RESUMEN
Objective: To detect the gene of entamoeba histolytica by polymerase chain reaction and investigate the expression of immunogene entamoeba histolytica calreticulin in stool samples of infected patients. METHODS: The case control study was conducted at Central Teaching Hospital of Paediatrics and Al Mahmoudia General Hospital, Iraq, from December 30, 2020, to September 1, 2021, and comprised diarrhoeal faecal samples collected from 86 children with age ranging from Ë1 year to 13 years who were suspected of having been infected with entamoeba histolytica. Microscopically positive samples were then subjected to conventional and real-time polymerase chain reaction for the detection of entamoeba histolytica HM1:IMSS strain using Phage shock protein (Psp) gene sequences and detection of entamoeba histolytica calreticulin expression. RESULTS: Of the 86 patients, 71(82.6%) were found to be infected with entamoeba histolytica; 39(54.93%) boys and 32(45.07%) girls. The remaining 15(17.4%) patients were taken as non-amoebic controls; 8(53.3%) boys and 7(46.7%) girls. There were 36(50.70%) cases and 8(53.33%) controls aged 1-4 years. Among the Entamoeba histolytica gene was detected in 44(62%) of the cases using conventional polymerase chain reaction, and immunogene entamoeba histolytica calreticulin was expressed in 36(50.7%) using real-time polymerase chain reaction. Data was analysed using SPSS 24. CONCLUSIONS: Polymerase chain reaction was found to be a useful tool for diagnosing entamoeba histolytica infection in children.
Asunto(s)
Calreticulina , Entamoeba histolytica , Entamebiasis , Proteínas Protozoarias , Adolescente , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Calreticulina/genética , Calreticulina/aislamiento & purificación , Estudios de Casos y Controles , Entamoeba histolytica/genética , Entamebiasis/diagnóstico , Entamebiasis/parasitología , Heces/parasitología , Irak , Proteínas Protozoarias/genética , Proteínas Protozoarias/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la PolimerasaRESUMEN
Understanding mechanisms of antibody synergy is important for vaccine design and antibody cocktail development. Examples of synergy between antibodies are well-documented, but the mechanisms underlying these relationships often remain poorly understood. The leading blood-stage malaria vaccine candidate, CyRPA, is essential for invasion of Plasmodium falciparum into human erythrocytes. Here we present a panel of anti-CyRPA monoclonal antibodies that strongly inhibit parasite growth in in vitro assays. Structural studies show that growth-inhibitory antibodies bind epitopes on a single face of CyRPA. We also show that pairs of non-competing inhibitory antibodies have strongly synergistic growth-inhibitory activity. These antibodies bind to neighbouring epitopes on CyRPA and form lateral, heterotypic interactions which slow antibody dissociation. We predict that such heterotypic interactions will be a feature of many immune responses. Immunogens which elicit such synergistic antibody mixtures could increase the potency of vaccine-elicited responses to provide robust and long-lived immunity against challenging disease targets.
Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/inmunología , Vacunas contra la Malaria/inmunología , Malaria Falciparum/prevención & control , Proteínas Protozoarias/inmunología , Animales , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Monoclonales/metabolismo , Anticuerpos Antiprotozoarios/aislamiento & purificación , Anticuerpos Antiprotozoarios/metabolismo , Antígenos de Protozoos/genética , Antígenos de Protozoos/aislamiento & purificación , Antígenos de Protozoos/metabolismo , Línea Celular , Drosophila melanogaster , Epítopos/inmunología , Humanos , Inmunogenicidad Vacunal , Vacunas contra la Malaria/uso terapéutico , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/genética , Proteínas Protozoarias/aislamiento & purificación , Proteínas Protozoarias/metabolismo , Desarrollo de VacunasRESUMEN
The pathogenesis of malaria is associated with blood-stage infection and there is strong evidence that antibodies specific to parasite blood-stage antigens can control parasitemia. This provides a strong rational for applying blood-stage antigen components in a multivalent vaccine, as the induced antibodies in combination can enhance protection. The Plasmodium falciparum rhoptry-associated membrane antigen (PfRAMA) is a promising vaccine target, due to its fundamental role in merozoite invasion and low level of polymorphism. Polyclonal antibodies against PfRAMA are able to inhibit P. falciparum growth and interact synergistically when combined with antibodies against P. falciparum reticulocyte-binding protein 5 (PfRh5) or cysteine-rich protective antigen (PfCyRPA). In this study, we identified a novel PfRAMA-specific mAb with neutralizing activity, which in combination with PfRh5- or PfCyRPA-specific mAbs potentiated the neutralizing effect. By applying phage display technology, we mapped the protective epitope to be in the C-terminal region of PfRAMA. Our results confirmed previous finding of synergy between PfRAMA-, PfRh5- and PfCyRPA-specific antibodies, thereby paving the way of testing these antigens (or fragments of these antigens) in combination to improve the efficacy of blood-stage malaria vaccines. The results emphasize the importance of directing antibody responses towards protective epitopes, as the majority of anti-PfRAMA mAbs were unable to inhibit merozoite invasion of erythrocytes.
Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antiprotozoarios/inmunología , Vacunas contra la Malaria/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Animales , Anticuerpos Monoclonales/química , Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Antiprotozoarios/química , Antígenos de Protozoos/inmunología , Proteínas Portadoras/inmunología , Línea Celular , Sinergismo Farmacológico , Epítopos/química , Epítopos/inmunología , Humanos , Vacunas contra la Malaria/química , Malaria Falciparum/prevención & control , Merozoítos/inmunología , Ratones , Unión Proteica , Proteínas Protozoarias/biosíntesis , Proteínas Protozoarias/química , Proteínas Protozoarias/aislamiento & purificaciónRESUMEN
The gene encoding the cAMP-dependent protein kinase (PKA) catalytic subunit-like protein PKAC1 from the Venezuelan TeAp-N/D1 strain of Trypanosoma equiperdum was cloned, and the recombinant TeqPKAC1 protein was overexpressed in bacteria. A major polypeptide with an apparent molecular mass of â¼38 kDa was detected by SDS-polyacrylamide gel electrophoresis, and immunoblotting using antibodies against the human PKA catalytic subunit α. Unfortunately, most of the expressed TeqPKAC1 was highly insoluble. Polypeptides of 36-38 kDa and 45-50 kDa were predominantly seen by immunoblotting in the bacterial particulate and cytosolic fractions, respectively. Since the incorporation of either 4% Triton X-100 or 3% sarkosyl or a mixture of 10 mM MgCl2 and 1 mM ATP (MgATP) improved the solubilization of TeqPKAC1, we used a combination of Triton X-100, sarkosyl and MgATP to solubilize the recombinant protein. TeqPKAC1 was purified by first reconstituting a hybrid holoenzyme between the recombinant protein and a mammalian poly-His-tagged PKA regulatory subunit that was immobilized on a Ni2+-chelating affinity resin, and then by eluting TeqPKAC1 using cAMP. TeqPKAC1 was functional given that it was capable of phosphorylating PKA catalytic subunit substrates, such as kemptide (LRRASLG), histone type II-AS, and the peptide SP20 (TTYADFIASGRTGRRNSIHD), and was inhibited by the peptide IP20 (TTYADFIASGRTGRRNAIHD), which contains the inhibitory motif of the PKA-specific heat-stable inhibitor PKI-α. Optimal enzymatic activity was obtained at 37 °C and pH 8.0-9.0; and the order of effectiveness of nucleotide triphosphates and divalent cations was ATP ¼ GTP â ITP and Mg2+ â Mn2+ â Fe2+ ¼ Ca2+ â Zn2, respectively.
Asunto(s)
Clonación Molecular , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Trypanosoma/enzimología , AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/química , Proteínas Quinasas Dependientes de AMP Cíclico/aislamiento & purificación , Fosforilación , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/aislamiento & purificación , Subunidades de Proteína/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/aislamiento & purificación , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Solubilidad , Trypanosoma/química , Trypanosoma/genéticaRESUMEN
Protists members of the Trichomonadidae and Tritrichomonadidae families include agents of trichomoniasis that constitute important parasitic diseases in humans and in animals of veterinary interest. One of the characteristic features of these eukaryotic microorganisms is that they contain a fibrous structure known as the costa as an important cytoskeleton structure, that differs in several aspects from other cytoskeleton structures found in eukaryotic cells. Previous proteomic analysis of an enriched costa fraction revealed the presence of several hypothetical proteins. Here we describe the localization of one of the most prevalent protein found in this previously made proteomic assay to confirm its presence in the costa of Tritrichomonas foetus. A peptide sequence of the hypothetical protein ARM19800.1 was selected for the production of specific polyclonal antibodies and its specificity was confirmed by Western Blotting using an enriched costa fraction. Next, the specific localization of the selected protein was evaluated by immunofluorescence and electron microscopy immunocytochemistry. Our observations clearly showed that the ARM 19800.1 protein is indeed localized in the costa and displays an almost periodic labeling pattern. Since this is the first protein identified in the costa, it was designated as costain 1. A better understanding of a structure as peculiar as the costa is of great biological and evolutionary importance due to the fact that it contains unique proteins, it may represent a possible chemotherapy target and it may correspond to antigens of interest in immunodiagnosis and/or vaccine development.
Asunto(s)
Proteínas del Citoesqueleto/aislamiento & purificación , Proteínas Protozoarias/aislamiento & purificación , Tritrichomonas foetus/química , Secuencia de Aminoácidos , Animales , Western Blotting , Proteínas del Citoesqueleto/química , Citoesqueleto/química , Citoesqueleto/ultraestructura , Técnica del Anticuerpo Fluorescente , Humanos , Inmunohistoquímica , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Proteínas Protozoarias/química , Alineación de Secuencia , Tritrichomonas foetus/ultraestructuraRESUMEN
After inoculation by the bite of an infected mosquito, Plasmodium sporozoites enter the blood stream and infect the liver, where each infected cell produces thousands of merozoites. These in turn, infect red blood cells and cause malaria symptoms. To initiate a productive infection, sporozoites must exit the circulation by traversing the blood lining of the liver vessels after which they infect hepatocytes with unique specificity. We screened a phage display library for peptides that structurally mimic (mimotope) a sporozoite ligand for hepatocyte recognition. We identified HP1 (hepatocyte-binding peptide 1) that mimics a ~50 kDa sporozoite ligand (identified as phospholipid scramblase). Further, we show that HP1 interacts with a ~160 kDa hepatocyte membrane putative receptor (identified as carbamoyl-phosphate synthetase 1). Importantly, immunization of mice with the HP1 peptide partially protects them from infection by the rodent parasite P. berghei. Moreover, an antibody to the HP1 mimotope inhibits human parasite P. falciparum infection of human hepatocytes in culture. The sporozoite ligand for hepatocyte invasion is a potential novel pre-erythrocytic vaccine candidate.
