Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Elife ; 72018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29856313

RESUMEN

Breast cancer is the most commonly diagnosed malignancy in women. Analysis of breast cancer genomic DNA indicates frequent loss-of-function mutations in components of the cJUN NH2-terminal kinase (JNK) signaling pathway. Since JNK signaling can promote cell proliferation by activating the AP1 transcription factor, this apparent association of reduced JNK signaling with tumor development was unexpected. We examined the effect of JNK deficiency in the murine breast epithelium. Loss of JNK signaling caused genomic instability and the development of breast cancer. Moreover, JNK deficiency caused widespread early neoplasia and rapid tumor formation in a murine model of breast cancer. This tumor suppressive function was not mediated by a role of JNK in the growth of established tumors, but by a requirement of JNK to prevent tumor initiation. Together, these data identify JNK pathway defects as 'driver' mutations that promote genome instability and tumor initiation.


Asunto(s)
Carcinogénesis/genética , Carcinogénesis/patología , Inestabilidad Genómica , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proliferación Celular , Supervivencia Celular , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Células Epiteliales/patología , Exoma/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/deficiencia , Ratones Endogámicos C57BL , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Fenotipo
2.
Adv Exp Med Biol ; 1074: 351-357, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29721963

RESUMEN

c-Jun N-terminal kinase (JNK), a member of stress-induced mitogen-activated protein (MAP) kinase family, has been shown to modulate a variety of biological processes associated with neurodegenerative pathology of the retina. In particular, various retinal cell culture and animal models related to glaucoma, age-related macular degeneration (AMD), and retinitis pigmentosa indicate that JNK signaling may contribute to disease pathogenesis. This mini-review discusses the impact of JNK signaling in retinal disease, with a focus on retinal ganglion cells (RGCs), photoreceptor cells, retinal pigment epithelial (RPE) cells, and animal studies, with particular attention to modulation of JNK signaling as a potential therapeutic target for the treatment of retinal disease.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos/fisiología , Sistema de Señalización de MAP Quinasas , Degeneración Retiniana/enzimología , Trastornos de la Visión/enzimología , Animales , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/fisiología , Glaucoma/enzimología , Glaucoma/genética , Glaucoma/fisiopatología , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/deficiencia , Degeneración Macular/enzimología , Degeneración Macular/genética , Degeneración Macular/fisiopatología , Ratones , Terapia Molecular Dirigida , Células Fotorreceptoras de Vertebrados/enzimología , Células Fotorreceptoras de Vertebrados/fisiología , Degeneración Retiniana/genética , Degeneración Retiniana/terapia , Epitelio Pigmentado de la Retina/enzimología , Epitelio Pigmentado de la Retina/fisiología , Trastornos de la Visión/genética , Trastornos de la Visión/terapia
3.
Cell Death Differ ; 25(9): 1702-1715, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29511338

RESUMEN

Involution returns the lactating mammary gland to a quiescent state after weaning. The mechanism of involution involves collapse of the mammary epithelial cell compartment. To test whether the cJUN NH2-terminal kinase (JNK) signal transduction pathway contributes to involution, we established mice with JNK deficiency in the mammary epithelium. We found that JNK is required for efficient involution. JNK deficiency did not alter the STAT3/5 or SMAD2/3 signaling pathways that have been previously implicated in this process. Nevertheless, JNK promotes the expression of genes that drive involution, including matrix metalloproteases, cathepsins, and BH3-only proteins. These data demonstrate that JNK has a key role in mammary gland involution post lactation.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Glándulas Mamarias Animales/metabolismo , Transducción de Señal , Animales , Apoptosis , Catepsinas/genética , Catepsinas/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Femenino , Proteínas Quinasas JNK Activadas por Mitógenos/deficiencia , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Lactancia , Glándulas Mamarias Animales/patología , Metaloproteinasas de la Matriz/genética , Metaloproteinasas de la Matriz/metabolismo , Ratones , Ratones Noqueados , Factor de Transcripción STAT3/metabolismo , Proteína Smad2/metabolismo , Factor de Transcripción AP-1/metabolismo
4.
Front Biosci (Landmark Ed) ; 22(5): 795-814, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27814647

RESUMEN

Chemoconvulsants that induce status epilepticus in rodents have been widely used over the past decades due to their capacity to reproduce with high similarity neuropathological and electroencephalographic features observed in patients with temporal lobe epilepsy (TLE). Kainic acid  is one of the most used chemoconvulsants in experimental models. KA administration mainly induces neuronal loss in the hippocampus. We focused the present review inthe c-Jun N-terminal kinase-signaling pathway (JNK), since it has been shown to play a key role in the process of neuronal death following KA activation. Among the three isoforms of JNK (JNK1, JNK2, JNK3), JNK3 is widely localized in the majority of areas of the hippocampus, whereas JNK1 levels are located exclusively in the CA3 and CA4 areas and in dentate gyrus. Disruption of the gene encoding JNK3 in mice renders neuroprotection to KA, since these animals showed a reduction in seizure activity and a diminution in hippocampal neuronal apoptosis. In light of this, JNK3 could be a promising subcellular target for future therapeutic interventions in epilepsy.


