Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Connect Tissue Res ; 64(2): 139-147, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35986560

RESUMEN

BACKGROUND: Oncostatin M produced by osteal macrophages, a cytokine that belongs to the interleukin-6 family, is implicated in bone fracture healing. Macrophage colony-stimulating factor (M-CSF) secreted from osteoblasts plays an important role in osteoclastogenesis. We have previously reported that tumor necrosis factor-α (TNF-α), a potent bone resorptive agent, stimulates the activation of p44/p42 mitogen-activated protein (MAP) kinase, Akt, and p70 S6 kinase in osteoblast-like MC3T3-E1 cells, and induces the synthesis of M-CSF at least in part via Akt. OBJECTIVE: In the present study, we investigated whether oncostatin M affects the TNF-α-induced M-CSF synthesis in MC3T3-E1 cells and the underlying mechanisms. METHODS: Clonal osteoblast-like MC3T3-E1 cells were treated with oncostatin M or rapamycin and then stimulated with TNF-α. M-CSF release was assessed by ELISA. M-CSF mRNA expression level was assessed by real-time RT-PCR. Phosphorylation of Akt, p44/p42 MAP kinase, and p70 S6 kinase was detected by Western blot analysis. RESULTS: Oncostatin M dose-dependently reduced the TNF-α-stimulated M-CSF release. The expression of M-CSF mRNA induced by TNF-α was significantly suppressed by oncostatin M. Rapamycin, an inhibitor of mTOR/p70 S6 kinase, had little effect on the M-CSF release by TNF-α. Oncostatin M significantly reduced the TNF-α-induced phosphorylation of Akt and p44/p42 MAP kinase. However, the p70 S6 kinase phosphorylation by TNF-α was not affected by oncostatin M. CONCLUSION: These results strongly suggest that oncostatin M attenuates TNF-α-stimulated synthesis of M-CSF in osteoblasts, and the inhibitory effect is exerted at a point upstream of Akt and p44/p42 MAP kinase but not p70 S6 kinase.


Asunto(s)
Factor Estimulante de Colonias de Macrófagos , Factor de Necrosis Tumoral alfa , Factor de Necrosis Tumoral alfa/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Factor Estimulante de Colonias de Macrófagos/farmacología , Factor Estimulante de Colonias de Macrófagos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/farmacología , Oncostatina M/farmacología , Oncostatina M/metabolismo , Fosforilación , Sirolimus/farmacología , Osteoblastos/metabolismo , ARN Mensajero/metabolismo , Macrófagos/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Proteínas Quinasas S6 Ribosómicas/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos
2.
PLoS Pathog ; 18(9): e1010808, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36067252

RESUMEN

Previous studies have shown that the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway has antiviral functions or is beneficial for viral replication, however, the detail mechanisms by which mTORC1 enhances viral infection remain unclear. Here, we found that proliferation of white spot syndrome virus (WSSV) was decreased after knockdown of mTor (mechanistic target of rapamycin) or injection inhibitor of mTORC1, rapamycin, in Marsupenaeus japonicus, which suggests that mTORC1 is utilized by WSSV for its replication in shrimp. Mechanistically, WSSV infects shrimp by binding to its receptor, polymeric immunoglobulin receptor (pIgR), and induces the interaction of its intracellular domain with Calmodulin. Calmodulin then promotes the activation of protein kinase B (AKT) by interaction with the pleckstrin homology (PH) domain of AKT. Activated AKT phosphorylates mTOR and results in the activation of the mTORC1 signaling pathway to promote its downstream effectors, ribosomal protein S6 kinase (S6Ks), for viral protein translation. Moreover, mTORC1 also phosphorylates eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1), which will result in the separation of 4EBP1 from eukaryotic translation initiation factor 4E (eIF4E) for the translation of viral proteins in shrimp. Our data revealed a novel pathway for WSSV proliferation in shrimp and indicated that mTORC1 may represent a potential clinical target for WSSV control in shrimp aquaculture.