Asunto(s)
Vacunas contra la Malaria/uso terapéutico , Malaria Falciparum/prevención & control , Proteínas de Transferencia de Fosfolípidos/inmunología , Proteínas Protozoarias/inmunología , Esporozoítos/inmunología , Animales , Carbamoil-Fosfato Sintasa (Amoniaco)/metabolismo , Modelos Animales de Enfermedad , Epítopos/inmunología , Femenino , Células Hep G2 , Hepatocitos/inmunología , Hepatocitos/metabolismo , Hepatocitos/parasitología , Humanos , Hígado/enzimología , Hígado/parasitología , Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Masculino , Ratones , Biblioteca de Péptidos , Proteínas de Transferencia de Fosfolípidos/aislamiento & purificación , Proteínas de Transferencia de Fosfolípidos/metabolismo , Plasmodium berghei/inmunología , Plasmodium berghei/metabolismo , Plasmodium falciparum/inmunología , Plasmodium falciparum/metabolismo , Cultivo Primario de Células , Proteínas Protozoarias/aislamiento & purificación , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Esporozoítos/metabolismo , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/uso terapéuticoRESUMEN
BACKGROUND: Despite the widespread use of histidine-rich protein 2 (HRP2)-based rapid diagnostic tests (RDTs), purified native HRP2 antigen is not standardly used in research applications or assessment of RDTs used in the field. METHODS: This report describes the purification of native HRP2 (nHRP2) from the HB3 Plasmodium falciparum culture strain. As this culture strain lacks pfhrp3 from its genome, it is an excellent source of HRP2 protein only and does not produce the closely-related HRP3. The nHRP2 protein was isolated from culture supernatant, infected red blood cells (iRBCs), and whole parasite lysate using nickel-metal chelate chromatography. Biochemical characterization of nHRP2 from HB3 culture was conducted by SDS-PAGE and western blotting, and nHRP2 was assayed by RDT, ELISA, and bead-based immunoassay. RESULTS: Purified nHRP2 was identified by SDS-PAGE and western blot as a - 60 kDa protein that bound anti-HRP-2 monoclonal antibodies. Mouse anti-HRP2 monoclonal antibody was found to produce high optical density readings between dilutions of 1:100 and 1:3,200 by ELISA with assay signal observed up to a 1:200,000 dilution. nHRP2 yield from HB3 culture by bead-based immunoassay revealed that both culture supernatant and iRBC lysate were practical sources of large quantities of this antigen, producing a total yield of 292.4 µg of nHRP2 from two pooled culture preparations. Assessment of nHRP2 recognition by RDTs revealed that Carestart Pf HRP2 and HRP2/pLDH RDTs detected purified nHRP2 when applied at concentrations between 20.6 and 2060 ng/mL, performing within a log-fold dilution of commercially-available recombinant HRP2. The band intensity observed for the nHRP2 dilutions was equivalent to that observed for P. falciparum culture strain dilutions of 3D7 and US06 F Nigeria XII between 12.5 and 1000 parasites/µL. CONCLUSIONS: Purified nHRP2 could be a valuable reagent for laboratory applications as well as assessment of new and existing RDTs prior to their use in clinical settings. These results establish that it is possible to extract microgram quantities of the native HRP2 antigen from HB3 culture and that this purified protein is well recognized by existing monoclonal antibody lines and RDTs.