Asunto(s)
Epilepsia/enzimología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Degeneración Nerviosa/enzimología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Anticonvulsivantes/farmacología , Modelos Animales de Enfermedad , Epilepsia/inducido químicamente , Epilepsia/patología , Hipocampo/efectos de los fármacos , Hipocampo/patología , Hipocampo/fisiopatología , Humanos , Isoenzimas/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/deficiencia , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Ácido Kaínico/toxicidad , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Ratones Noqueados , Proteína Quinasa 10 Activada por Mitógenos/metabolismo , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/patología
5.
PLoS One ; 10(5): e0127571, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25996379

RESUMEN

Pyrrolidine dithiocarbamate (PDTC) known as antioxidant and specific inhibitor of NF-κB was also described as pro-oxidant by inducing cell death and reactive oxygen species (ROS) accumulation in cancer. However, the mechanism by which PDTC indices its pro-oxidant effect is unknown. Therefore, we aimed to evaluate the effect of PDTC on the human Cu/Zn superoxide dismutase 1 (SOD1) gene transcription in hematopoietic human cancer cell line U937. We herein show for the first time that PDTC decreases SOD1 transcripts, protein and promoter activity. Furthermore, SOD1 repression by PDTC was associated with an increase in oxidative stress as evidenced by ROS production. Electrophoretic mobility-shift assays (EMSA) show that PDTC increased binding of activating protein-1 (AP-1) in dose dependent-manner suggesting that the MAPkinase up-stream of AP-1 is involved. Ectopic NF-κB p65 subunit overexpression had no effect on SOD1 transcription. In contrast, in the presence of JNK inhibitor (SP600125), p65 induced a marked increase of SOD1 promoter, suggesting that JNK pathway is up-stream of NF-κB signaling and controls negatively its activity. Indeed, using JNK deficient cells, PDTC effect was not observed nether on SOD1 transcription or enzymatic activity, nor on ROS production. Finally, PDTC represses SOD1 in U937 cells through JNK/c-Jun phosphorylation. Taken together, these results suggest that PDTC acts as pro-oxidant compound in JNK/AP-1 dependent-manner by repressing the superoxide dismutase 1 gene leading to intracellular ROS accumulation.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Pirrolidinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Superóxido Dismutasa/genética , Tiocarbamatos/farmacología , Factor de Transcripción AP-1/metabolismo , Animales , Línea Celular Transformada , Línea Celular Tumoral , Regulación hacia Abajo , Técnicas de Inactivación de Genes , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/deficiencia , Sistema de Señalización de MAP Quinasas , Ratones , FN-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Fosforilación , Regiones Promotoras Genéticas , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Superóxido Dismutasa-1 , Transcripción Genética , Células U937
6.
J Lipid Res ; 53(6): 1093-105, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22493087

RESUMEN

Pulmonary artery endothelial plexiform lesion is responsible for pulmonary vascular remodeling (PVR), a basic pathological change of pulmonary arterial hypertension (PAH). Recent evidence suggests that epoxyeicosatrienoic acid (EET), which is derived from arachidonic acid by cytochrome p450 (CYP) epoxygenase, has an essential role in PAH. However, until now, most research has focused on pulmonary vasoconstriction; it is unclear whether EET produces mitogenic and angiogenic effects in pulmonary artery endothelial cells (PAEC). Here we found that 500 nM/l 8,9-EET, 11,12-EET, and 14,15-EET markedly augmented JNK and c-Jun activation in PAECs and that the activation of c-Jun was mediated by JNK, but not the ERK or p38 MPAK pathway. Moreover, treatment with 8,9-EET, 11,12-EET, and 14,15-EET promoted cell proliferation and cell-cycle transition from the G0/G1 phase to S phase and stimulated tube formation in vitro. All these effects were reversed after blocking JNK with Sp600125 (a JNK inhibitor) or JNK1/2 siRNA. In addition, the apoptotic process was alleviated by three EET region isomers through the JNK/c-Jun pathway. These observations suggest that 8,9-EET, 11,12-EET, and 14,15-EET stimulate PAEC proliferation and angiogenesis, as well as protect the cells from apoptosis, via the JNK/c-Jun pathway, an important underlying mechanism that may promote PAEC growth and angiogenesis during PAH.