Asunto(s)
Receptores de Inmunoglobulina Polimérica , Virus del Síndrome de la Mancha Blanca 1 , Antivirales/farmacología , Calmodulina/metabolismo , Factor 4E Eucariótico de Iniciación/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Inmunoglobulina Polimérica/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Proteínas Quinasas S6 Ribosómicas/farmacología , Transducción de Señal , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Virales/metabolismo , Replicación Viral , Virus del Síndrome de la Mancha Blanca 1/metabolismo
3.
Autophagy ; 18(10): 2303-2322, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34964695

RESUMEN

By promoting anabolism, MTORC1 is critical for muscle growth and maintenance. However, genetic MTORC1 upregulation promotes muscle aging and produces age-associated myopathy. Whether MTORC1 activation is sufficient to produce myopathy or indirectly promotes it by accelerating tissue aging is elusive. Here we examined the effects of muscular MTORC1 hyperactivation, produced by simultaneous depletion of TSC1 and DEPDC5 (CKM-TD). CKM-TD mice produced myopathy, associated with loss of skeletal muscle mass and force, as well as cardiac failure and bradypnea. These pathologies were manifested at eight weeks of age, leading to a highly penetrant fatality at around twelve weeks of age. Transcriptome analysis indicated that genes mediating proteasomal and macroautophagic/autophagic pathways were highly upregulated in CKM-TD skeletal muscle, in addition to inflammation, oxidative stress, and DNA damage signaling pathways. In CKM-TD muscle, autophagosome levels were increased, and the AMPK and ULK1 pathways were activated; in addition, autophagy induction was not completely blocked in CKM-TD myotubes. Despite the upregulation of autolysosomal markers, CKM-TD myofibers exhibited accumulation of autophagy substrates, such as SQSTM1/p62 and ubiquitinated proteins, suggesting that the autophagic activities were insufficient. Administration of a superoxide scavenger, tempol, normalized most of these molecular pathologies and subsequently restored muscle histology and force generation. However, CKM-TD autophagy alterations were not normalized by rapamycin or tempol, suggesting that they may involve non-canonical targets other than MTORC1. These results collectively indicate that the concomitant muscle deficiency of TSC1 and DEPDC5 can produce early-onset myopathy through accumulation of oxidative stress, which dysregulates myocellular homeostasis.Abbreviations: AMPK: AMP-activated protein kinase; CKM: creatine kinase, M-type; COX: cytochrome oxidase; DEPDC5: DEP domain containing 5, GATOR1 subcomplex subunit; DHE: dihydroethidium; EDL: extensor digitorum longus; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; GAP: GTPase-activating protein; GTN: gastrocnemius; MTORC1: mechanistic target of rapamycin kinase complex 1; PLA: plantaris; QUAD: quadriceps; RPS6KB/S6K: ribosomal protein S6 kinase beta; SDH: succinate dehydrogenase; SOL: soleus; SQSTM1: sequestosome 1; TA: tibialis anterior; TSC1: TSC complex subunit 1; ULK1: unc-51 like autophagy activating kinase 1.


Asunto(s)
Cardiopatías , Enfermedades Musculares , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Autofagia , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Forma MM de la Creatina-Quinasa/metabolismo , Óxidos N-Cíclicos , Complejo IV de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/farmacología , Proteínas Activadoras de GTPasa/metabolismo , Cardiopatías/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Enfermedades Musculares/metabolismo , Miocardio/metabolismo , Estrés Oxidativo , Factores de Iniciación de Péptidos/metabolismo , Poliésteres/metabolismo , Poliésteres/farmacología , Proteínas Quinasas S6 Ribosómicas/metabolismo , Proteínas Quinasas S6 Ribosómicas/farmacología , Proteína Sequestosoma-1/metabolismo , Sirolimus/farmacología , Marcadores de Spin , Succinato Deshidrogenasa/metabolismo , Succinato Deshidrogenasa/farmacología , Superóxidos/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteínas Ubiquitinadas/metabolismo
4.
J Endocrinol ; 244(1): 71-82, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31557728

RESUMEN

The mTOR/S6Ks signaling is one of the intracellular pathways important for metabolic control, acting both peripherally and centrally. In the hypothalamus, mTOR/S6Ks axis mediates the action of leptin and insulin and can modulate the expression of neuropeptides. We analyzed the role of different S6Ks isoforms in the hypothalamic regulation of metabolism. We observed decreased food intake and decreased expression of agouti-related peptide (AgRP) following intracerebroventricular (icv) injections of adenoviral-mediated overexpression of three different S6Ks isoforms. Moreover, mice overexpressing p70-S6K1 in undefined periventricular hypothalamic neurons presented changes in glucose metabolism, as an increase in gluconeogenesis. To further evaluate the hypothalamic role of a less-studied S6K isoform, p54-S6K2, we used a Cre-LoxP approach to specifically overexpress it in AgRP neurons. Our findings demonstrate the potential participation of S6K2 in AgRP neurons regulating feeding behavior.


