Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
OMICS ; 26(7): 404-413, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35759452

RESUMEN

Death-associated protein kinase 3 (DAPK3) is a serine/threonine protein kinase that regulates apoptosis, autophagy, transcription, and actin cytoskeleton reorganization. DAPK3 induces morphological alterations in apoptosis when overexpressed, and it is considered a potential drug target in antihypertensive and anticancer drug development. In this article, we report new findings from a structure-guided virtual screening for discovery of phytochemicals that could modulate the elevated expression of DAPK3, and with an eye to anticancer drug discovery. We used the Indian Medicinal Plants, Phytochemistry and Therapeutics (IMPPAT), a curated database, as part of the methodology. The potential initial hits were identified based on their physicochemical properties and binding affinity toward DAPK3. Subsequently, various filters for drug likeness followed by interaction analysis and molecular dynamics (MD) simulations for 100 nsec were performed to explore the conformational sampling and stability of DAPK3 with the candidate molecules. Notably, the data from all-atom MD simulations and principal component analysis suggested that DAPK3 forms stable complexes with ketanserin and rotenone. In conclusion, this study supports the idea that ketanserin and rotenone bind to DAPK3, and show stability, which can be further explored as promising scaffolds in drug development and therapeutics innovation in clinical contexts such as hypertension and various types of cancer.


Asunto(s)
Proteínas Quinasas Asociadas a Muerte Celular/antagonistas & inhibidores , Hipertensión , Neoplasias , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Descubrimiento de Drogas/métodos , Detección Precoz del Cáncer , Humanos , Ketanserina , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Rotenona
2.
Int J Biol Sci ; 17(9): 2356-2366, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34239362

RESUMEN

Epilepsy is a chronic encephalopathy and one of the most common neurological disorders. Death-associated protein kinase 1 (DAPK1) expression has been shown to be upregulated in the brains of human epilepsy patients compared with those of normal subjects. However, little is known about the impact of DAPK1 on epileptic seizure conditions. In this study, we aim to clarify whether and how DAPK1 is regulated in epilepsy and whether targeting DAPK1 expression or activity has a protective effect against epilepsy using seizure animal models. Here, we found that cortical and hippocampal DAPK1 activity but not DAPK1 expression was increased immediately after convulsive pentylenetetrazol (PTZ) exposure in mice. However, DAPK1 overexpression was found after chronic low-dose PTZ insults during the kindling paradigm. The suppression of DAPK1 expression by genetic knockout significantly reduced PTZ-induced seizure phenotypes and the development of kindled seizures. Moreover, pharmacological inhibition of DAPK1 activity exerted rapid antiepileptic effects in both acute and chronic epilepsy mouse models. Mechanistically, PTZ stimulated the phosphorylation of NR2B through DAPK1 activation. Combined together, these results suggest that DAPK1 regulation is a novel mechanism for the control of both acute and chronic epilepsy and provide new therapeutic strategies for the treatment of human epilepsy.


Asunto(s)
Proteínas Quinasas Asociadas a Muerte Celular/antagonistas & inhibidores , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Epilepsia/tratamiento farmacológico , Convulsiones/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Excitación Neurológica/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Pentilenotetrazol/farmacología , Receptores de N-Metil-D-Aspartato/metabolismo , Convulsiones/inducido químicamente
3.
Hum Exp Toxicol ; 40(12_suppl): S137-S149, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34289745

RESUMEN

OBJECTIVE: To discuss the possible effects of microRNA-141 (miR-141) in sepsis-induced cardiomyopathy (SIC) via targeting death-associated protein kinase 1 (DAPK1). METHODS: An SIC mouse model was constructed by abdominal injection of lipopolysaccharide (LPS) and divided into control, LPS, LPS + pre-miR-141, and LPS + anti-miR-141 groups. Hemodynamic indicators and heart function indexes of mice were detected. ELISA was used to determine the serum levels of inflammatory cytokines, while TUNEL staining to observe the apoptosis of myocardial cells of mice, as well as qRT-PCR and Western blotting to clarify the expression of miR-141 and DAPK1. Lastly, in vitro experiment was also conducted on the primary neonatal rat ventricular cardiomyocytes (NRVCMs) to validate the results. RESULTS: Mice in the LPS group, as compared to the control group, had lower left ventricular ejection fraction, left ventricular fractional shortening, left ventricular systolic pressure, and ±dp/dt, but a higher left ventricular end-diastolic pressure, while the serum expression of IL-1ß, IL-6, TNF-α, and cTn-T was up-regulated evidently with the increased apoptotic index of myocardial tissues. However, miR-141 and Bcl-2/Bax were down-regulated with elevated DAPK1 and cleaved caspase-3. The above changes were ameliorated in mice from the LPS + pre-miR-141 group relative to the LPS group, while those in the LPS + anti-miR-141 group were further deteriorated. In vitro experiment showed that miR-141 overexpression could reduce the apoptosis of LPS-induced NRVCMs and the levels of inflammatory cytokines with the increased cell viability. CONCLUSION: MiR-141 could decrease inflammatory response and reduce myocardial cell apoptosis by targeting DAPK1, thereby playing the promising protective role in SIC.