Asunto(s)
Antígenos de Protozoos/aislamiento & purificación , Eritrocitos/química , Eritrocitos/parasitología , Malaria Falciparum/diagnóstico , Plasmodium falciparum/química , Proteínas Protozoarias/aislamiento & purificación , Antígenos de Protozoos/inmunología , Western Blotting , Electroforesis en Gel de Poliacrilamida , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunoensayo , Microesferas , Proteínas Protozoarias/inmunología , Control de Calidad , Factores de TiempoRESUMEN
BACKGROUND: Plasmodium spp. sporozoite rates in mosquitoes are used to better understand malaria transmission intensity, the relative importance of vector species and the impact of interventions. These rates are typically estimated using an enzyme-linked immunosorbent assay (ELISA) utilizing antibodies against the circumsporozoite protein of Plasmodium falciparum, Plasmodium vivax VK210 (P. vivax210) or P. vivax VK247 (P. vivax247), employing assays that were developed over three decades ago. The ELISA method requires a separate assay plate for each analyte tested and can be time consuming as well as requiring sample volumes not always available. The bead-based multiplex platform allows simultaneous measurement of multiple analytes and may improve the lower limit of detection for sporozoites. METHODS: Recombinant positive controls for P. falciparum, P. vivax210 and P. vivax247 and previously developed circumsporozoite (cs) ELISA antibodies were used to optimize conditions for the circumsporozoite multiplex bead assay (csMBA) and to determine the detection range of the csMBA. After optimizing assay conditions, known amounts of sporozoites were used to determine the lower limit of detection for the csELISA and csMBA and alternate cut-off measures were applied to demonstrate how cut-off criteria can impact lower limits of detection. Sporozoite rates from 1275 mosquitoes collected in Madagascar and 255 mosquitoes collected in Guinea were estimated and compared using the established csELISA and newly optimized csMBA. All mosquitoes were tested (initial test), and those that were positive were retested (retest). When sufficient sample volume remained, an aliquot of homogenate was boiled and retested (boiled retest), to denature any heat-unstable cross-reactive proteins. RESULTS: Following optimization of the csMBA, the lower limit of detection was 25 sporozoites per mosquito equivalent for P. falciparum, P. vivax210 and P. vivax247 whereas the lower limits of detection for csELISA were found to be 1400 sporozoites for P. falciparum, 425 for P. vivax210 and 1650 for P. vivax247. Combined sporozoite rates after re-testing of samples that initially tested positive for Madagascar mosquitoes by csELISA and csMBA were 1.4 and 10.3%, respectively, and for Guinea mosquitoes 2% by both assays. Boiling of samples followed by csMBA resulted in a decrease in the Madagascar sporozoite rate to 2.8-4.4% while the Guinea csMBA sporozoite rate remained at 2.0%. Using an alternative csMBA cut-off value of median fluorescence intensity (MFI) of 100 yielded a sporozoite rate after confirmational testing of 3.7% for Madagascar samples and 2.0% for Guinea samples. Whether using csMBA or csELISA, the following steps may help minimize false positives: specimens are appropriately stored and bisected anterior to the thorax-abdomen junction, aliquots of homogenate are boiled and retested following initial testing, and an appropriate cut-off value is determined. CONCLUSIONS: The csMBA is a cost-comparable and time saving alternative to the csELISA and may help eliminate false negatives due to a lower limit of detection, thus increasing sensitivity over the csELISA. The csMBA expands the potential analyses that can be done with a small volume of sample by allowing multiplex testing where analytes in addition to P. falciparum, P. vivax210 and P. vivax247 can be added following optimization.
Asunto(s)
Anopheles/parasitología , Mosquitos Vectores/parasitología , Plasmodium falciparum/aislamiento & purificación , Plasmodium vivax/aislamiento & purificación , Proteínas Protozoarias/aislamiento & purificación , Esporozoítos/aislamiento & purificación , Animales , Ensayo de Inmunoadsorción Enzimática/métodos , Guinea , MadagascarRESUMEN
BACKGROUND: Early malaria diagnosis and its profiling require the development of new sensing platforms enabling rapid and early analysis of parasites in blood or saliva, aside the widespread rapid diagnostic tests (RDTs). METHODS: This study shows the performance of a cost-effective optical fiber-based solution to target the presence of Plasmodium falciparum histidine-rich protein 2 (PfHRP2). Unclad multimode optical fiber probes are coated with a thin gold film to excite Surface Plasmon Resonance (SPR) yielding high sensitivity to bio-interactions between targets and bioreceptors grafted on the metal surface. RESULTS: Their performances are presented in laboratory conditions using PBS spiked with growing concentrations of purified target proteins and within in vitro cultures. Two probe configurations are studied through label-free detection and amplification using secondary antibodies to show the possibility to lower the intrisic limit of detection. CONCLUSIONS: As malaria hits millions of people worldwide, the improvement and multiplexing of this optical fiber technique can be of great interest, especially for a future purpose of using multiple receptors on the fiber surface or several coated-nanoparticles as amplifiers.
Asunto(s)
Antígenos de Protozoos/aislamiento & purificación , Plasmodium falciparum/química , Proteínas Protozoarias/aislamiento & purificación , Técnicas Biosensibles , Humanos , Fibras ÓpticasRESUMEN
Proteins containing WD40 domains play important roles in the formation of multiprotein complexes. Little is known about WD40 proteins in the malaria parasite. This report contains the initial description of a WD40 protein that is unique to the genus Plasmodium and possibly closely related genera. The N-terminal portion of this protein consists of seven WD40 repeats that are highly conserved in all Plasmodium species. Following the N-terminal region is a central region that is conserved within the major Plasmodium clades, such as parasites of great apes, monkeys, rodents, and birds, but partially conserved across all Plasmodium species. This central region contains extensive low-complexity sequence and is predicted to have a disordered structure. Proteins with disordered structure generally function in molecular interactions. The C-terminal region is semi-conserved across all Plasmodium species and has no notable features. This WD40 repeat protein likely functions in some aspect of parasite biology that is unique to Plasmodium and this uniqueness makes the protein a possible target for therapeutic intervention.