Asunto(s)
Ácido 8,11,14-Eicosatrienoico/farmacología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Arteria Pulmonar/citología , Vasodilatadores/farmacología , Transporte Activo de Núcleo Celular/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Bovinos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Endoteliales/citología , Células Endoteliales/enzimología , Activación Enzimática/efectos de los fármacos , Silenciador del Gen , Interfase/efectos de los fármacos , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas JNK Activadas por Mitógenos/deficiencia , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Músculo Liso Vascular/citología , Fosfoproteínas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos
7.
Basic Res Cardiol ; 107(3): 267, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22527657

RESUMEN

Doxorubicin (DOX) is a widely used anti-tumor agent. The clinical application of the medication is limited by its side effect which can elicit myocardial apoptosis and cardiac dysfunction. However, the underlying mechanism by which DOX causes cardiomyocyte apoptosis is not clear. The aim of present study is to investigate the role of high-mobility group box 1 (HMGB1) in DOX-induced myocardial injury, and signal pathway involved in regulation of HMGB1 expression in cardiomyocytes with DOX. We found treatment of isolated cardiomyocytes and naive mice with the DOX resulted in an increased HMGB1 expression which was associated with increased myocardial cell apoptosis. Pharmacological (A-box) or genetic blockade (TLR4 deficiency, TLR4(-/-)) of HMGB1 attenuated the DOX-induced myocardial apoptosis and cardiac dysfunction. In addition, our study showed that DOX resulted in an increment in the generation of peroxynitrite (ONOO(-)) and an elevation in phosphorylation of c-Jun N terminal kinase (JNK). Pretreatment of myocytes with FeTPPS, a peroxynitrite decomposition catalyst, prevented DOX-induced JNK phosphorylation, HMGB1 expression, myocardial apoptosis and cardiac dysfunction. Genetic (JNK(-/-)) or pharmacological (SP600125) inhibition of JNK ameliorated the DOX-induced HMGB1 expression and diminished myocardial apoptosis and cardiac dysfunction. Taken together, our results indicate that HMGB1 mediates the myocardial injury induced by DOX and ONOO(-)/JNK is a key regulatory pathway of myocardial HMGB1 expression induced by DOX.


Asunto(s)
Antibióticos Antineoplásicos , Apoptosis , Doxorrubicina , Proteína HMGB1/metabolismo , Cardiopatías/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Apoptosis/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Proteína HMGB1/antagonistas & inhibidores , Proteína HMGB1/genética , Cardiopatías/inducido químicamente , Cardiopatías/patología , Cardiopatías/prevención & control , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas JNK Activadas por Mitógenos/deficiencia , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/patología , Ácido Peroxinitroso/metabolismo , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Interferencia de ARN , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Receptor Toll-Like 4/deficiencia , Receptor Toll-Like 4/genética , Transfección , Regulación hacia Arriba
8.
PLoS One ; 6(12): e26182, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22180774

RESUMEN

Mechanical force is known to modulate the activity of the Jun N-terminal kinase (JNK) signaling cascade. However, the effect of mechanical stresses on JNK signaling activation has previously only been analyzed by in vitro detection methods. It still remains unknown how living cells activate the JNK signaling cascade in response to mechanical stress and what its functions are in stretched cells.We assessed in real-time the activity of the JNK pathway in Drosophila cells by Fluorescence Lifetime Imaging Microscopy (FLIM), using an intramolecular phosphorylation-dependent dJun-FRET (Fluorescence Resonance Energy Transfer) biosensor. We found that quantitative FRET-FLIM analysis and confocal microscopy revealed sustained dJun-FRET biosensor activation and stable morphology changes in response to mechanical stretch for Drosophila S2R+ cells. Further, these cells plated on different substrates showed distinct levels of JNK activity that associate with differences in cell morphology, integrin expression and focal adhesion organization.These data imply that alterations in the cytoskeleton and matrix attachments may act as regulators of JNK signaling, and that JNK activity might feed back to modulate the cytoskeleton and cell adhesion. We found that this dynamic system is highly plastic; at rest, integrins at focal adhesions and talin are key factors suppressing JNK activity, while multidirectional static stretch leads to integrin-dependent, and probably talin-independent, Jun sensor activation. Further, our data suggest that JNK activity has to coordinate with other signaling elements for the regulation of the cytoskeleton and cell shape remodeling associated with stretch.


