/citología , Hígado/embriología , Ratones , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/fisiología , Proteínas Proto-Oncogénicas c-myb/fisiología , Retroviridae/genética , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/fisiología , Piel/citología , Piel/embriología , Especificidad de la Especie , Vitrificación
16.
Bone ; 76: 97-106, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25845979

RESUMEN

The Myb locus encodes the c-Myb transcription factor involved in controlling a broad variety of cellular processes. Recently, it has been shown that c-Myb may play a specific role in hard tissue formation; however, all of these results were gathered from an analysis of intramembranous ossification. To investigate a possible role of c-Myb in endochondral ossification, we carried out our study on the long bones of mouse limbs during embryonic development. Firstly, the c-myb expression pattern was analyzed by in situ hybridization during endochondral ossification of long bones. c-myb positive areas were found in proliferating as well as hypertrophic zones of the growth plate. At early embryonic stages, localized expression was also observed in the perichondrium and interdigital areas. The c-Myb protein was found in proliferating chondrocytes and in the perichondrium of the forelimb bones (E14.5-E17.5). Furthermore, protein was detected in pre-hypertrophic as well as hypertrophic chondrocytes. Gain-of-function and loss-of-function approaches were used to test the effect of altered c-myb expression on chondrogenesis in micromass cultures established from forelimb buds of mouse embryos. A loss-of-function approach using c-myb specific siRNA decreased nodule formation, as well as downregulated the level of Sox9 expression, a major marker of chondrogenesis. Transient c-myb overexpression markedly increased the formation of cartilage nodules and the production of extracellular matrix as detected by intense staining with Alcian blue. Moreover, the expression of early chondrogenic genes such as Sox9, Col2a1 and activity of a Col2-LUC reporter were increased in the cells overexpressing c-myb while late chondrogenic markers such as Col10a1 and Mmp13 were not significantly changed or were downregulated. Taken together, the results of this study demonstrate that the c-Myb transcription factor is involved in the regulation and promotion of endochondral bone formation.


Asunto(s)
Condrogénesis/fisiología , Proteínas Proto-Oncogénicas c-myb/fisiología , Animales , Biomarcadores/metabolismo , Diferenciación Celular , Extremidades/embriología , Silenciador del Gen , Hibridación in Situ , Ratones , Proteínas Proto-Oncogénicas c-myb/genética
17.
Growth Factors ; 33(2): 102-12, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25807069

RESUMEN

Skin integrity requires an ongoing replacement and repair orchestrated by several cell types. We previously investigated the architecture of the skin of avian myeloblastosis viral oncogene homolog (Myb) knock-out (KO) embryos and wound repair in Myb(+/)(-) mice revealing a need for Myb in the skin, attributed to fibroblast-dependent production of collagen type 1. Here, using targeted Myb deletion in keratin-14 (K14) positive cells we reveal further Myb-specific defects in epidermal cell proliferation, thickness and ultrastructural morphology. This was associated with a severe deficit in collagen type 1 production, reminiscent of that observed in patients with ichthyosis vulgaris and Ehlers-Danlos syndrome. Since collagen type 1 is a product of fibroblasts, the collagen defect observed was unexpected and appears to be directed by the loss of Myb with significantly reduced tumor growth factor beta 1 (Tgfß-1) expression by primary keratinocytes. Our findings support a specific role for Myb in K14+ epithelial cells in the preservation of adult skin integrity and function.


Asunto(s)
Colágeno Tipo I/metabolismo , Proteínas Proto-Oncogénicas c-myb/fisiología , Piel/inmunología , Factor de Crecimiento Transformador beta1/fisiología , Animales , Proliferación Celular , Exones , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Eliminación de Gen , Queratina-14/genética , Queratinocitos/citología , Queratinocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Rastreo , Piel/metabolismo , Transgenes
18.
Aging Cell ; 13(5): 773-9, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24981831

RESUMEN

Cellular senescence is a stable cell cycle arrest, caused by insults, such as: telomere erosion, oncogene activation, irradiation, DNA damage, oxidative stress, and viral infection. Extrinsic stimuli such as cell culture stress can also trigger this growth arrest. Senescence is thought to have evolved as an example of antagonistic pleiotropy, as it acts as a tumor suppressor mechanism during the reproductive age, but can promote organismal aging by disrupting tissue renewal, repair, and regeneration later in life. The mechanisms underlying the senescence growth arrest are broadly considered to involve p16(INK4A) -pRB and p53-p21(CIP1/WAF1/SDI1) tumor suppressor pathways; but it is not known what makes the senescence arrest stable and what the critical downstream targets are, as they are likely to be key to the establishment and maintenance of the senescent state. MYB-related protein B (B-MYB/MYBL2), a member of the myeloblastosis family of transcription factors, has recently emerged as a potential candidate for regulating entry into senescence. Here, we review the evidence which indicates that loss of B-MYB expression has an important role in causing senescence growth arrest. We discuss how B-MYB acts, as the gatekeeper, to coordinate transit through the cell cycle, in conjunction with the multivulval class B (MuvB) complex and FOXM1 transcription factors. We also evaluate the evidence connecting B-MYB to the mTOR nutrient signaling pathway and suggest that inhibition of this pathway leading to an extension of healthspan may involve activation of B-MYB.