Asunto(s)
Plasmodium/genética , Proteínas Protozoarias/aislamiento & purificación , Repeticiones WD40 , Secuencia de Aminoácidos , Animales , Aves , Clonación Molecular , Epítopos/química , Regulación de la Expresión Génica , Modelos Químicos , Parásitos/metabolismo , Péptido Hidrolasas/química , Plasmodium/clasificación , Proteínas , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/fisiología , Técnicas del Sistema de Dos HíbridosRESUMEN
BACKGROUND: The rapid diagnostic test (RDT) rK39 is currently being used for routine diagnosis of visceral leishmaniasis (VL) in East Africa. However, continuous monitoring of the performance of the assay, in particular its impact on the clinical decision in initiating anti-leishmanial treatment and outcomes remains needed as there are concerns about the diagnostic performance of this test. METHODS: VL patients prospectively enrolled in a diagnostic trial and with rK39 RDT were included. We evaluated the effect of rK39 testing in guiding treatment initiation and outcome. On the basis of rK39 RDT test result as well as clinical case definition for VL and microscopy examination, the clinicians decide whether to initiate VL therapy or not. Poisson regression models were used to identify factors associated with a decision to initiate VL therapy. In addition, treatment outcomes of those who received VL therapy were compared to those who received non-VL treatment. RESULTS: Of 324 VL suspects enrolled, 184 (56.8%) were rK39+ and 140 (43.2%) were rK39â. In addition, microscopy exam was done on tissue aspirates from a sub-population (140 individuals), which is 43.2% of the suspected cases, comprising of 117 (63.6%) rK39+ and only 23 (16.4%) rK39â cases. Of those with microscopy examination, only 87 (62.1%) were found positive. Among 184 (56.8%) patients without microscopy, 67 (36.4%) were rK39+, of whom 83 (65.9%) were positive by microscopy, 21 (16.7%) were negative by microscopy and 22 (17.5%) had no microscopy results. On the other hand, of those who did not receive VL treatment 58/189 (30.7%) were rK39+ and 131 (69.3%) were rK39â. Of the rK39+ cases who did not receive VL therapy, only 1 (1.7%) patient was microscopy positive, 12 (20.7%) were negative and 45 (77.6%) patients had no microscopy result. Of the rK39â cases (n = 131) who did not receive VL treatment, 16 were microscopy negative and 115 without microscopy exams. Whereas positive rK39 result [adjusted Relative Risk (aRR) 0.69; 95% CI: 0.49-0.96, p = 0.029] and positive microscopy results (aRR 0.03; 95% CI: 0.00-0.24, p = 0.001) were independently associated with VL treatment, having confirmed diagnosis other than VL (aRR 1.64; 95% CI: 1.09-2.46, p = 0.018) was independently associated with initiation of non-VL therapy. The proportion of rK39+ patients who received non-VL treatment with no improvement outcome was significantly higher when compared to those who received VL treatment (24.1%, 95% CI: 14.62-37.16 vs. 11.9%, 95%CI: 7.26-18.93; p<0.0001). CONCLUSION: The study shows that a significant proportion of patients with rK39+ results were undertreated. Failure to do microscopy was associated with lack of improved clinical outcome. Including an additional simple point-of-care assay in the diagnostic work-up is urgently needed to correctly identify VL cases and to prevent morbidity and mortality associated with the disease.
Asunto(s)
Antígenos de Protozoos/aislamiento & purificación , Pruebas Diagnósticas de Rutina/normas , Leishmaniasis Visceral/diagnóstico , Proteínas Protozoarias/aislamiento & purificación , Adolescente , Adulto , Pruebas de Aglutinación , Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/sangre , Estudios de Cohortes , Etiopía/epidemiología , Femenino , Humanos , Leishmaniasis Visceral/inmunología , Leishmaniasis Visceral/patología , Masculino , Valor Predictivo de las Pruebas , Estudios Prospectivos , Proteínas Protozoarias/sangre , Análisis de Regresión , Adulto JovenRESUMEN
Following their inoculation by the bite of an infected Anopheles mosquito, the malaria parasite sporozoite forms travel from the bite site in the skin into the bloodstream, which transports them to the liver. The thrombospondin-related anonymous protein (TRAP) is a type 1 transmembrane protein that is released from secretory organelles and relocalized on the sporozoite plasma membrane. TRAP is required for sporozoite motility and host infection, and its extracellular portion contains adhesive domains that are predicted to engage host receptors. Here, we identified the human platelet-derived growth factor receptor ß (hPDGFRß) as one such protein receptor. Deletion constructs showed that the von Willebrand factor type A and thrombospondin repeat domains of TRAP are both required for optimal binding to hPDGFRß-expressing cells. We also demonstrate that this interaction is conserved in the human-infective parasite Plasmodium vivax, but not the rodent-infective parasite Plasmodium yoelii. We observed expression of hPDGFRß mainly in cells associated with the vasculature suggesting that TRAP:hPDGFRß interaction may play a role in the recognition of blood vessels by invading sporozoites.