Asunto(s)
Integrinas/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas , Estrés Mecánico , Animales , Técnicas Biosensibles , Línea Celular , Forma de la Célula/efectos de los fármacos , Supervivencia Celular , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Adhesiones Focales/efectos de los fármacos , Adhesiones Focales/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas JNK Activadas por Mitógenos/deficiencia , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Microscopía Fluorescente , Inhibidores de Proteínas Quinasas/farmacología , Interferencia de ARN
9.
J Neurosci ; 31(47): 16969-76, 2011 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-22114267

RESUMEN

Phosphorylation plays a central role in the dynamic regulation of the processing of the amyloid precursor protein (APP) and the production of amyloid-ß (Aß), one of the clinically most important factors that determine the onset of Alzheimer's disease (AD). This has led to the hypothesis that aberrant Aß production associated with AD results from regulatory defects in signal transduction. However, conflicting findings have raised a debate over the identity of the signaling pathway that controls APP metabolism. Here, we demonstrate that activation of the c-Jun N-terminal protein kinase (JNK) is essential for mediating the apoptotic response of neurons to Aß. Furthermore, we discovered that the functional loss of JNK signaling in neurons significantly decreased the number of amyloid plaques present in the brain of mice carrying familial AD-linked mutant genes. This correlated with a reduction in Aß production. Biochemical analyses indicate that the phosphorylation of APP at threonine 668 by JNK is required for γ-mediated cleavage of the C-terminal fragment of APP produced by ß-secretase. Overall, this study provides genetic evidence that JNK signaling is required for the formation of amyloid plaques in vivo. Therefore, inhibition of increased JNK activity associated with aging or with a pathological condition constitutes a potential strategy for the treatment of AD.


Asunto(s)
Precursor de Proteína beta-Amiloide/antagonistas & inhibidores , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/deficiencia , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Placa Amiloide/metabolismo , Animales , Animales Recién Nacidos , Apoptosis/genética , Células Cultivadas , Activación Enzimática/genética , Humanos , Ratones , Ratones Transgénicos , Neuronas/enzimología , Neuronas/metabolismo , Neuronas/patología , Placa Amiloide/enzimología , Placa Amiloide/patología
10.
J Cell Biol ; 194(4): 581-96, 2011 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-21859862

RESUMEN

Cytokines and stress-inducing stimuli signal through c-Jun N-terminal kinase (JNK) using a diverse and only partially defined set of downstream effectors. In this paper, the decapping complex subunit DCP1a was identified as a novel JNK target. JNK phosphorylated DCP1a at residue S315 in vivo and in vitro and coimmunoprecipitated and colocalized with DCP1a in processing bodies (P bodies). Sustained JNK activation by several different inducers led to DCP1a dispersion from P bodies, whereas IL-1 treatment transiently increased P body number. Inhibition of TAK1-JNK signaling also affected the number and size of P bodies and the localization of DCP1a, Xrn1, and Edc4. Transcriptome analysis further identified a central role for DCP1a in IL-1-induced messenger ribonucleic acid (mRNA) expression. Phosphomimetic mutation of S315 stabilized IL-8 but not IκBα mRNA, whereas overexpressed DCP1a blocked IL-8 transcription and suppressed p65 NF-κB nuclear activity. Collectively, these data reveal DCP1a as a multifunctional regulator of mRNA expression and suggest a novel mechanism controlling the subcellular localization of DCP1a in response to stress or inflammatory stimuli.


Asunto(s)
Gránulos Citoplasmáticos/enzimología , Endorribonucleasas/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Transactivadores/metabolismo , Animales , Endorribonucleasas/genética , Activación Enzimática , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Regulación de la Expresión Génica , Genes Reporteros , Células HEK293 , Humanos , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Mediadores de Inflamación/metabolismo , Interleucina-1/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/deficiencia , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Fosforilación , Transporte de Proteínas , Proteínas/genética , Proteínas/metabolismo , Estabilidad del ARN , ARN Mensajero/metabolismo , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Estrés Fisiológico , Factores de Tiempo , Transactivadores/genética , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/metabolismo , Transfección
11.
PLoS One ; 6(5): e20150, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21647439

RESUMEN

BACKGROUND: The protein kinase GSK-3 is constitutively active in quiescent cells in the absence of growth factor signaling. Previously, we identified a set of genes that required GSK-3 to maintain their repression during quiescence. Computational analysis of the upstream sequences of these genes predicted transcription factor binding sites for CREB, NFκB and AP-1. In our previous work, contributions of CREB and NFκB were examined. In the current study, the AP-1 component of the signaling network in quiescent cells was explored. METHODOLOGY/PRINCIPAL FINDINGS: Using chromatin immunoprecipitation analysis, two AP-1 family members, c-Jun and JunD, bound to predicted upstream regulatory sequences in 8 of the 12 GSK-3-regulated genes. c-Jun was phosphorylated on threonine 239 by GSK-3 in quiescent cells, consistent with previous studies demonstrating inhibition of c-Jun by GSK-3. Inhibition of GSK-3 attenuated this phosphorylation, resulting in the stabilization of c-Jun. The association of c-Jun with its target sequences was increased by growth factor stimulation as well as by direct GSK-3 inhibition. The physiological role for c-Jun was also confirmed by siRNA inhibition of gene induction. CONCLUSIONS/SIGNIFICANCE: These results indicate that inhibition of c-Jun by GSK-3 contributes to the repression of growth factor-inducible genes in quiescent cells. Together, AP-1, CREB and NFκB form an integrated transcriptional network that is largely responsible for maintaining repression of target genes downstream of GSK-3 signaling.