Asunto(s)
Senescencia Celular/fisiología , Proteínas Proto-Oncogénicas c-myb/fisiología , Envejecimiento/genética , Envejecimiento/fisiología , Animales , Puntos de Control del Ciclo Celular/fisiología , Proliferación Celular/fisiología , Senescencia Celular/genética , Humanos , Transducción de Señal
19.
Plant Mol Biol ; 85(6): 627-38, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24893956

RESUMEN

Volatile esters are major factors affecting the aroma of apple fruits, and alcohol acyltransferases (AATs) are key enzymes involved in the last steps of ester biosynthesis. The expression of apple AAT (MdAAT2) is known to be induced by salicylic acid (SA) or ethylene in apple fruits, although the mechanism of its transcriptional regulation remains elusive. In this study, we reveal that two apple transcription factors (TFs), MdMYB1 and MdMYB6, are involved in MdAAT2 promoter response to SA and ethylene in transgenic tobacco. According to electrophoretic mobility shift assays, MdMYB1 or MdMYB6 can directly bind in vitro to MYB binding sites in the MdAAT2 promoter. In vivo, overexpression of the two MYB TFs can greatly enhance MdAAT2 promoter activity, as demonstrated by dual luciferase reporter assays in transgenic tobacco. In contrast to the promoter of MdMYB1 or MdMYB6, the MdAAT2 promoter cannot be induced by SA or ethephon (ETH) in transgenic tobacco, even in stigmas in which the MdAAT2 promoter can be highly induced under normal conditions. However, the induced MYB TFs can dramatically enhance MdAAT2 promoter activity under SA or ETH treatment. We conclude that MdMYB1 and MdMYB6 function in MdAAT2 responses to SA and ethylene in transgenic tobacco, suggesting that a similar regulation mechanism may exist in apple.


Asunto(s)
Aciltransferasas/genética , Etilenos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Malus/enzimología , Nicotiana/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/efectos de los fármacos , Proteínas Proto-Oncogénicas c-myb/fisiología , Ácido Salicílico/farmacología , Aciltransferasas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Malus/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-myb/genética , Proteínas Proto-Oncogénicas c-myb/metabolismo , Alineación de Secuencia , Análisis de Secuencia de Proteína
20.
Development ; 140(6): 1207-19, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23444353

RESUMEN

Hematopoiesis is a classic system with which to study developmental potentials and to investigate gene regulatory networks that control choices among alternate lineages. T-cell progenitors seeding the thymus retain several lineage potentials. The transcription factor PU.1 is involved in the decision to become a T cell or a myeloid cell, and the developmental outcome of expressing PU.1 is dependent on exposure to Notch signaling. PU.1-expressing T-cell progenitors without Notch signaling often adopt a myeloid program, whereas those exposed to Notch signals remain in a T-lineage pathway. Here, we show that Notch signaling does not alter PU.1 transcriptional activity by degradation/alteration of PU.1 protein. Instead, Notch signaling protects against the downregulation of T-cell factors so that a T-cell transcriptional network is maintained. Using an early T-cell line, we describe two branches of this network. The first involves inhibition of E-proteins by PU.1 and the resulting inhibition of Notch signaling target genes. Effects of E-protein inhibition can be reversed by exposure to Notch signaling. The second network is dependent on the ability of PU.1 to inhibit important T-cell transcription factor genes such as Myb, Tcf7 and Gata3 in the absence of Notch signaling. We show that maintenance of Gata3 protein levels by Myb and Notch signaling is linked to the ability to retain T-cell identity in response to PU.1.


Asunto(s)
Factor de Transcripción GATA3/fisiología , Genes de Cambio , Hematopoyesis/genética , Células Progenitoras Mieloides/fisiología , Proteínas Proto-Oncogénicas/fisiología , Receptores Notch/fisiología , Transactivadores/fisiología , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Linaje de la Célula/genética , Células Cultivadas , Embrión de Mamíferos , Factor de Transcripción GATA3/genética , Factor de Transcripción GATA3/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Genes de Cambio/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , Células Progenitoras Mieloides/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-myb/genética , Proteínas Proto-Oncogénicas c-myb/metabolismo , Proteínas Proto-Oncogénicas c-myb/fisiología , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal/genética , Linfocitos T/metabolismo , Linfocitos T/fisiología , Timocitos/metabolismo , Timocitos/fisiología , Transactivadores/genética , Transactivadores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...