Asunto(s)
Cardiomiopatías/terapia , Proteínas Quinasas Asociadas a Muerte Celular/antagonistas & inhibidores , MicroARNs/fisiología , Sepsis/complicaciones , Animales , Apoptosis , Cardiomiopatías/etiología , Cardiomiopatías/fisiopatología , Citocinas/sangre , Pruebas de Función Cardíaca , Hemodinámica , Mediadores de Inflamación/sangre , Lipopolisacáridos/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL , Miocardio/metabolismo , Miocardio/patología , Ratas , Ratas Sprague-Dawley , Sepsis/inducido químicamente , Sepsis/fisiopatología
4.
Exp Mol Pathol ; 118: 104587, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33275947

RESUMEN

Alzheimer's disease (AD) is the most common cause of dementia and is the leading lethal disease among the elderly. Dexmedetomidine (Dex) has been reported to have multiple neuroprotective effects, but its effect against beta-amyloid (Aß) has not been completely determined and understood. Dex can activate both α2 adrenoceptor/cAMP/PKA and imidazoline I receptors/ERK1/2 signals. To determine which signal is critical for the effect of Dex on Aß toxicity, we treated SH-SY5Y and PC12 cells with inhibitors of α2 adrenoceptor and ERK1/2. Dex suppressed the apoptosis of neuronal cells and production of reactive oxygen species induced by Aß. These suppressive effects were attenuated by both inhibitors. As indicated by western blot, Dex stimulates both pro-apoptosis (activating death-associated protein kinase 1 [DAPK-1] and p53) and anti-apoptotic (up-regulating bcl-2 and bcl-xL) signals in Aß-treated neuronal cells. This effect is likely associated with ERK1/2 signaling because ERK1/2 inhibitor disrupts the effect of Dex on these signals. To eliminate the pro-apoptotic effect of Dex while retaining its anti-apoptosis action, we screened miRNA-151-3p to target DAPK-1 and p53. Transfection with miRNA-151-3p mimics suppressed DAPK-1 and TP53 expression induced by Dex and increased Nrf-2 and SOD expression. More importantly, increasing miRNA-151-3p enhanced the anti-apoptotic and antioxidative effects of Dex in Aß-treated neuronal cells. Overall, this study revealed that Dex additionally stimulated pro-apoptosis signaling, although it suppressed Aß-induced apoptosis of neuronal cells. miRNA-151-3p enhanced the neuroprotective effect of Dex against Aß by targeting DAPK-1 and TP53.


Asunto(s)
Péptidos beta-Amiloides/química , Proteínas Quinasas Asociadas a Muerte Celular/antagonistas & inhibidores , Dexmedetomidina/farmacología , MicroARNs/genética , Neuroblastoma/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Agonistas de Receptores Adrenérgicos alfa 2/farmacología , Animales , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proliferación Celular , Proteínas Quinasas Asociadas a Muerte Celular/genética , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patología , Células PC12 , Ratas , Especies Reactivas de Oxígeno/metabolismo , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
5.
Theranostics ; 10(25): 11479-11496, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33052227

RESUMEN

Tubular damage initiated by inflammatory response and ischemic/hypoxic stress is a hallmark of septic acute kidney injury (AKI), albeit the molecular mechanism coupling the two events remains unclear. We investigated the intrinsic nature of tubular damage with respect to inflammatory/hypoxic stress during septic AKI. Methods: The apoptotic response of tubular cells to LPS stimuli was analyzed before and after hypoxia exposure. Cellular ubiquitination, co-immunoprecipitation, GST-pulldown, in vitro protein kinase assay, immunofluorescence and CRISPR technology were adopted to determine the molecular mechanism underlying this process. In vivo characterization was performed in wild-type and DAPK1-/- mice models of cecal ligation and puncture (CLP). Results: We found that the MyD88-dependent inflammatory response couples to tubular damage during LPS stimuli under hypoxia in a Fn14/SCFFbxw7α-dispensable manner via recruitment of caspase-8 with TRIF-RIP1 signalosome mediated by DAPK1, which directly binds to and phosphorylates Pellino1 at Ser39, leading to Pellino1 poly-ubiquitination and turnover. Either pharmacological deactivation or genetic ablation of DAPK1 makes tubular cells refractory to the LPS-induced damage in the context of hypoxia, while kinase activity of DAPK1 is essential for ruin execution. Targeting DAPK1 effectively protects mice against septic AKI and potentiates the efficacy of a MyD88 homodimerization inhibitor, ST2825. Conclusion: Our findings provide a rationale for the mechanism whereby inflammation intersects with hypoxic tubular damage during septic AKI through a previously unappreciated role of DAPK1-inducible Ser39 phosphorylation in Pellino1 turnover and underscore that combined targeting DAPK1 and MyD88 might be a feasible strategy for septic AKI management.