Asunto(s)
Redes Reguladoras de Genes , Glucógeno Sintasa Quinasa 3/metabolismo , Fase de Descanso del Ciclo Celular/genética , Factor de Transcripción AP-1/metabolismo , Animales , Línea Celular Tumoral , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Estabilidad de Enzimas/efectos de los fármacos , Estabilidad de Enzimas/genética , Redes Reguladoras de Genes/efectos de los fármacos , Redes Reguladoras de Genes/genética , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Humanos , Indoles/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/deficiencia , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Maleimidas/farmacología , Ratones , FN-kappa B/metabolismo , Fosforilación/efectos de los fármacos , Fosforilación/genética , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-jun/metabolismo , ARN Interferente Pequeño/genética , Fase de Descanso del Ciclo Celular/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/genética
12.
Cell Struct Funct ; 36(1): 27-33, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21263197

RESUMEN

We investigated the effects of SP600125 (formerly called c-Jun N-terminal kinase (JNK) inhibitor II) on translation using cultured mouse cells. SP600125 (50 µM) treatment rapidly repressed overall protein synthesis, accompanied by a reduction in the mRNAs for housekeeping genes such as glyceraldehyde-3-phosphate dehydrogenase in the polysomal fraction. SP600125 decreased polysomes with a concomitant increase in free ribosomal subunits in the cytoplasm, suggesting that global translation was inhibited at the initiation step. A reporter analysis using exogenous mRNAs showed that SP600125 inhibited cap-dependent but not internal ribosome entry site-dependent translation. SP600125 significantly attenuated phosphorylation of components in the mTOR pathway, which is responsible for cap-dependent translation. In contrast to SP600125, short hairpin RNAs for JNK1 and JNK2 failed to affect overall protein synthesis. Collectively, SP600125 inhibits cap-dependent translation, independent of the JNK pathway.


Asunto(s)
Antracenos/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Células 3T3 , Animales , Técnicas de Silenciamiento del Gen , Proteínas Quinasas JNK Activadas por Mitógenos/deficiencia , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Ratones , ARN Mensajero/genética , Transducción de Señal/efectos de los fármacos
13.
Oncogene ; 29(47): 6267-79, 2010 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-20802521

RESUMEN

v-Rel is the acutely oncogenic member of the NF-κB family of transcription factors. Infection with retroviruses expressing v-Rel rapidly induces fatal lymphomas in birds and transforms primary lymphocytes and fibroblasts in vitro. We have previously shown that AP-1 transcriptional activity contributes to v-Rel-mediated transformation. Although v-Rel increases the expression of these factors, their activity may also be induced through phosphorylation by the mitogen-activated protein kinases (MAPKs). The expression of v-Rel results in the strong and sustained activation of the ERK and JNK MAPK pathways. This induction is critical for the v-Rel-transformed phenotype, as suppression of MAPK activity with chemical inhibitors or small interfering RNA severely impairs colony formation of v-Rel-transformed lymphoid cell lines. However, signaling must be maintained within an optimal range in these cells, as strong additional activation of either pathway beyond the levels induced by v-Rel through the expression of constitutively active MAPK proteins attenuates the transformed phenotype. MAPK signaling also has an important role in the initial transformation of primary spleen cells by v-Rel, although distinct requirements for MAPK activity at different stages of v-Rel-mediated transformation were identified. We also show that the ability of v-Rel to induce MAPK signaling more strongly than c-Rel contributes to its greater oncogenicity.