Asunto(s)
Conducta Alimentaria/efectos de los fármacos , Glucosa/metabolismo , Isoformas de Proteínas/farmacología , Proteínas Quinasas S6 Ribosómicas 90-kDa/farmacología , Proteínas Quinasas S6 Ribosómicas/farmacología , Proteína Relacionada con Agouti/metabolismo , Animales , Ingestión de Alimentos/genética , Hipotálamo/metabolismo , Ratones , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/metabolismo
5.
Jpn Circ J ; 64(9): 695-700, 2000 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-10981855

RESUMEN

Cardiac hypertrophy is characterized by increased cardiomyocyte protein synthesis, increased cell volume, and a shift in cardiac-specific gene expression to fetal isoforms. Using neonatal rat cardiomyocytes stimulated with fetal calf serum (FCS) as a model for cardiac hypertrophy, the present study investigated the role of 2 signal transduction pathways, extracellular signal-regulated kinase (ERK) and p70S6 kinase (p70S6K), in the attendant phenotype changes. FCS evoked both ERK and p70S6K activity, peaking at 20-40min, and simultaneously increased cardiac myocyte protein synthesis (evaluated by [3H]leucine incorporation and total cellular protein content), cell size (evaluated by morphometry and fluorescence-activated cell sorter analysis) and expression of a fetal isoform of the muscle specific gene skeletal alpha-actin (SKA). Rapamycin, a specific inhibitor of the mammalian target of rapamycin (mTOR), which is an upstream signaling of p70S6K, completely inhibited FCS-induced cell size increases and protein synthesis, but had no effect on SKA mRNA expression. PD98059, which inhibited ERK activity, attenuated cardiac-specific gene expression in a dose-dependent manner, but had no influence on protein synthesis or cell size. These results indicate divergent roles for the ERK and p70S6K pathways in the phenotypic changes associated with cardiac hypertrophy.


Asunto(s)
Cardiomegalia/enzimología , Proteínas Quinasas Activadas por Mitógenos/farmacología , Miocardio/citología , Proteínas Quinasas S6 Ribosómicas/farmacología , Actinas/genética , Animales , Técnicas de Cultivo de Célula , Tamaño de la Célula/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Flavonoides/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Miocardio/química , Miocardio/enzimología , Fenotipo , Biosíntesis de Proteínas , Proteínas/antagonistas & inhibidores , ARN Mensajero/efectos de los fármacos , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Proteínas Quinasas S6 Ribosómicas/antagonistas & inhibidores , Proteínas Quinasas S6 Ribosómicas/metabolismo , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología
6.
Cell Stress Chaperones ; 5(5): 432-7, 2000 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11189448

RESUMEN

Heat shock transcription factor 1(HSF1) activation is a multistep process. The conversion of a latent cytoplasmic form to a nuclear, DNA binding state appears to be activated by nonsteroidal anti-inflammatory drugs. In previous studies, we showed that HSF 1 is phosphorylated by the protein kinase RSK2 in vitro and that this effect is inhibited by nonsteroidal anti-inflammatory drugs at the concentration that leads to the activation of HSF1 in vivo (Stevenson et al 1999). In the present study, using cells from a patient with Coffin-Lowry syndrome (deficient in RSK2), we demonstrate that RSK2 slightly represses activation of HSF1 in vivo at 37 degrees C. In Coffin-Lowry syndrome cells, HSF1-HSE DNA binding activity after treatment with sodium salicylate was slightly higher than that in untreated cells, indicating that although RSK2 is involved in HSF1 regulation, it is not the unique protein kinase that suppresses HSF1-HSE binding activity at 37 degrees C. However, heat shock treatment resulted in significantly higher HSF1-HSE binding activity in Coffin-Lowry syndrome cells as compared with normal controls, suggesting that RSK2 represses HSF1-HSE binding activity during heat shock.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Respuesta al Choque Térmico/fisiología , Proteínas Quinasas S6 Ribosómicas/farmacología , Antiinflamatorios no Esteroideos/farmacología , Niño , Proteínas de Unión al ADN/genética , Regulación Enzimológica de la Expresión Génica , Células HeLa , Factores de Transcripción del Choque Térmico , Respuesta al Choque Térmico/efectos de los fármacos , Humanos , Discapacidad Intelectual/genética , Linfocitos/citología , Linfocitos/enzimología , Masculino , Fosforilación , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Proteínas Quinasas S6 Ribosómicas/genética , Proteínas Quinasas S6 Ribosómicas/metabolismo , Salicilato de Sodio/farmacología , Factores de Transcripción , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...