Asunto(s)
Lesión Renal Aguda/inmunología , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Proteínas Nucleares/metabolismo , Sepsis/complicaciones , Ubiquitina-Proteína Ligasas/metabolismo , Lesión Renal Aguda/patología , Lesión Renal Aguda/prevención & control , Animales , Sistemas CRISPR-Cas/genética , Hipoxia de la Célula/efectos de los fármacos , Hipoxia de la Célula/inmunología , Línea Celular , Proteínas Quinasas Asociadas a Muerte Celular/antagonistas & inhibidores , Proteínas Quinasas Asociadas a Muerte Celular/genética , Modelos Animales de Enfermedad , Células Epiteliales , Técnicas de Inactivación de Genes , Compuestos Heterocíclicos con 2 Anillos/farmacología , Compuestos Heterocíclicos con 2 Anillos/uso terapéutico , Humanos , Túbulos Renales/citología , Túbulos Renales/patología , Ratones , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/antagonistas & inhibidores , Factor 88 de Diferenciación Mieloide/metabolismo , Proteínas Nucleares/genética , Oxidación-Reducción/efectos de los fármacos , Fosforilación/efectos de los fármacos , Fosforilación/genética , Células RAW 264.7 , Sepsis/tratamiento farmacológico , Sepsis/inmunología , Compuestos de Espiro/farmacología , Compuestos de Espiro/uso terapéutico , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/efectos de los fármacos , Ubiquitinación/genética
6.
Acta Crystallogr D Struct Biol ; 76(Pt 5): 438-446, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32355040

RESUMEN

Death-associated protein kinase 1 (DAPK1) is a serine/threonine protein kinase that regulates apoptosis and autophagy. DAPK1 is considered to be a therapeutic target for amyloid-ß deposition, endometrial adenocarcinomas and acute ischemic stroke. Here, the potent inhibitory activity of the natural anthraquinone purpurin against DAPK1 phosphorylation is shown. Thermodynamic analysis revealed that while the binding affinity of purpurin is similar to that of CPR005231, which is a DAPK1 inhibitor with an imidazopyridazine moiety, the binding of purpurin was more enthalpically favorable. In addition, the inhibition potencies were correlated with the enthalpic changes but not with the binding affinities. Crystallographic analysis of the DAPK1-purpurin complex revealed that the formation of a hydrogen-bond network is likely to contribute to the favorable enthalpic changes and that stabilization of the glycine-rich loop may cause less favorable entropic changes. The present findings indicate that purpurin may be a good lead compound for the discovery of inhibitors of DAPK1, and the observation of enthalpic changes could provide important clues for drug development.


Asunto(s)
Antraquinonas/metabolismo , Proteínas Quinasas Asociadas a Muerte Celular , Proteínas Quinasas Asociadas a Muerte Celular/antagonistas & inhibidores , Proteínas Quinasas Asociadas a Muerte Celular/química , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Humanos , Fosforilación , Unión Proteica
7.
Sci Rep ; 10(1): 8078, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32415270

RESUMEN

Neuroprotective strategies in the treatment of stroke have been attracting a great deal of attentions. Our previous clinical and basic studies have demonstrated that protopanaxadiol ginsenoside-Rd (Rd), a monomer compound extracted from Panax ginseng or Panax notoginseng, has neuroprotective effects against ischemic stroke, probably due to its ability to block Ca2+ overload, an usual consequence of the overactivation of NMDA receptor (NMDAR). As an extending study, we explored here whether Rd exerted its neuroprotection as a novel NMDAR blocker. Our whole-cell patch-clamp results showed that Rd reduced NMDAR currents of cultured rat cortical neurons (EC50 = 7.7 µM) dose-dependently by acting on extrasynaptic NMDAR NR2b subunit. However, unexpectedly, cell transfection and radioligand binding assays revealed that Rd did not bind to the NMDAR channel directly. Alternatively, it inhibited the phosphorylation of NR2b at Ser-1303, a target of death associated protein kinase 1 (DAPK1). Moreover, cell-based and cell-free enzymatic assays showed that Rd did not inhibit the activity of DAPK1 directly, but blocked the activity of calcineurin, a key phosphatase for activating DAPK1. Importantly, other protopanaxadiol ginsenosides were also found to have potential inhibitory effects on calcineurin activity. Furthermore, as expected, calcineurin inhibition by cyclosporin A could mimic Rd's effects and protect against NMDA-, oxygen glucose deprivation- or transient ischemic stroke-induced neuronal injury. Therefore, our present study provided the first evidence that Rd could exert an inhibitive effect on NMDAR-triggered currents and sequential excitotoxicity through mitigation of DAPK1-mediated NR2b phosphorylation by attenuating calcineurin activity.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Calcineurina/farmacología , Proteínas Quinasas Asociadas a Muerte Celular/antagonistas & inhibidores , Ginsenósidos/farmacología , Fármacos Neuroprotectores/farmacología , Receptores de N-Metil-D-Aspartato/metabolismo , Sapogeninas/farmacología , Accidente Cerebrovascular/tratamiento farmacológico , Animales , Isquemia Encefálica/etiología , Isquemia Encefálica/patología , Proteínas Quinasas Asociadas a Muerte Celular/genética , Proteínas Quinasas Asociadas a Muerte Celular/farmacología , Masculino , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Panax/química , Fosforilación , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética , Transducción de Señal , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/patología
8.
Mol Oncol ; 14(6): 1268-1281, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32306542