Asunto(s)
Transformación Celular Viral/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Genes rel/genética , Genes rel/fisiología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Animales , Línea Celular , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/deficiencia , Quinasas MAP Reguladas por Señal Extracelular/genética , Técnicas de Silenciamiento del Gen , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas JNK Activadas por Mitógenos/deficiencia , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Fenotipo , ARN Interferente Pequeño/genética
14.
J Neurosci ; 30(23): 7804-16, 2010 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-20534829

RESUMEN

c-Jun N-terminal kinases (JNKs) (comprising JNK1-3 isoforms) are members of the MAPK (mitogen-activated protein kinase) family, activated in response to various stimuli including growth factors and inflammatory cytokines. Their activation is facilitated by scaffold proteins, notably JNK-interacting protein-1 (JIP1). Originally considered to be mediators of neuronal degeneration in response to stress and injury, recent studies support a role of JNKs in early stages of neurite outgrowth, including adult axonal regeneration. However, the function of individual JNK isoforms, and their potential effector molecules, remained unknown. Here, we analyzed the role of JNK signaling during axonal regeneration from adult mouse dorsal root ganglion (DRG) neurons, combining pharmacological JNK inhibition and mice deficient for each JNK isoform and for JIP1. We demonstrate that neuritogenesis is delayed by lack of JNK2 and JNK3, but not JNK1. JNK signaling is further required for sustained neurite elongation, as pharmacological JNK inhibition resulted in massive neurite retraction. This function relies on JNK1 and JNK2. Neurite regeneration of jip1(-/-) DRG neurons is affected at both initiation and extension stages. Interestingly, activated JNKs (phospho-JNKs), as well as JIP1, are also present in the cytoplasm of sprouting or regenerating axons, suggesting a local action on cytoskeleton proteins. Indeed, we have shown that JNK1 and JNK2 regulate the phosphorylation state of microtubule-associated protein MAP1B, whose role in axonal regeneration was previously characterized. Moreover, lack of MAP1B prevents neurite retraction induced by JNK inhibition. Thus, signaling by individual JNKs is differentially implicated in the reorganization of the cytoskeleton, and neurite regeneration.


Asunto(s)
Ganglios Espinales/citología , Proteína Quinasa 10 Activada por Mitógenos/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Regeneración Nerviosa/fisiología , Neuritas/fisiología , Transducción de Señal/fisiología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Western Blotting , Células Cultivadas , Femenino , Genotipo , Isoenzimas , Proteínas Quinasas JNK Activadas por Mitógenos/deficiencia , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/metabolismo , Fosforilación , Reacción en Cadena de la Polimerasa
15.
J Biol Chem ; 285(30): 23096-104, 2010 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-20507983

RESUMEN

Growth factor stimulation induces c-Jun-dependent survival of primary endothelial cells. However, the mechanism of c-Jun anti-apoptotic activity has not been identified. We here demonstrate that in response to growth factor treatment, primary human endothelial cells as well as mouse fibroblasts respond with an increased expression of c-Jun that forms a complex with ATF2. This complex activates the expression of the anti-apoptotic protein Bcl-X(L). By site-directed mutagenesis experiments, we identified two AP-1-binding sites located within the proximal promoter of the Bcl-X gene. Site-directed mutagenesis demonstrated that these AP-1 sites are required for the transcriptional activation of the promoter. Chromatin immunoprecipitation experiments show that in response to growth factor treatment, the heterodimer c-Jun.ATF2 binds to these functional AP-1 sites. Silencing of either c-Jun or ATF2 demonstrated that both nuclear factors are required for the activation of the proximal Bcl-X promoter. Taken together, our experiments provide evidence that growth factor-independent signaling pathways converge in the formation of an active c-Jun.AFT2 dimer, which induces the expression of the anti-apoptotic factor Bcl-X(L) that mediates a pro-survival response.


Asunto(s)
Factor de Transcripción Activador 2/metabolismo , Supervivencia Celular/efectos de los fármacos , Péptidos y Proteínas de Señalización Intercelular/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteína bcl-X/metabolismo , Factor de Transcripción Activador 2/química , Factor de Transcripción Activador 2/deficiencia , Factor de Transcripción Activador 2/genética , Animales , Apoptosis/efectos de los fármacos , Secuencia de Bases , Sitios de Unión , Línea Celular , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Silenciador del Gen , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/química , Proteínas Quinasas JNK Activadas por Mitógenos/deficiencia , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Ratones , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Transducción de Señal/efectos de los fármacos , Factor de Transcripción AP-1/metabolismo , Transcripción Genética , Proteína bcl-X/genética
16.
Obesity (Silver Spring) ; 18(9): 1701-9, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20094041