Asunto(s)
Interacciones Huésped-Patógeno , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Células HEK293 , Humanos , Plasmodium vivax/metabolismo , Plasmodium yoelii/metabolismo , Proteínas Protozoarias/aislamiento & purificaciónRESUMEN
The Leishmania major leucyl-aminopeptidase (LAPLm), a member of the M17 family of proteases, is a potential drug target for treatment of leishmaniasis. To better characterize enzyme properties, recombinant LAPLm (rLAPLm) was expressed in Escherichia coli. A LAPLm gene was designed, codon-optimized for expression in E. coli, synthesized and cloned into the pET-15b vector. Production of rLAPLm in E. coli Lemo21(DE3), induced for 4 h at 37 °C with 400 µM IPTG and 250 µM l-rhamnose, yielded insoluble enzyme with a low proportion of soluble and active protein, only detected by an anti-His antibody-based western-blot. rLAPLm was purified in a single step by immobilized metal ion affinity chromatography. rLAPLm was obtained with a purity of ~10% and a volumetric yield of 2.5 mg per liter, sufficient for further characterization. The aminopeptidase exhibits optimal activity at pH 7.0 and a substrate preference for Leu-p-nitroanilide (appKM = 30 µM, appkcat = 14.7 s-1). Optimal temperature is 50 °C, and the enzyme is insensitive to 4 mM Co2+, Mg2+, Ca2+ and Ba2+. However, rLAPLm was activated by Zn2+, Mn2+ and Cd2+ but is insensitive towards the protease inhibitors PMSF, TLCK, E-64 and pepstatin A, being inhibited by EDTA and bestatin. Bestatin is a potent, non-competitive inhibitor of the enzyme with a Ki value of 994 nM. We suggest that rLAPLm is a suitable target for inhibitor identification.
Asunto(s)
Aminopeptidasas , Escherichia coli , Leishmania major , Proteínas Protozoarias , Aminopeptidasas/biosíntesis , Aminopeptidasas/química , Aminopeptidasas/genética , Aminopeptidasas/aislamiento & purificación , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Leishmania major/enzimología , Leishmania major/genética , Proteínas Protozoarias/biosíntesis , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/aislamiento & purificación , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificaciónRESUMEN
In various malaria-endemic regions, the appearance of resistance has precluded the use of pyrimidine-based antifolate drugs. Here, a three-step fragment screening was used to identify new non-pyrimidine Plasmodium falciparum dihydrofolate reductase (PfDHFR) inhibitors. Starting from a 1163-fragment commercial library, a two-step differential scanning fluorimetry screen identified 75 primary fragment hits. Subsequent enzyme inhibition assay identified 11 fragments displaying IC50 in the 28-695 µM range and selectivity for PfDHFR. In addition to the known pyrimidine, three new anti-PfDHFR chemotypes were identified. Fragments from each chemotype were successfully co-crystallized with PfDHFR, revealing a binding in the active site, in the vicinity of catalytic residues, which was confirmed by molecular docking on all fragment hits. Finally, comparison with similar non-hit fragments provides preliminary input on available growth vectors for future drug development.
Asunto(s)
Antimaláricos/farmacología , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/antagonistas & inhibidores , Antimaláricos/síntesis química , Antimaláricos/química , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , Plasmodium falciparum/enzimología , Proguanil/síntesis química , Proguanil/química , Proguanil/farmacología , Proteínas Protozoarias/aislamiento & purificación , Proteínas Protozoarias/metabolismo , Pirimetamina/síntesis química , Pirimetamina/química , Pirimetamina/farmacología , Relación Estructura-Actividad , Tetrahidrofolato Deshidrogenasa/aislamiento & purificación , Tetrahidrofolato Deshidrogenasa/metabolismo , Triazinas/síntesis química , Triazinas/química , Triazinas/farmacologíaRESUMEN
The Plasmodium falciparum M1 alanyl aminopeptidase and M17 leucyl aminopeptidase, PfM1AAP and PfM17LAP, are potential targets for novel anti-malarial drug development. Inhibitors of these aminopeptidases have been shown to kill malaria parasites in culture and reduce parasite growth in murine models. The two enzymes may function in the terminal stages of haemoglobin digestion, providing free amino acids for protein synthesis by the rapidly growing intra-erythrocytic parasites. Here we have performed a comparative cellular and biochemical characterisation of the two enzymes. Cell fractionation and immunolocalisation studies reveal that both enzymes are associated with the soluble cytosolic fraction of the parasite, with no evidence that they are present within other compartments, such as the digestive vacuole (DV). Enzyme kinetic studies show that the optimal pH of both enzymes is in the neutral range (pH 7.0-8.0), although PfM1AAP also possesses some activity (< 20%) at the lower pH range of 5.0-5.5. The data supports the proposal that PfM1AAP and PfM17LAP function in the cytoplasm of the parasite, likely in the degradation of haemoglobin-derived peptides generated in the DV and transported to the cytosol.
Asunto(s)
Antígenos CD13/metabolismo , Leucil Aminopeptidasa/metabolismo , Plasmodium falciparum/enzimología , Proteínas Protozoarias/metabolismo , Animales , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Antígenos CD13/antagonistas & inhibidores , Antígenos CD13/química , Antígenos CD13/aislamiento & purificación , Fraccionamiento Celular , Células Cultivadas , Citosol/enzimología , Desarrollo de Medicamentos , Pruebas de Enzimas , Eritrocitos/parasitología , Humanos , Concentración de Iones de Hidrógeno , Leucil Aminopeptidasa/antagonistas & inhibidores , Leucil Aminopeptidasa/química , Leucil Aminopeptidasa/aislamiento & purificación , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/química , Proteínas Protozoarias/aislamiento & purificación , Conejos , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificaciónRESUMEN
Visceral leishmaniasis (VL) is a protozoan disease caused by Leishmania infantum in the Mediterranean region including Iran. In 95% of cases, the disease can be fatal if not rapidly diagnosed and left untreated. We aimed to identify immunoreactive proteins of L. infantum (Iranian strain), and to design and evaluate a recombinant multi-epitope antigen for serodiagnosis of human VL. To detect the immunoreactive proteins of L. infantum promastigotes, 2DE immunoblotting technique was performed using different pooled sera of VL patients. The candidate immunoreactive proteins were identified using MALDI-TOF/TOF mass spectrophotometry. Among 125 immunoreactive spots detected in 2-DE gels, glucose-regulated protein 78 (GRP78), ubiquitin-conjugating enzyme E2, calreticulin, mitochondrial heat shock 70-related protein 1 (mtHSP70), heat shock protein 70-related protein, i/6 autoantigen-like protein, ATPase beta subunit, and proteasome alpha subunit 5 were identified. The potent epitopes from candidate immunodominant proteins including GRP78, mtHSP70 and ubiquitin-conjugating enzyme E2 were then selected to design a recombinant antigenic protein (GRP-UBI-HSP). The recombinant antigen was evaluated by ELISA and compared to direct agglutination test for detection of anti L. infantum human antibodies. We screened 34 sera of VL patients from endemic areas and 107 sera of individuals without L. infantum infection from non-endemic area of VL. The recombinant protein-based ELISA provided a sensitivity of 70.6% and a specificity of 84.1%. These results showed that GRP78, ubiquitin-conjugating enzyme E2, and mtHSP70 proteins are potential immunodominant targets of the host immune system in response to the parasite and they can be considered as potential candidate markers for diagnosis purposes.
Asunto(s)
Epítopos Inmunodominantes/aislamiento & purificación , Leishmania infantum/inmunología , Leishmaniasis Visceral/diagnóstico , Proteómica/métodos , Secuencia de Aminoácidos , Antígenos de Protozoos/aislamiento & purificación , Western Blotting , Biología Computacional/métodos , Electroforesis en Gel Bidimensional , Chaperón BiP del Retículo Endoplásmico , Ensayo de Inmunoadsorción Enzimática , Epítopos/inmunología , Epítopos/aislamiento & purificación , Humanos , Immunoblotting , Leishmaniasis Visceral/inmunología , Conformación Molecular , Estructura Secundaria de Proteína , Proteómica/normas , Proteínas Protozoarias/aislamiento & purificación , Proteínas Recombinantes/química , Proteínas Recombinantes/inmunología , Pruebas Serológicas/métodos , Pruebas Serológicas/normas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización DesorciónRESUMEN
Cruzipain, the major cysteine protease of the pathogenic protozoa Trypanosoma cruzi, is an important virulence factor that plays a key role in the parasite nutrition, differentiation and host cell infection. Cruzipain is synthesized as a zymogen, matured, and delivered to reservosomes. These organelles that store proteins and lipids ingested by endocytosis undergo a dramatic decrease in number during the metacyclogenesis of T. cruzi. Autophagy is a process that digests the own cell components to supply energy under starvation or different stress situations. This pathway is important during cell growth, differentiation and death. Previously, we showed that the autophagy pathway of T. cruzi is induced during metacyclogenesis. This work aimed to evaluate the participation of macroautophagy/autophagy in the distribution and function of reservosomes and cruzipain during this process. We found that parasite starvation promotes the cruzipain delivery to reservosomes. Enhanced autophagy increases acidity and hydrolytic activity in these compartments resulting in cruzipain enzymatic activation and self- processing. Inhibition of autophagy similarly impairs cruzipain traffic and activity than protease inhibitors, whereas mutant parasites that exhibit increased basal autophagy, also display increased cruzipain processing under control conditions. Further experiments showed that autophagy induced cruzipain activation and self-processing promote T. cruzi differentiation and host cell infection. These findings highlight the key role of T. cruzi autophagy in these processes and reveal a potential new target for Chagas disease therapy.Abbreviations: Baf: bafilomycin A1; CTE: C-terminal extension; Cz: cruzipain; IIF: indirect immunofluorescence; K777: vinyl sulfone with specific Cz inhibitory activity; Prot Inh: broad-spectrum protease inhibitor; Spa1: spautin-1; Wort: wortmannin.
Asunto(s)
Autofagia/fisiología , Enfermedad de Chagas/metabolismo , Orgánulos/metabolismo , Trypanosoma cruzi/crecimiento & desarrollo , Animales , Diferenciación Celular/fisiología , Enfermedad de Chagas/parasitología , Enfermedad de Chagas/patología , Cisteína Endopeptidasas/aislamiento & purificación , Endocitosis/inmunología , Parásitos/aislamiento & purificación , Proteínas Protozoarias/aislamiento & purificación , Trypanosoma cruzi/metabolismoRESUMEN
Leishmaniasis is a disease caused by trypanosomatid protozoa of the genus Leishmania. In the Americas, the species Leishmania amazonensis is predominantly associated with American cutaneous leishmaniasis (ACL) while L. infantum is an agent of visceral leishmaniasis (VL). The genome sequences of Leishmania spp. have shown that each genome can contain about 8000 genes encoding proteins, more than half of which have an unknown function (''hypotheticals") at the time of publication. To understand the biology and genome of the organisms, it is important to discover the function of these "hypothetical" proteins; however, few studies have focused on their characterizations. Previously, LinJ.30.3360 (a protein with unknown function) was identified as immunogenic to canine serum with VL and a good antigen to diagnose the visceral form in dogs. Here, we show that the LinJ.30.3360 protein is conserved in L. infantum, L. tarantolae, L. donovani, L. major, L. mexicana, L. braziliensis, L. panamensis, Leptomonas pyrrhocoris, and Leptomonas seymouri. It has been annotated as a MORN (Membrane Occupation and Recognition Nexus) domain protein. However, since the function of this motif is unknown, functional inferences based on the primary sequence are not possible. The protein has a folded ß-leaf secondary structure, and phosphorylation was the only post-translational modification (PTM) found using prediction approach. Experiments have shown that it is located close to the flagellar pocket and presents similar abundance in both L. amazonensis and L. infantum. Furthermore, because it is a conserved protein in trypanosomatids but not in mammals and also because of its antigenicity, LinJ.30.3360 may constitute a potential drug target and/or vaccine for leishmaniasis.
Asunto(s)
Leishmania infantum/química , Leishmania mexicana/química , Proteínas Protozoarias/química , Animales , Western Blotting , Secuencia Conservada , Inmunohistoquímica , Leishmania infantum/genética , Leishmania mexicana/genética , Masculino , Microscopía Fluorescente , Microscopía Inmunoelectrónica , Procesamiento Proteico-Postraduccional , Estructura Secundaria de Proteína , Proteínas Protozoarias/genética , Proteínas Protozoarias/aislamiento & purificación , Proteínas Protozoarias/metabolismo , Conejos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ProteínaRESUMEN
Transmembrane and coiled-coil domains 1 (TMCO1) has a highly conserved amino acid sequence among species, indicating a critical role of TMCO1 in cell physiology. The deficiency of TMCO1 in humans is associated with cerebrofaciothoracic dysplasia (CFTD), glaucoma, osteogenesis and the occurrence of cancer. TMCO1 was recently identified as an endoplasmic reticulum (ER) Ca2+ load-activated Ca2+ (CLAC) release channel, which prevents ER Ca2+ overload and maintains calcium homeostasis in the ER. However, the structural basis of the molecular function of TMCO1 channel remains elusive. To determine the structure of TMCO1, we screened the expression of TMCO1 in Escherichia coli and insect cell expression systems. TMCO1 from Dictyostelium discoideum (DdTMCO1) was successfully expressed in Escherichia coli with a high yield. The pure recombinant protein was obtained by affinity chromatography and size exclusion chromatography. The solution NMR of DdTMCO1 in DPC micelles showed three α-helical transmembrane regions.
Asunto(s)
Canales de Calcio , Proteínas Recombinantes , Animales , Canales de Calcio/química , Canales de Calcio/genética , Canales de Calcio/aislamiento & purificación , Canales de Calcio/metabolismo , Dictyostelium/genética , Escherichia coli/genética , Humanos , Resonancia Magnética Nuclear Biomolecular , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/aislamiento & purificación , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Células Sf9RESUMEN
BACKGROUND: Plasmodium falciparum histidine-rich protein 2 (HRP2)-based rapid diagnostic tests (RDTs) are exclusively recommended for malaria diagnosis in Uganda; however, their functionality can be affected by parasite-related factors that have not been investigated in field settings. METHODS: Using a cross-sectional design, we analysed 219 RDT-/microscopy+ and 140 RDT+/microscopy+ dried blood spots obtained from symptomatic children aged 2-10 years from 48 districts in Uganda between 2017 and 2019. We aimed to investigate parasite-related factors contributing to false RDT results by molecular characterization of parasite isolates. ArcGIS software was used to map the geographical distribution of parasites. Statistical analysis was performed using chi-square or Fisher's exact tests, with P ≤ 0.05 indicating significance. Odds ratios (ORs) were used to assess associations, while logistic regression was performed to explore possible factors associated with false RDT results. RESULTS: The presence of parasite DNA was confirmed in 92.5% (332/359) of the blood samples. The levels of agreement between the HRP2 RDT and PCR assay results in the (RDT+/microscopy+) and (RDT-/microscopy+) sample subsets were 97.8% (137/140) and 10.9% (24/219), respectively. Factors associated with false-negative RDT results in the (RDT-/microscopy+) samples were parasite density (<1,000/µl), pfhrp2/3 gene deletion and non-P. falciparum species (aOR 2.65, 95% CI: 1.62-4.38, P = 0.001; aOR 4.4, 95% CI 1.72-13.66, P = 0.004; and aOR 18.65, 95% CI: 5.3-38.7, P = 0.001, respectively). Overall, gene deletion and non-P. falciparum species contributed to 12.3% (24/195) and 19.0% (37/195) of false-negative RDT results, respectively. Of the false-negative RDTs results, 80.0% (156/195) were from subjects with low-density infections (< 25 parasites per 200 WBCs or <1,000/µl). CONCLUSION: This is the first evaluation and report of the contributions of pfhrp2/3 gene deletion, non-P. falciparum species, and low-density infections to false-negative RDT results under field conditions in Uganda. In view of these findings, the use of HRP2 RDTs should be reconsidered; possibly, switching to combination RDTs that target alternative antigens, particularly in affected areas, may be beneficial. Future evaluations should consider larger and more representative surveys covering other regions of Uganda.