RESUMEN

Cross-linking of the B-cell receptor (BCR) induces transcriptional activation of immediate early genes (IEGs) including EGR1 and DUSP2 in chronic lymphocytic leukaemia (CLL). Here, we have shown that this transcriptional activation correlated with histone H3 threonine 6 and 11 phosphorylation. Both transcription and histone post-translational modifications are repressed by ibrutinib, a small molecule inhibitor used in CLL treatment. Moreover, we have identified the death-associated protein kinase 3 (DAPK3), as the kinase mediating these histone phosphorylation marks in response to activation of the BCR signalling pathway with this kinase being recruited to RNA polymerase II in an anti-IgM-dependent manner. DAPK inhibition mimics ibrutinib-induced repression of both IEG mRNA and histone H3 phosphorylation and has anti-proliferative effect comparable to ibrutinib in CLL in vitro. DAPK inhibitor does not repress transcription itself but impacts on mRNA processing and has a broader anti-tumour effect than ibrutinib, by repressing both anti-IgM- and CD40L-dependent activation.


Asunto(s)
Proteínas Quinasas Asociadas a Muerte Celular/genética , Genes Inmediatos-Precoces , Leucemia Linfocítica Crónica de Células B/genética , Procesamiento Postranscripcional del ARN/genética , Ligando de CD40/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Proteínas Quinasas Asociadas a Muerte Celular/antagonistas & inhibidores , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Sitios Genéticos , Histonas/metabolismo , Humanos , Inmunoglobulina M/metabolismo , Leucemia Linfocítica Crónica de Células B/patología , Fosforilación/efectos de los fármacos , Fosfotreonina/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Procesamiento Postranscripcional del ARN/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo
9.
Exp Neurol ; 329: 113303, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32277960

RESUMEN

Death-associated protein kinase 1 (DAPK1) is a key protein that mediates neuronal death in ischemic stroke. Although the substrates of DAPK1 and molecular signal in stroke have been gradually discovered, the modulation of DAPK1 itself is still unclear. Here we first reveal that Caytaxin, a brain-specific member of BCL2/adenovirus E1B -interacting protein (BNIP-2), increases and interacts with DAPK1 as early as 2 h after middle cerebral artery occlusion (MCAO) in the penumbra area of mouse brain. Furthermore, Caytaxin binds to DAPK1 at the presynaptic site and inhibits DAPK1 catalytic activity. Silencing Caytaxin by Caytaxin shRNA (Sh-Caytaxin) enhances DAPK1 activity, deteriorates neuronal apoptosis and brain injuries both in vivo and in vitro. Thus, elevating presynaptic Caytaxin could prevent neuronal apoptosis by inhibiting DAPK1 activation in the acute stage of ischemic stroke. Caytaxin may physiologically protect neuronal cells and represent a potential prevention and therapeutic target in the early phase of cerebral ischemic stroke.


Asunto(s)
Apoptosis/fisiología , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Terminales Presinápticos/metabolismo , Animales , Apoptosis/efectos de los fármacos , Células Cultivadas , Proteínas Quinasas Asociadas a Muerte Celular/antagonistas & inhibidores , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/farmacología , Proteínas del Tejido Nervioso/uso terapéutico , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/patología , Unión Proteica/fisiología
10.
J Enzyme Inhib Med Chem ; 35(1): 311-324, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31809612

RESUMEN

Hybridization of reported weakly active antiproliferative hit 5-amino-4-pyrimidinol derivative with 2-anilino-4-phenoxypyrimidines suggests a series of 2,5-diamino-4-pyrimidinol derivatives as potential antiproliferative agents. Few compounds belonging to the proposed series were reported as CSF1R/DAPK1 inhibitors as anti-tauopathies. However, the correlation between CSF1R/DAPK1 signalling pathways and cancer progression provides motives to reprofile them against cancer therapy. The compounds were synthesised, characterized, and evaluated against M-NFS-60 cells and a kinase panel which bolstered predictions of their antiproliferative activity and suggested the involvement of diverse molecular targets. Compound 6e, the most potent in the series, showed prominent broad-spectrum antiproliferative activity inhibiting the growth of hematological, NSCLC, colon, CNS, melanoma, ovarian, renal, prostate and breast cancers by 84.1, 52.79, 72.15, 66.34, 66.48, 51.55, 55.95, 61.85, and 60.87%, respectively. Additionally, it elicited an IC50 value of 1.97 µM against M-NFS-60 cells and good GIT absorption with Pe value of 19.0 ± 1.1 × 10-6 cm/s (PAMPA-GIT). Molecular docking study for 6e with CSF1R and DAPK1 was done to help to understand the binding mode with both kinases. Collectively, compound 6e could be a potential lead compound for further development of anticancer therapies.