RESUMEN

Although germ-line deletion of c-Jun NH(2)-terminal kinase (JNK) improves overall insulin sensitivity in mice, those studies could not reveal the underlying molecular mechanism and the tissue site(s) in which reduced JNK activity elicits the observed phenotype. Given its importance in nonesterified fatty acids (NEFA) and glucose utilization, we hypothesized that the insulin-sensitive phenotype associated with Jnk deletion originates from loss of JNK function in skeletal muscle. Short hairpin RNA (shRNA)-mediated gene silencing was used to identify the functions of JNK subtypes in regulating energy metabolism and metabolic responses to elevated concentrations of NEFA in C2C12 myotubes, a cellular model of skeletal muscle. We show for the first time that cellular JNK2- and JNK1/JNK2-deficiency divert glucose from oxidation to glycogenesis due to increased glycogen synthase (GS) activity and induction of Pdk4. We further show that JNK2- and JNK1/JNK2-deficiency profoundly increase cellular NEFA oxidation, and their conversion to phospholipids and triglyceride. The increased NEFA utilization was coupled to increased expressions of selective NEFA handling genes including Cd36, Acsl4, and Chka, and enhanced palmitic acid (PA)-dependent suppression of acetyl-CoA carboxylase (Acc). In JNK-intact cells, PA inhibited insulin signaling and glycogenesis. Although silencing Jnk1 and/or Jnk2 prevented PA-induced inhibition of insulin signaling, it did not completely block decreased insulin-mediated glycogenesis, thus indicating JNK-independent pathways in the suppression of glycogenesis by PA. Muscle-specific inhibition of JNK2 (or total JNK) improves the capacity of NEFA utilization and glycogenesis, and is a potential therapeutic target for improving systemic insulin sensitivity in type 2 diabetes (T2D).


Asunto(s)
Glucemia/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Glucógeno/biosíntesis , Resistencia a la Insulina/fisiología , Proteínas Quinasas JNK Activadas por Mitógenos/deficiencia , Metabolismo de los Lípidos , Fibras Musculares Esqueléticas/metabolismo , Acetil-CoA Carboxilasa/antagonistas & inhibidores , Animales , Ácidos Grasos no Esterificados/genética , Silenciador del Gen , Genes , Glucógeno Sintasa/metabolismo , Resistencia a la Insulina/genética , Metabolismo de los Lípidos/genética , Peroxidación de Lípido , Ratones , Oxidación-Reducción , Ácido Palmítico/metabolismo , Fosfolípidos/biosíntesis , Proteínas Serina-Treonina Quinasas/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , ARN Interferente Pequeño , Eliminación de Secuencia , Transducción de Señal , Triglicéridos/biosíntesis
17.
Mol Cell Biol ; 30(6): 1329-40, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20065035

RESUMEN

The c-Jun NH(2)-terminal kinase (JNK) is implicated in proliferation. Mice with a deficiency of either the Jnk1 or the Jnk2 genes are viable, but a compound deficiency of both Jnk1 and Jnk2 causes early embryonic lethality. Studies using conditional gene ablation and chemical genetic approaches demonstrate that the combined loss of JNK1 and JNK2 protein kinase function results in rapid senescence. To test whether this role of JNK was required for stem cell proliferation, we isolated embryonic stem (ES) cells from wild-type and JNK-deficient mice. We found that Jnk1(-/-) Jnk2(-/-) ES cells underwent self-renewal, but these cells proliferated more rapidly than wild-type ES cells and exhibited major defects in lineage-specific differentiation. Together, these data demonstrate that JNK is not required for proliferation or self-renewal of ES cells, but JNK plays a key role in the differentiation of ES cells.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Células Madre Embrionarias/citología , Células Madre Embrionarias/enzimología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Animales , Apoptosis , Diferenciación Celular/genética , Linaje de la Célula/genética , Proliferación Celular , Separación Celular , Embrión de Mamíferos/citología , Células Madre Embrionarias/ultraestructura , Regulación del Desarrollo de la Expresión Génica , Proteínas Quinasas JNK Activadas por Mitógenos/deficiencia , Mesodermo/citología , Mesodermo/metabolismo , Ratones , Teratoma/patología
18.
Mol Cell Endocrinol ; 311(1-2): 94-100, 2009 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-19647037

RESUMEN

Growth factors activate ATF2 via sequential phosphorylation of Thr69 and Thr71, where the ATF2-Thr71-phosphorylation precedes the induction of ATF2-Thr69+71-phosphorylation. Here, we studied the mechanisms contributing to serum-induced two-step ATF2-phosphorylation in JNK1,2-deficient embryonic fibroblasts. Using anion exchange chromatography, ERK1/2 and p38 were identified as ATF2-kinases in vitro. Inhibitor studies as well as nuclear localization experiments show that the sequential nuclear appearance of ERK1/2 and p38 determines the induction of ATF2-Thr71 and ATF2-Thr69+71-phosphorylation in response to serum.