Asunto(s)
Antineoplásicos/farmacología , Proteínas Quinasas Asociadas a Muerte Celular/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Pirimidinas/síntesis química , Pirimidinas/química , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Relación Estructura-Actividad
11.
PLoS One ; 14(12): e0226406, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31834925

RESUMEN

Myosin regulatory light chain (LC20) phosphorylation plays an important role in vascular smooth muscle contraction and cell migration. Ca2+/calmodulin-dependent myosin light chain kinase (MLCK) phosphorylates LC20 (its only known substrate) exclusively at S19. Rho-associated kinase (ROCK) and zipper-interacting protein kinase (ZIPK) have been implicated in the regulation of LC20 phosphorylation via direct phosphorylation of LC20 at T18 and S19 and indirectly via phosphorylation of MYPT1 (the myosin targeting subunit of myosin light chain phosphatase, MLCP) and Par-4 (prostate-apoptosis response-4). Phosphorylation of MYPT1 at T696 and T853 inhibits MLCP activity whereas phosphorylation of Par-4 at T163 disrupts its interaction with MYPT1, exposing the sites of phosphorylation in MYPT1 and leading to MLCP inhibition. To evaluate the roles of MLCK, ROCK and ZIPK in these phosphorylation events, we investigated the time courses of phosphorylation of LC20, MYPT1 and Par-4 in serum-stimulated human vascular smooth muscle cells (from coronary and umbilical arteries), and examined the effects of siRNA-mediated MLCK, ROCK and ZIPK knockdown and pharmacological inhibition on these phosphorylation events. Serum stimulation induced rapid phosphorylation of LC20 at T18 and S19, MYPT1 at T696 and T853, and Par-4 at T163, peaking within 30-120 s. MLCK knockdown or inhibition, or Ca2+ chelation with EGTA, had no effect on serum-induced LC20 phosphorylation. ROCK knockdown decreased the levels of phosphorylation of LC20 at T18 and S19, of MYPT1 at T696 and T853, and of Par-4 at T163, whereas ZIPK knockdown decreased LC20 diphosphorylation, but increased phosphorylation of MYPT1 at T696 and T853 and of Par-4 at T163. ROCK inhibition with GSK429286A reduced serum-induced phosphorylation of LC20 at T18 and S19, MYPT1 at T853 and Par-4 at T163, while ZIPK inhibition by HS38 reduced only LC20 diphosphorylation. We also demonstrated that serum stimulation induced phosphorylation (activation) of ZIPK, which was inhibited by ROCK and ZIPK down-regulation and inhibition. Finally, basal phosphorylation of LC20 in the absence of serum stimulation was unaffected by MLCK, ROCK or ZIPK knockdown or inhibition. We conclude that: (i) serum stimulation of cultured human arterial smooth muscle cells results in rapid phosphorylation of LC20, MYPT1, Par-4 and ZIPK, in contrast to the slower phosphorylation of kinases and other proteins involved in other signaling pathways (Akt, ERK1/2, p38 MAPK and HSP27), (ii) ROCK and ZIPK, but not MLCK, are involved in serum-induced phosphorylation of LC20, (iii) ROCK, but not ZIPK, directly phosphorylates MYPT1 at T853 and Par-4 at T163 in response to serum stimulation, (iv) ZIPK phosphorylation is enhanced by serum stimulation and involves phosphorylation by ROCK and autophosphorylation, and (v) basal phosphorylation of LC20 under serum-free conditions is not attributable to MLCK, ROCK or ZIPK.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Músculo Liso Vascular/metabolismo , Quinasa de Cadena Ligera de Miosina/metabolismo , Fosfatasa de Miosina de Cadena Ligera/metabolismo , Miosinas/metabolismo , Quinasas Asociadas a rho/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Arterias/citología , Arterias/metabolismo , Células Cultivadas , Proteínas Quinasas Asociadas a Muerte Celular/antagonistas & inhibidores , Proteínas Quinasas Asociadas a Muerte Celular/genética , Humanos , Músculo Liso Vascular/citología , Quinasa de Cadena Ligera de Miosina/antagonistas & inhibidores , Quinasa de Cadena Ligera de Miosina/genética , Fosfatasa de Miosina de Cadena Ligera/genética , Fosforilación , ARN Interferente Pequeño/genética , Suero/metabolismo , Transducción de Señal , Quinasas Asociadas a rho/antagonistas & inhibidores , Quinasas Asociadas a rho/genética
12.
Eur J Pharmacol ; 852: 90-98, 2019 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-30851272

RESUMEN

Vascular calcification (VC) is a critical feature of chronic kidney disease (CKD), diabetes, hypertension, and atherosclerosis. Death-associated protein kinase 3 (DAPK3) is involved in vascular remodeling in hypertension. However, it remains to be clarified whether DAPK3 controls vascular smooth muscle cell (VSMC) phenotypic transition into an osteogenic cell phenotype, which is an important process for VC. In vivo VC was induced in rats by vitamin D3 and nicotine. VSMCs were incubated with calcifying media containing ß-glycerophosphate and Ca2+ to induce VC in vitro. Herein, we demonstrated increased expression of DAPK3 in the aortas of VC rats and VSMCs cultured in calcifying media. Knockdown of DAPK3 significantly inhibited calcifying media-induced VSMC mineralization and retarded the phenotypic transformation of VSMCs into osteogenic cells. Silencing of DAPK3 suppressed endoplasmic reticulum stress (ERS) related protein expressions, but upregulated the phosphorylation level of AMP-activated protein kinase (AMPK) in calcified VSMCs. Moreover, pretreatment with AMPK inhibitor Compound C abolished DAPK3 shRNA-mediated inhibition of ERS in VSMCs. In vivo, DAPK inhibitor significantly prevented calcium deposition in the aortas of VC rats. The present results revealed that DAPK3 modulated VSMC calcification through AMPK-mediated ERS signaling.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Asociadas a Muerte Celular/deficiencia , Proteínas Quinasas Asociadas a Muerte Celular/genética , Estrés del Retículo Endoplásmico/genética , Técnicas de Silenciamiento del Gen , Calcificación Vascular/patología , Animales , Proteínas Quinasas Asociadas a Muerte Celular/antagonistas & inhibidores , Estrés del Retículo Endoplásmico/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Masculino , Músculo Liso Vascular/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Calcificación Vascular/genética , Calcificación Vascular/metabolismo
13.
IUBMB Life ; 71(2): 166-176, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30419147

RESUMEN

Cardiovascular ischemic disease is a large class of diseases that are harmful to human health. The significant role of microRNAs (miRNAs) in terms of controlling cardiac injury has been reported in latest studies. MiR-98 is very important in regulating the apoptosis, the differentiation, the growth as well as the metastasis of cells. Nevertheless, the effect of miR-98 in the cardiac ischemia reperfusion (I/R) injury has rarely been investigated. In the current research, we found that the miR-98 expression was down-regulated in the cardiomyocytes subjected to hypoxia/reoxygenation (H/R) and in the myocardium of the I/R rats. In addition, over-expression of miR-98 could significantly reduce the myocardial oxidative stress and ischemic injury as well as cell apoptosis. In agreement, similar findings were demonstrated in H9c2 cells subjected to H/R injury. Bioinformatic analysis using MiRanda and TargetScan and luciferase activity assay confirmed death-associated protein kinase 1 (DAPK1) as a direct target of miR-98. These findings suggest that miR-98 may be exploited as a novel molecular marker or therapeutic target for myocardial I/R injury. © 2018 IUBMB Life, 71(1):166-176, 2019.


Asunto(s)
Proteínas Quinasas Asociadas a Muerte Celular/genética , Regulación de la Expresión Génica , MicroARNs/genética , Daño por Reperfusión Miocárdica/genética , Miocitos Cardíacos/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Secuencia de Bases , Diferenciación Celular/efectos de los fármacos , Hipoxia de la Célula/genética , Línea Celular , Proteínas Quinasas Asociadas a Muerte Celular/antagonistas & inhibidores , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , MicroARNs/agonistas , MicroARNs/antagonistas & inhibidores , MicroARNs/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Oligorribonucleótidos/genética , Oligorribonucleótidos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Oxígeno/farmacología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal
14.
Med Res Rev ; 39(1): 349-385, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29949198

RESUMEN

Serine/threonine kinases (STKs) represent the majority of discovered kinases to date even though a few Food and Drug Administration approved STKs inhibitors are reported. The third millennium came with the discovery of an important group of STKs that reshaped our understanding of several biological signaling pathways. This family was named death-associated protein kinase family (DAPK family). DAPKs comprise five members (DAPK1, DAPK2, DAPK3, DRAK1, and DRAK2) and belong to the calcium/calmodulin-dependent kinases domain. As time goes on, the list of biological functions of this family is constantly updated. The most extensively studied member is DAPK1 (based on the publications number and Protein Data Bank reported crystal structures) that plays fundamental biological roles depending on the cellular context. DAPK1 regulates apoptosis, autophagy, contributes to the pathogenesis of Alzheimer's disease, acts as a tumor suppressor, inhibits metastasis, mediates the body responses to viral infections, and regulates the synaptic plasticity and depression. For their biological roles, several DAPKs' modulators have been reported for treatment of many diseases as well as acting as probe compounds to facilitate the understanding of the biological functions elicited by this family. Despite that, the number of reported modulators is still limited and more research needs to be conducted on the discovery of novel strategies to activate or inhibit this family. In this report, we aim at drawing more attention to this family by reviewing the recent updates regarding the structure, biological roles, and regulation of this family. In addition, the small-molecule modulators of this family are reviewed in details with their potential therapeutic outcomes evaluated to help medicinal chemists develop more potent and selective possible drug candidates.


Asunto(s)
Proteínas Quinasas Asociadas a Muerte Celular/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Productos Biológicos/química , Productos Biológicos/farmacología , Proteínas Quinasas Asociadas a Muerte Celular/genética , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Aprobación de Drogas , Humanos , Familia de Multigenes , Inhibidores de Proteínas Quinasas/química , Resultado del Tratamiento
15.
Mol Neurobiol ; 56(4): 2838-2844, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30062675

RESUMEN

Alzheimer's disease (AD) is the most common neurodegenerative disease and seriously damages the health of elderly population. Clinical drug research targeting at classic pathology hallmarks, such as amyloid-ß (Aß) and tau protein, failed to achieve effective cognitive improvement, suggesting that the pathogenesis of AD is much complicated, and there are still other unknown and undetermined important factors. Death-associated protein kinase 1 (DAPK1) is a calcium/calmodulin-dependent serine/threonine kinase that plays an important role in various neuronal injury models. Mounting evidence has demonstrated that DAPK1 variants are associated with AD risk. The activation of DAPK1 is also involved in AD-related neurodegeneration in the brain. Exploring the roles of DAPK1 in AD might help us understand the pathogenic mechanisms and find a novel promising therapeutic target in AD. Therefore, in this review, we comprehensively summary the main progress of DAPK1 in the AD studies from genetic risk, neuropathological process, and clinical potential implications.


Asunto(s)
Enfermedad de Alzheimer/enzimología , Enfermedad de Alzheimer/patología , Proteínas Quinasas Asociadas a Muerte Celular/antagonistas & inhibidores , Terapia Molecular Dirigida , Animales , Biomarcadores/metabolismo , Proteínas Quinasas Asociadas a Muerte Celular/química , Predisposición Genética a la Enfermedad , Humanos , Factores de Riesgo
16.
Recent Pat Anticancer Drug Discov ; 14(2): 144-157, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30569876

RESUMEN

BACKGROUND: Death-Associated Protein Kinase 1 (DAPK1) plays an important role in apoptosis, tumor suppression and neurodegeneration including Alzheimer's Disease (AD). OBJECTIVE: This review will describe the diverse roles of DAPK1 in the development of cancer and AD, and the current status of drug development targeting DAPK1-based therapies. METHODS: Reports of DAPK1 regulation, function and substrates were analyzed using genetic DAPK1 manipulation and chemical DAPK1 modulators. RESULTS: DAPK1 expression and activity are deregulated in cancer and AD. It is down-regulated and/or inactivated by multiple mechanisms in many human cancers, and elicits a protective effect to counteract numerous death stimuli in cancer, including activation of the master regulator Pin1. Moreover, loss of DAPK1 expression has correlated strongly with tumor recurrence and metastasis, suggesting that lack of sufficient functional DAPK1 might contribute to cancer. In contrast, DAPK1 is highly expressed in the brains of most human AD patients and has been identified as one of the genetic factors affecting susceptibility to late-onset AD. The absence of DAPK1 promotes efficient learning and better memory in mice and prevents the development of AD by acting on many key proteins including Pin1 and its downstream targets tau and APP. Recent patents show that DAPK1 modulation might be used to treat both cancer and AD. CONCLUSION: DAPK1 plays a critical role in diverse physiological processes and importantly, its deregulation is implicated in the pathogenesis of either cancer or AD. Therefore, manipulating DAPK1 activity and/or expression may be a promising therapeutic option for cancer or AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Proteínas Quinasas Asociadas a Muerte Celular/fisiología , Terapia Molecular Dirigida/tendencias , Neoplasias/tratamiento farmacológico , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Proteínas Quinasas Asociadas a Muerte Celular/antagonistas & inhibidores , Humanos , Ratones , Terapia Molecular Dirigida/métodos , Patentes como Asunto
17.
Proteins ; 86(11): 1211-1217, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30381843

RESUMEN

Zipper-interacting protein kinase (ZIPK) is a Ser/Thr kinase that mediates a variety of cellular functions. Analogue-sensitive kinase technology was applied to the study of ZIPK signaling in coronary artery smooth muscle cells. ZIPK was engineered in the ATP-binding pocket by substitution of a bulky gatekeeper amino acid (Leu93) with glycine. Cell-permeable derivatives of pyrazolo[3,4-d]pyrimidine provided effective inhibition of L93G-ZIPK (1NM-PP1, IC50 , 1.0 µM; 3MB-PP1, IC50 , 2.0 µM; and 1NA-PP1, IC50 , 8.6 µM) but only 3MB-PP1 had inhibitory potential (IC50 > 10 µM) toward wild-type ZIPK. Each of the compounds also attenuated Rho-associated coiled-coil containing protein kinase (ROCK) activity under experimental conditions found to be optimal for inhibition of L93G-ZIPK. In silico molecular simulations showed effective docking of 1NM-PP1 into ZIPK following mutational enlargement of the ATP-binding pocket. Molecular simulation of 1NM-PP1 docking in the ATP-binding pocket of ROCK was also completed. The 1NM-PP1 inhibitor was selected as the optimal compound for selective chemical genetics in smooth muscle cells since it displayed the highest potency for L93G-ZIPK relative to WT-ZIPK and the weakest off-target effects against other relevant kinases. Finally, the 1NM-PP1 and L93G-ZIPK pairing was effectively applied in vascular smooth muscle cells to manipulate the phosphorylation level of LC20, a previously defined target of ZIPK.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Transducción de Señal , Sitios de Unión/efectos de los fármacos , Línea Celular , Vasos Coronarios/citología , Vasos Coronarios/metabolismo , Proteínas Quinasas Asociadas a Muerte Celular/antagonistas & inhibidores , Proteínas Quinasas Asociadas a Muerte Celular/química , Proteínas Quinasas Asociadas a Muerte Celular/genética , Humanos , Simulación del Acoplamiento Molecular , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Ingeniería de Proteínas , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Transfección
18.
Int J Mol Sci ; 19(10)2018 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-30287790

RESUMEN

Death associated protein kinase (DAPK) is a calcium/calmodulin-regulated serine/threonine kinase; its main function is to regulate cell death. DAPK family proteins consist of DAPK1, DAPK2, DAPK3, DAPK-related apoptosis-inducing protein kinases (DRAK)-1 and DRAK-2. In this review, we discuss the roles and regulatory mechanisms of DAPK family members and their relevance to diseases. Furthermore, a special focus is given to several reports describing cross-talks between DAPKs and mitogen-activated protein kinases (MAPK) family members in various pathologies. We also discuss small molecule inhibitors of DAPKs and their potential as therapeutic targets against human diseases.


Asunto(s)
Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Sistema de Señalización de MAP Quinasas , Animales , Apoptosis/efectos de los fármacos , Proteínas Quinasas Asociadas a Muerte Celular/antagonistas & inhibidores , Humanos , Terapia Molecular Dirigida/métodos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
19.
Cell Chem Biol ; 25(10): 1195-1207.e32, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30033129

RESUMEN

Sustained vascular smooth muscle hypercontractility promotes hypertension and cardiovascular disease. The etiology of hypercontractility is not completely understood. New therapeutic targets remain vitally important for drug discovery. Here we report that Pim kinases, in combination with DAPK3, regulate contractility and control hypertension. Using a co-crystal structure of lead molecule (HS38) in complex with DAPK3, a dual Pim/DAPK3 inhibitor (HS56) and selective DAPK3 inhibitors (HS94 and HS148) were developed to provide mechanistic insight into the polypharmacology of hypertension. In vitro and ex vivo studies indicated that Pim kinases directly phosphorylate smooth muscle targets and that Pim/DAPK3 inhibition, unlike selective DAPK3 inhibition, significantly reduces contractility. In vivo, HS56 decreased blood pressure in spontaneously hypertensive mice in a dose-dependent manner without affecting heart rate. These findings suggest including Pim kinase inhibition within a multi-target engagement strategy for hypertension management. HS56 represents a significant step in the development of molecularly targeted antihypertensive medications.


Asunto(s)
Proteínas Quinasas Asociadas a Muerte Celular/antagonistas & inhibidores , Hipertensión/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Presión Sanguínea/efectos de los fármacos , Cristalografía por Rayos X , Proteínas Quinasas Asociadas a Muerte Celular/química , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Humanos , Hipertensión/metabolismo , Hipertensión/fisiopatología , Masculino , Ratones , Modelos Moleculares , Terapia Molecular Dirigida , Contracción Muscular/efectos de los fármacos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-pim-1/química , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Ratas Sprague-Dawley , Alineación de Secuencia
20.
Elife ; 62017 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-28731405

RESUMEN

Aberrant NMDA receptor (NMDAR) activity contributes to several neurological disorders, but direct antagonism is poorly tolerated therapeutically. The GluN2B cytoplasmic C-terminal domain (CTD) represents an alternative therapeutic target since it potentiates excitotoxic signaling. The key GluN2B CTD-centred event in excitotoxicity is proposed to involve its phosphorylation at Ser-1303 by Dapk1, that is blocked by a neuroprotective cell-permeable peptide mimetic of the region. Contrary to this model, we find that excitotoxicity can proceed without increased Ser-1303 phosphorylation, and is unaffected by Dapk1 deficiency in vitro or following ischemia in vivo. Pharmacological analysis of the aforementioned neuroprotective peptide revealed that it acts in a sequence-independent manner as an open-channel NMDAR antagonist at or near the Mg2+ site, due to its high net positive charge. Thus, GluN2B-driven excitotoxic signaling can proceed independently of Dapk1 or altered Ser-1303 phosphorylation.


Asunto(s)
Proteínas Quinasas Asociadas a Muerte Celular/fisiología , Neuronas/patología , Neuropéptidos/farmacología , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Muerte Celular , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Proteínas Quinasas Asociadas a Muerte Celular/antagonistas & inhibidores , Masculino , Ratones , Ratones Noqueados , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Fosforilación , Subunidades de Proteína , Serina/química , Serina/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...