Asunto(s)
Factor de Transcripción Activador 2/metabolismo , Núcleo Celular/enzimología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fibroblastos/enzimología , Proteínas Quinasas JNK Activadas por Mitógenos/deficiencia , Fosfotreonina/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Núcleo Celular/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Imidazoles/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ratones , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Piridinas/farmacología , Suero , Transducción de Señal/efectos de los fármacos
19.
Am J Physiol Regul Integr Comp Physiol ; 297(3): R825-34, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19605759

RESUMEN

We previously demonstrated that endotoxin-induced sepsis results in caspase 8-mediated diaphragmatic dysfunction. The upstream signaling pathways modulating diaphragm caspase 8 activation in response to endotoxin administration are, however, unknown. The purpose of the present study was to test the hypothesis that the JNK (Jun N-terminal Kinase) pathway is activated in the diaphragm during sepsis and contributes to sepsis-induced diaphragm caspase 8 activation. Endotoxin was administered to intact animals to model the effects of sepsis. We first assessed the time course of JNK activation after endotoxin (12 mg/kg i.p.) administration to mice. We then determined whether JNK inhibitor administration (30 microm/kg i.p. SP600125) could prevent caspase 8 activation and diaphragm weakness in endotoxin-treated mice. Experiments were then repeated comparing the effects of endotoxin on control and transgenic JNK knockout mice. We finally determined whether cytomix (LPS, TNFalpha, IL1beta, and IFN-gamma) exposure activated caspase 8 in C2C12 muscle cells and whether caspase 8 activation was attenuated by either chemical inhibition of JNK (30 microM SP600125) or transfection with a dominant negative JNK construct. We found that endotoxin activated diaphragm JNK (P < 0.001) and increased active caspase 8 (P < 0.01). Inhibition of JNK with SP600125 or by use of JNK-deficient animals prevented diaphragm caspase 8 activation (P < 0.01) and prevented diaphragm weakness (P < 0.05). JNK inhibition also prevented caspase 8 activation in cytokine-treated muscle cells (P < 0.001). These data implicate JNK activation as a major factor mediating inflammation-induced skeletal muscle caspase 8 activation and weakness.


Asunto(s)
Caspasa 8/metabolismo , Diafragma/enzimología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas , Contracción Muscular , Fuerza Muscular , Debilidad Muscular/enzimología , Sepsis/enzimología , Animales , Antracenos/farmacología , Caspasa 8/efectos de los fármacos , Línea Celular , Citocinas/metabolismo , Diafragma/efectos de los fármacos , Diafragma/fisiopatología , Modelos Animales de Enfermedad , Activación Enzimática , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas JNK Activadas por Mitógenos/deficiencia , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Lipopolisacáridos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Contracción Muscular/efectos de los fármacos , Fibras Musculares Esqueléticas/enzimología , Fuerza Muscular/efectos de los fármacos , Debilidad Muscular/etiología , Debilidad Muscular/fisiopatología , Debilidad Muscular/prevención & control , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Sepsis/inducido químicamente , Sepsis/complicaciones , Sepsis/fisiopatología , Factores de Tiempo , Transfección
20.
Crit Care ; 11(1): R25, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17316425

RESUMEN

INTRODUCTION: Large-tidal volume (VT) mechanical ventilation and hyperoxia used in patients with acute respiratory distress syndrome can damage pulmonary epithelial cells through lung inflammation and apoptotic cell death. Hyperoxia has been shown to increase ventilator-induced lung injury, but the mechanisms regulating interaction between large VT and hyperoxia are unclear. We hypothesized that the addition of hyperoxia to large-VT ventilation would increase neutrophil infiltration by upregulation of the cytokine macrophage inflammatory protein-2 (MIP-2) and would increase apoptosis via the mitogen-activated protein kinase pathways. METHODS: C57BL/6 mice were exposed to high-VT (30 ml/kg) mechanical ventilation with room air or hyperoxia for one to five hours. RESULTS: The addition of hyperoxia to high-VT ventilation augmented lung injury, as demonstrated by increased apoptotic cell death, neutrophil migration into the lung, MIP-2 production, MIP-2 mRNA expression, increased DNA binding activity of activator protein-1, increased microvascular permeability, and c-Jun NH2-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) 1/2 activation. Hyperoxia-induced augmentation of high-VT-induced lung injury was attenuated in JNK-deficient mice and in mice with pharmacologic inhibition of ERK activity by PD98059. However, only JNK-deficient mice, and not mice with ERK activity inhibition by PD98059, were protected from high-VT-induced lung injury without hyperoxia. CONCLUSION: We conclude that hyperoxia increased high-VT-induced cytokine production, neutrophil influx, and apoptotic cell death through activation of the JNK and ERK1/2 pathways.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Hiperoxia/complicaciones , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Enfermedades Pulmonares/etiología , Monocinas/biosíntesis , Respiración Artificial/efectos adversos , Animales , Apoptosis , Quimiocina CXCL2 , Citocinas/biosíntesis , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Flavonoides/farmacología , Hiperoxia/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/deficiencia , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Enfermedades Pulmonares/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocinas/genética , Infiltración Neutrófila , ARN Mensajero/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA