Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 388
Filtrar
1.
Biomolecules ; 14(6)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38927063

RESUMEN

The Ebola virus (EBOV) is a lethal pathogen causing hemorrhagic fever syndrome which remains a global health challenge. In the EBOV, two multifunctional proteins, VP35 and VP40, have significant roles in replication, virion assembly, and budding from the cell and have been identified as druggable targets. In this study, we employed in silico methods comprising molecular docking, molecular dynamic simulations, and pharmacological properties to identify prospective drugs for inhibiting VP35 and VP40 proteins from the myxobacterial bioactive natural product repertoire. Cystobactamid 934-2, Cystobactamid 919-1, and Cittilin A bound firmly to VP35. Meanwhile, 2-Hydroxysorangiadenosine, Enhypyrazinone B, and Sorangiadenosine showed strong binding to the matrix protein VP40. Molecular dynamic simulations revealed that, among these compounds, Cystobactamid 919-1 and 2-Hydroxysorangiadenosine had stable interactions with their respective targets. Similarly, molecular mechanics Poisson-Boltzmann surface area (MMPBSA) calculations indicated close-fitting receptor binding with VP35 or VP40. These two compounds also exhibited good pharmacological properties. In conclusion, we identified Cystobactamid 919-1 and 2-Hydroxysorangiadenosine as potential ligands for EBOV that target VP35 and VP40 proteins. These findings signify an essential step in vitro and in vivo to validate their potential for EBOV inhibition.


Asunto(s)
Antivirales , Productos Biológicos , Ebolavirus , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Ebolavirus/efectos de los fármacos , Productos Biológicos/farmacología , Productos Biológicos/química , Antivirales/farmacología , Antivirales/química , Myxococcales/química , Humanos , Proteínas Reguladoras y Accesorias Virales/antagonistas & inhibidores , Proteínas Reguladoras y Accesorias Virales/metabolismo , Proteínas Reguladoras y Accesorias Virales/química , Proteínas de la Matriz Viral/antagonistas & inhibidores , Proteínas de la Matriz Viral/metabolismo , Proteínas de la Matriz Viral/química , Proteínas de la Nucleocápside
2.
Biochem Biophys Res Commun ; 712-713: 149945, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38640732

RESUMEN

ORF3b is one of the SARS-CoV-2 accessory proteins. Previous experimental study suggested that ORF3b prevents IRF3 translocating to nucleus. However, the biophysical mechanism of ORF3b-IRF3 interaction is elusive. Here, we explored the conformation ensemble of ORF3b using all-atom replica exchange molecular dynamics simulation. Disordered ORF3b has mixed α-helix, ß-turn and loop conformers. The potential ORF3b-IRF3 binding modes were searched by docking representative ORF3b conformers with IRF3, and 50 ORF3b-IRF3 complex poses were screened using molecular dynamics simulations ranging from 500 to 1000 ns. We found that ORF3b binds IRF3 predominantly on its CBP binding and phosphorylated pLxIS motifs, with CBP binding site has the highest binding affinity. The ORF3b-IRF3 binding residues are highly conserved in SARS-CoV-2. Our results provided biophysics insights into ORF3b-IRF3 interaction and explained its interferon antagonism mechanism.


Asunto(s)
Factor 3 Regulador del Interferón , Simulación de Dinámica Molecular , Unión Proteica , SARS-CoV-2 , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/química , SARS-CoV-2/metabolismo , SARS-CoV-2/química , Humanos , Sitios de Unión , COVID-19/virología , COVID-19/metabolismo , Simulación del Acoplamiento Molecular , Proteínas Reguladoras y Accesorias Virales/metabolismo , Proteínas Reguladoras y Accesorias Virales/química , Conformación Proteica
3.
J Struct Biol ; 215(1): 107943, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36796461

RESUMEN

The HIV-1-encoded protein Vpu forms an oligomeric ion channel/pore in membranes and interacts with host proteins to support the virus lifecycle. However, Vpu molecular mechanisms are currently not well understood. Here, we report on the Vpu oligomeric organization under membrane and aqueous conditions and provide insights into how the Vpu environment affects the oligomer formation. For these studies, we designed a maltose-binding protein (MBP)-Vpu chimera protein and produced it in E. coli in soluble form. We analyzed this protein using analytical size-exclusion chromatography (SEC), negative staining electron microscopy (nsEM), and electron paramagnetic resonance (EPR) spectroscopy. Surprisingly, we found that MBP-Vpu formed stable oligomers in solution, seemingly driven by Vpu transmembrane domain self-association. A coarse modeling of nsEM data as well as SEC and EPR data suggests that these oligomers most likely are pentamers, similar to what was reported regarding membrane-bound Vpu. We also noticed reduced MBP-Vpu oligomer stability upon reconstitution of the protein in ß-DDM detergent and mixtures of lyso-PC/PG or DHPC/DHPG. In these cases, we observed greater oligomer heterogeneity, with MBP-Vpu oligomeric order generally lower than in solution; however, larger oligomers were also present. Notably, we found that in lyso-PC/PG, above a certain protein concentration, MBP-Vpu assembles into extended structures, which had not been reported for Vpu. Therefore, we captured various Vpu oligomeric forms, which can shed light on Vpu quaternary organization. Our findings could be useful in understanding Vpu organization and function in cellular membranes and could provide information regarding the biophysical properties of single-pass transmembrane proteins.


Asunto(s)
VIH-1 , Proteínas del Virus de la Inmunodeficiencia Humana , Proteínas Reguladoras y Accesorias Virales , Proteínas Viroporinas , Membrana Celular/metabolismo , Escherichia coli , VIH-1/química , Canales Iónicos/química , Proteínas del Virus de la Inmunodeficiencia Humana/química , Proteínas Viroporinas/química , Proteínas Reguladoras y Accesorias Virales/química
4.
Nature ; 610(7931): 394-401, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36171293

RESUMEN

Filoviruses, including Ebola virus, pose an increasing threat to the public health. Although two therapeutic monoclonal antibodies have been approved to treat the Ebola virus disease1,2, there are no approved broadly reactive drugs to control diverse filovirus infection. Filovirus has a large polymerase (L) protein and the cofactor viral protein 35 (VP35), which constitute the basic functional unit responsible for virus genome RNA synthesis3. Owing to its conservation, the L-VP35 polymerase complex is a promising target for broadly reactive antiviral drugs. Here we determined the structure of Ebola virus L protein in complex with tetrameric VP35 using cryo-electron microscopy (state 1). Structural analysis revealed that Ebola virus L possesses a filovirus-specific insertion element that is essential for RNA synthesis, and that VP35 interacts extensively with the N-terminal region of L by three protomers of the VP35 tetramer. Notably, we captured the complex structure in a second conformation with the unambiguous priming loop and supporting helix away from polymerase active site (state 2). Moreover, we demonstrated that the century-old drug suramin could inhibit the activity of the Ebola virus polymerase in an enzymatic assay. The structure of the L-VP35-suramin complex reveals that suramin can bind at the highly conserved NTP entry channel to prevent substrates from entering the active site. These findings reveal the mechanism of Ebola virus replication and may guide the development of more powerful anti-filovirus drugs.


Asunto(s)
Microscopía por Crioelectrón , ARN Polimerasas Dirigidas por ADN , Ebolavirus , Proteínas Reguladoras y Accesorias Virales , Antivirales/farmacología , Dominio Catalítico , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/ultraestructura , Ebolavirus/enzimología , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Fiebre Hemorrágica Ebola/virología , Humanos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ARN Viral/biosíntesis , Suramina/química , Suramina/metabolismo , Suramina/farmacología , Suramina/uso terapéutico , Proteínas Reguladoras y Accesorias Virales/química , Proteínas Reguladoras y Accesorias Virales/metabolismo , Proteínas Reguladoras y Accesorias Virales/ultraestructura , Replicación Viral
5.
Structure ; 30(8): 1050-1054.e2, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35609600

RESUMEN

During RNA replication, coronaviruses require proofreading to maintain the integrity of their large genomes. Nsp14 associates with viral polymerase complex to excise the mismatched nucleotides. Aside from the exonuclease activity, nsp14 methyltransferase domain mediates cap methylation, facilitating translation initiation and protecting viral RNA from recognition by the innate immune sensors. The nsp14 exonuclease activity is modulated by a protein co-factor nsp10. While the nsp10/nsp14 complex structure is available, the mechanistic basis for nsp10-mediated modulation remains unclear in the absence of the nsp14 structure. Here, we provide a crystal structure of nsp14 in an apo-form. Comparative analysis of the apo- and nsp10-bound structures explain the modulatory role of the co-factor protein and reveal the allosteric nsp14 control mechanism essential for drug discovery. Further, the flexibility of the N-terminal lid of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nsp14 structure presented in this study rationalizes the recently proposed idea of nsp14/nsp10/nsp16 ternary complex.


Asunto(s)
Exorribonucleasas , Proteínas no Estructurales Virales , Proteínas Reguladoras y Accesorias Virales , Exonucleasas , Exorribonucleasas/química , Metiltransferasas/química , Pliegue de Proteína , ARN Viral/metabolismo , SARS-CoV-2 , Proteínas no Estructurales Virales/química , Proteínas Reguladoras y Accesorias Virales/química
6.
Viruses ; 14(2)2022 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-35215889

RESUMEN

Herpesviruses are enveloped, double-stranded DNA viruses that infect a variety of hosts across the animal kingdom. Nine of these establish lifelong infections in humans, for which there are no cures and few vaccine or treatment options. Like all enveloped viruses, herpesviruses enter cells by fusing their lipid envelopes with a host cell membrane. Uniquely, herpesviruses distribute the functions of receptor engagement and membrane fusion across a diverse cast of glycoproteins. Two glycoprotein complexes are conserved throughout the three herpesvirus subfamilies: the trimeric gB that functions as a membrane fusogen and the heterodimeric gH/gL, the role of which is less clearly defined. Here, we highlight the conserved and divergent functions of gH/gL across the three subfamilies of human herpesviruses by comparing its interactions with a broad range of accessory viral proteins, host cell receptors, and neutralizing or inhibitory antibodies. We propose that the intrinsic structural plasticity of gH/gL enables it to function as a signal integration machine that can accept diverse regulatory inputs and convert them into a "trigger" signal that activates the fusogenic ability of gB.


Asunto(s)
Herpesviridae/metabolismo , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Herpesviridae/clasificación , Humanos , Unión Proteica , Conformación Proteica , Receptores Virales/metabolismo , Proteínas Reguladoras y Accesorias Virales/química , Proteínas Reguladoras y Accesorias Virales/metabolismo , Internalización del Virus
7.
J Virol ; 96(3): e0184221, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-34817197

RESUMEN

Middle East respiratory syndrome coronavirus (MERS-CoV) is a beta coronavirus that emerged in 2012, causing severe pneumonia and renal failure. MERS-CoV encodes five accessory proteins. Some of them have been shown to interfere with host antiviral immune response. However, the roles of protein 8b in innate immunity and viral virulence was rarely studied. Here, we introduced individual MERS-CoV accessory protein genes into the genome of an attenuated murine coronavirus (Mouse hepatitis virus, MHV), respectively, and found accessory protein 8b could enhance viral replication in vivo and in vitro and increase the lethality of infected mice. RNA-seq analysis revealed that protein 8b could significantly inhibit type I interferon production (IFN-I) and innate immune response in mice infected with MHV expressing protein 8b. We also found that MERS-CoV protein 8b could initiate from multiple internal methionine sites and at least three protein variants were identified. Residues 1-23 of protein 8b was demonstrated to be responsible for increased virulence in vivo. In addition, the inhibitory effect on IFN-I of protein 8b might not contribute to its virulence enhancement as aa1-23 deletion did not affect IFN-I production in vitro and in vivo. Next, we also found that protein 8b was localized to the endoplasmic reticulum (ER)/Golgi membrane in infected cells, which was disrupted by C-terminal region aa 88-112 deletion. This study will provide new insight into the pathogenesis of MERS-CoV infection. IMPORTANCE Multiple coronaviruses (CoV) cause severe respiratory infections and become global public health threats such as SARS-CoV, MERS-CoV, and SARS-CoV-2. Each coronavirus contains different numbers of accessory proteins which show high variability among different CoVs. Accessory proteins are demonstrated to play essential roles in pathogenesis of CoVs. MERS-CoV contains 5 accessory proteins (protein 3, 4a, 4b, 5, 8b), and deletion of all four accessory proteins (protein 3, 4a, 4b, 5), significantly affects MERS-CoV replication and pathogenesis. However, whether ORF8b also regulates MERS-CoV infection is unknown. Here, we constructed mouse hepatitis virus (MHV) recombinant virus expressing MERS-CoV protein 8b and demonstrated protein 8b could significantly enhance the virulence of MHV, which is mediated by N-terminal domain of protein 8b. This study will shed light on the understanding of pathogenesis of MERS-CoV infection.


Asunto(s)
Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Virus de la Hepatitis Murina/fisiología , Dominios y Motivos de Interacción de Proteínas , Proteínas Reguladoras y Accesorias Virales/genética , Animales , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata , Ratones , Mortalidad , Proteínas Reguladoras y Accesorias Virales/química , Tropismo Viral , Virulencia/genética , Factores de Virulencia/genética
8.
Molecules ; 26(21)2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34770842

RESUMEN

Hepatitis B virus (HBV) is the world's most prevalent chronic viral infection. More than 350 million individuals are chronic carriers of the virus, with an estimated 2 billion infected persons. For instance, the role of HBx protein in attachment and infection is very obvious and consequently deemed as an important druggable target. Targeting the interface and discovering novel drugs greatly advanced the field of therapeutics development. Therefore, in the current study, HBx to Bcl-xL is abrogated on high-affinity carbon nanotubes using computational structural biology tools. Our analysis revealed that among the total 62 carbon fullerenes, only 13 compounds exhibited inhibitory activity against HBx, which was further confirmed through IFD-based rescoring. Structural dynamics investigation revealed stable binding, compactness, and hydrogen bonds reprogramming. Moreover, the binding free energy calculation results revealed that the top hits1-4 possess the total binding energy of -54.36 kcal/mol (hit1), -50.81 kcal/mol (hit2), -47.09 kcal/mol (hit3), and -45.59 kcal/mol for hit4. In addition, the predicted KD values and bioactivity scores further validated the inhibitory potential of these top hits. The identified compounds need further in vitro and in vivo validation to aid the treatment process of HBV.


Asunto(s)
Sustancias Macromoleculares/química , Nanotubos de Carbono , Transactivadores/química , Transactivadores/metabolismo , Proteínas Reguladoras y Accesorias Virales/química , Proteínas Reguladoras y Accesorias Virales/metabolismo , Replicación Viral , Proteína bcl-X/química , Proteína bcl-X/metabolismo , Sitios de Unión , Virus de la Hepatitis B/fisiología , Humanos , Sustancias Macromoleculares/metabolismo , Modelos Moleculares , Conformación Molecular , Nanotubos de Carbono/química , Unión Proteica , Relación Estructura-Actividad
9.
Viruses ; 13(11)2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34834972

RESUMEN

The current COVID-19 pandemic has highlighted the need for the research community to develop a better understanding of viruses, in particular their modes of infection and replicative lifecycles, to aid in the development of novel vaccines and much needed anti-viral therapeutics. Several viruses express proteins capable of forming pores in host cellular membranes, termed "Viroporins". They are a family of small hydrophobic proteins, with at least one amphipathic domain, which characteristically form oligomeric structures with central hydrophilic domains. Consequently, they can facilitate the transport of ions through the hydrophilic core. Viroporins localise to host membranes such as the endoplasmic reticulum and regulate ion homeostasis creating a favourable environment for viral infection. Viroporins also contribute to viral immune evasion via several mechanisms. Given that viroporins are often essential for virion assembly and egress, and as their structural features tend to be evolutionarily conserved, they are attractive targets for anti-viral therapeutics. This review discusses the current knowledge of several viroporins, namely Influenza A virus (IAV) M2, Human Immunodeficiency Virus (HIV)-1 Viral protein U (Vpu), Hepatitis C Virus (HCV) p7, Human Papillomavirus (HPV)-16 E5, Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) Open Reading Frame (ORF)3a and Polyomavirus agnoprotein. We highlight the intricate but broad immunomodulatory effects of these viroporins and discuss the current antiviral therapies that target them; continually highlighting the need for future investigations to focus on novel therapeutics in the treatment of existing and future emergent viruses.


Asunto(s)
Inmunomodulación , Canales Iónicos/metabolismo , Proteínas Viroporinas/metabolismo , Virosis/tratamiento farmacológico , Virus/metabolismo , Antivirales/farmacología , Antivirales/uso terapéutico , Autofagia , Interacciones Huésped-Patógeno , Proteínas del Virus de la Inmunodeficiencia Humana/química , Proteínas del Virus de la Inmunodeficiencia Humana/metabolismo , Evasión Inmune , Inflamasomas/inmunología , Proteínas Oncogénicas Virales/química , Proteínas Oncogénicas Virales/metabolismo , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Proteínas Reguladoras y Accesorias Virales/química , Proteínas Reguladoras y Accesorias Virales/metabolismo , Proteínas Estructurales Virales/química , Proteínas Estructurales Virales/metabolismo , Proteínas Viroporinas/química , Virosis/inmunología , Virosis/virología , Virus/efectos de los fármacos , Virus/inmunología , Virus/patogenicidad
10.
J Gen Virol ; 102(10)2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34661519

RESUMEN

Ubiquitin and ubiquitin-like protein modification play important roles in modulating the functions of viral proteins in many viruses. Here we demonstrate that hepatitis B virus (HBV) X protein (HBx) is modified by ISG15, which is a type I IFN-inducible, ubiquitin-like protein; this modification is called ISGylation. Immunoblot analyses revealed that HBx proteins derived from four different HBV genotypes accepted ISGylation in cultured cells. Site-directed mutagenesis revealed that three lysine residues (K91, K95 and K140) on the HBx protein, which are well conserved among all the HBV genotypes, are involved in acceptance of ISGylation. Using expression plasmids encoding three known E3 ligases involved in the ISGylation to different substrates, we found that HERC5 functions as an E3 ligase for HBx-ISGylation. Treatment with type I and type III IFNs resulted in the limited suppression of HBV replication in Hep38.7-Tet cells. When cells were treated with IFN-α, silencing of ISG15 resulted in a marked reduction of HBV replication in Hep38.7-Tet cells, suggesting a role of ISG15 in the resistance to IFN-α. In contrast, the silencing of USP18 (an ISG15 de-conjugating enzyme) increased the HBV replication in Hep38.7-Tet cells. Taken together, these results suggest that the HERC5-mediated ISGylation of HBx protein confers pro-viral functions on HBV replication and participates in the resistance to IFN-α-mediated antiviral activity.


Asunto(s)
Citocinas/metabolismo , Virus de la Hepatitis B/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Transactivadores/metabolismo , Ubiquitinas/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Replicación Viral , Línea Celular , Farmacorresistencia Viral , Virus de la Hepatitis B/genética , Humanos , Interferón-alfa/farmacología , Interferón beta/farmacología , Interferones/farmacología , Transactivadores/química , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Reguladoras y Accesorias Virales/química , Interferón lambda
11.
Sci Rep ; 11(1): 18851, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34552128

RESUMEN

In this pandemic SARS-CoV-2 crisis, any attempt to contain and eliminate the virus will also stop its spread and consequently decrease the risk of severe illness and death. While ozone treatment has been suggested as an effective disinfection process, no precise mechanism of action has been previously reported. This study aimed to further investigate the effect of ozone treatment on SARS-CoV-2. Therefore, virus collected from nasopharyngeal and oropharyngeal swab and sputum samples from symptomatic patients was exposed to ozone for different exposure times. The virus morphology and structure were monitored and analyzed through Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM), Atomic Absorption Spectroscopy (AAS), and ATR-FTIR. The obtained results showed that ozone treatment not only unsettles the virus morphology but also alters the virus proteins' structure and conformation through amino acid disturbance and Zn ion release from the virus non-structural proteins. These results could provide a clearer pathway for virus elimination and therapeutics preparation.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Ozono/farmacología , SARS-CoV-2/química , SARS-CoV-2/efectos de los fármacos , Proteasas Similares a la Papaína de Coronavirus/química , Proteasas Similares a la Papaína de Coronavirus/metabolismo , ARN Polimerasa Dependiente de ARN de Coronavirus/química , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Humanos , Microscopía Electrónica de Transmisión , Estructura Secundaria de Proteína/efectos de los fármacos , Estructura Terciaria de Proteína/efectos de los fármacos , SARS-CoV-2/ultraestructura , Factores de Tiempo , Envoltura Viral/química , Envoltura Viral/efectos de los fármacos , Proteínas Reguladoras y Accesorias Virales/química , Proteínas Reguladoras y Accesorias Virales/metabolismo , Zinc/química , Zinc/metabolismo
12.
Biochem Biophys Res Commun ; 578: 97-103, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34555669

RESUMEN

Proteasomal activator 28 gamma (PA28γ) upregulates the levels of HBx, a regulatory protein of hepatitis B virus (HBV) to stimulate HBV replication; however, the detailed mechanism remains unknown. Here, we found that PA28γ impaired the ability of seven in absentia homolog 1 (Siah-1) as an E3 ubiquitin ligase of HBx. PA28γ competitively inhibited the binding of Siah-1 to HBx in human hepatoma cells. Accordingly, PA28γ increased the stability of HBx and decreased HBx ubiquitination, abolishing the potential of Siah-1 to downregulate HBx levels. PA28γ also executed its role as an antagonist of Siah-1 during HBV replication, as demonstrated by an in vitro HBV replication system. The present study may provide insights into the mechanisms underlying the regulation of HBV replication.


Asunto(s)
Autoantígenos/metabolismo , Virus de la Hepatitis B/metabolismo , Hepatitis B/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/virología , Proteínas Nucleares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Transactivadores/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Línea Celular Tumoral , Hepatitis B/patología , Hepatitis B/virología , Virus de la Hepatitis B/aislamiento & purificación , Humanos , Neoplasias Hepáticas/metabolismo , Proteínas Nucleares/genética , Complejo de la Endopetidasa Proteasomal/química , Transactivadores/química , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Proteínas Reguladoras y Accesorias Virales/química
13.
Science ; 373(6559): 1142-1146, 2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34315827

RESUMEN

Coronavirus 3'-to-5' exoribonuclease (ExoN), residing in the nonstructural protein (nsp) 10­nsp14 complex, boosts replication fidelity by proofreading RNA synthesis and is critical for the virus life cycle. ExoN also recognizes and excises nucleotide analog inhibitors incorporated into the nascent RNA, undermining the effectiveness of nucleotide analog­based antivirals. Here we present cryo­electron microscopy structures of both wild-type and mutant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nsp10-nsp14 in complex with an RNA substrate bearing a 3'-end mismatch at resolutions ranging from 2.5 to 3.9 angstroms. The structures reveal the molecular determinants of ExoN substrate specificity and offer insight into the molecular mechanisms of mismatch correction during coronavirus RNA synthesis. Our findings provide guidance for rational design of improved anticoronavirus therapies.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Exorribonucleasas/química , SARS-CoV-2/enzimología , Proteínas no Estructurales Virales/química , Proteínas Reguladoras y Accesorias Virales/química , Antivirales/química , Antivirales/farmacología , Microscopía por Crioelectrón , Diseño de Fármacos , Exorribonucleasas/genética , Humanos , Dominios Proteicos , ARN Viral/biosíntesis , ARN Viral/química , ARN Viral/genética , SARS-CoV-2/genética , Especificidad por Sustrato , Proteínas no Estructurales Virales/genética , Proteínas Reguladoras y Accesorias Virales/genética
14.
Sci Rep ; 11(1): 14176, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34238995

RESUMEN

Hepatitis B virus (HBV) X protein (HBx) has been determined to play a crucial role in the replication and transcription of HBV, and its biological functions mainly depend on the interaction with other host proteins. This study aims at screening the proteins that bind to the key functional domain of HBx by integrated proteomics. Proteins that specifically bind to the transactivation domain of HBx were selected by comparing interactors of full-length HBx and HBx-D5 truncation determined by glutathione-S-transferase (GST) pull-down assay combined with mass spectrometry (MS). The function of HBx interactor Pin1 in HBV replication was further investigated by in vitro experiments. In this study, a total of 189 proteins were identified from HepG2 cells that specifically bind to the transactivation domain of HBx by GST pull-down and subsequent MS. After gene ontology (GO) analysis, Pin1 was selected as the protein with the highest score in the largest cluster functioning in protein binding, and also classified into the cluster of proteins with the function of structural molecule activity, which is of great potential to be involved in HBV life cycle. The interaction between Pin1 and HBx has been further confirmed by Ni2+-NTA pulldown assay, co-immunoprecipitation, and immunofluorescence microscopy. HBsAg and HBeAg levels significantly decreased in Pin1 expression inhibited HepG2.2.15 cells. Besides, the inhibition of Pin1 expression in HepG2 cells impeded the restored replication of HBx-deficient HBV repaired by ectopic HBx expression. In conclusion, our study identified Pin1 as an interactor binds to the transactivation domain of HBx, and suggested the potential association between Pin1 and the function of HBx in HBV replication.


Asunto(s)
Virus de la Hepatitis B/fisiología , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Transactivadores/química , Transactivadores/metabolismo , Activación Transcripcional , Proteínas Reguladoras y Accesorias Virales/química , Proteínas Reguladoras y Accesorias Virales/metabolismo , Replicación Viral/fisiología , Células Hep G2 , Humanos , Unión Proteica , Dominios Proteicos , Mapas de Interacción de Proteínas , Vía de Señalización Wnt
15.
Nat Commun ; 12(1): 3287, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-34078893

RESUMEN

The SARS-CoV-2 nsp16/nsp10 enzyme complex modifies the 2'-OH of the first transcribed nucleotide of the viral mRNA by covalently attaching a methyl group to it. The 2'-O methylation of the first nucleotide converts the status of mRNA cap from Cap-0 to Cap-1, and thus, helps the virus evade immune surveillance in host cells. Here, we report two structures of nsp16/nsp10 representing pre- and post-release states of the RNA product (Cap-1). We observe overall widening of the enzyme upon product formation, and an inward twisting motion in the substrate binding region upon product release. These conformational changes reset the enzyme for the next round of catalysis. The structures also identify a unique binding mode and the importance of a divalent metal ion for 2'-O methylation. We also describe underlying structural basis for the perturbed enzymatic activity of a clinical variant of SARS-CoV-2, and a previous SARS-CoV outbreak strain.


Asunto(s)
Magnesio/química , Caperuzas de ARN/metabolismo , ARN Viral/metabolismo , SARS-CoV-2/genética , Proteínas no Estructurales Virales/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Biocatálisis , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación Viral de la Expresión Génica , Humanos , Magnesio/metabolismo , Metilación , Metiltransferasas , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Caperuzas de ARN/química , Caperuzas de ARN/genética , ARN Viral/química , ARN Viral/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , SARS-CoV-2/enzimología , SARS-CoV-2/ultraestructura , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Proteínas Reguladoras y Accesorias Virales/química , Proteínas Reguladoras y Accesorias Virales/genética
16.
Nucleic Acids Res ; 49(9): 5382-5392, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33956156

RESUMEN

The emergence of SARS-CoV-2 infection has posed unprecedented threat to global public health. The virus-encoded non-structural protein 14 (nsp14) is a bi-functional enzyme consisting of an exoribonuclease (ExoN) domain and a methyltransferase (MTase) domain and plays a pivotal role in viral replication. Here, we report the structure of SARS-CoV-2 nsp14-ExoN domain bound to its co-factor nsp10 and show that, compared to the SARS-CoV nsp10/nsp14-full-length complex, SARS-CoV-2 nsp14-ExoN retains an integral exoribonuclease fold and preserves an active configuration in the catalytic center. Analysis of the nsp10/nsp14-ExoN interface reveals a footprint in nsp10 extensively overlapping with that observed in the nsp10/nsp16 structure. A marked difference in the co-factor when engaging nsp14 and nsp16 lies in helix-α1', which is further experimentally ascertained to be involved in nsp14-binding but not in nsp16-engagement. Finally, we also show that nsp10/nsp14-ExoN is enzymatically active despite the absence of nsp14-MTase domain. These data demonstrate that SARS-CoV-2 nsp10/nsp14-ExoN functions as an exoribonuclease with both structural and functional integrity.


Asunto(s)
Biocatálisis , Exorribonucleasas/química , Exorribonucleasas/metabolismo , SARS-CoV-2/química , SARS-CoV-2/enzimología , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Proteínas Reguladoras y Accesorias Virales/química , Proteínas Reguladoras y Accesorias Virales/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Exorribonucleasas/genética , Guanina , Metiltransferasas/química , Metiltransferasas/deficiencia , Metiltransferasas/genética , Metiltransferasas/metabolismo , Modelos Moleculares , Dominios Proteicos/genética , SARS-CoV-2/genética , Proteínas no Estructurales Virales/genética , Proteínas Reguladoras y Accesorias Virales/genética
17.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-33972410

RESUMEN

The genome of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coronavirus has a capping modification at the 5'-untranslated region (UTR) to prevent its degradation by host nucleases. These modifications are performed by the Nsp10/14 and Nsp10/16 heterodimers using S-adenosylmethionine as the methyl donor. Nsp10/16 heterodimer is responsible for the methylation at the ribose 2'-O position of the first nucleotide. To investigate the conformational changes of the complex during 2'-O methyltransferase activity, we used a fixed-target serial synchrotron crystallography method at room temperature. We determined crystal structures of Nsp10/16 with substrates and products that revealed the states before and after methylation, occurring within the crystals during the experiments. Here we report the crystal structure of Nsp10/16 in complex with Cap-1 analog (m7GpppAm2'-O). Inhibition of Nsp16 activity may reduce viral proliferation, making this protein an attractive drug target.


Asunto(s)
Caperuzas de ARN/metabolismo , ARN Mensajero/metabolismo , ARN Viral/metabolismo , SARS-CoV-2/química , Cristalografía , Metilación , Metiltransferasas/química , Metiltransferasas/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Análogos de Caperuza de ARN/química , Análogos de Caperuza de ARN/metabolismo , Caperuzas de ARN/química , ARN Mensajero/química , ARN Viral/química , S-Adenosilhomocisteína/química , S-Adenosilhomocisteína/metabolismo , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Sincrotrones , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Proteínas Reguladoras y Accesorias Virales/química , Proteínas Reguladoras y Accesorias Virales/metabolismo
19.
SLAS Discov ; 26(6): 757-765, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33874769

RESUMEN

Frequent outbreaks of novel coronaviruses (CoVs), highlighted by the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, necessitate the development of therapeutics that could be easily and effectively administered worldwide. The conserved mRNA-capping process enables CoVs to evade their host immune system and is a target for antiviral development. Nonstructural protein (nsp) 16 in complex with nsp10 catalyzes the final step of coronaviral mRNA capping through its 2'-O-methylation activity. Like other methyltransferases, the SARS-CoV-2 nsp10-nsp16 complex is druggable. However, the availability of an optimized assay for high-throughput screening (HTS) is an unmet need. Here, we report the development of a radioactivity-based assay for the methyltransferase activity of the nsp10-nsp16 complex in a 384-well format, kinetic characterization, and optimization of the assay for HTS (Z' factor = 0.83). Considering the high conservation of nsp16 across known CoV species, the potential inhibitors targeting the SARS-CoV-2 nsp10-nsp16 complex may also be effective against other emerging pathogenic CoVs.


Asunto(s)
Adenosina/análogos & derivados , Ensayos Analíticos de Alto Rendimiento , Caperuzas de ARN/antagonistas & inhibidores , ARN Viral/antagonistas & inhibidores , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas Reguladoras y Accesorias Virales/antagonistas & inhibidores , Adenosina/química , Adenosina/farmacología , COVID-19/virología , Clonación Molecular , Pruebas de Enzimas , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Cinética , Metilación , Metiltransferasas , Modelos Moleculares , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , SARS-CoV-2/genética , Tritio , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Proteínas Reguladoras y Accesorias Virales/química , Proteínas Reguladoras y Accesorias Virales/genética , Proteínas Reguladoras y Accesorias Virales/metabolismo
20.
Biotechnol Appl Biochem ; 68(4): 918-926, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32860447

RESUMEN

The importance of new effective treatment methodologies for human immunodeficiency virus (HIV) is undeniable for the medical society. Viral protein U (Vpu), one of the disparaged accessory proteins of HIV, is responsible for the dissemination of viral particles, and HIV mutants lacking Vpu protein have remarkably reduced pathogenicity. Here, we explored the marine natural products to find the leading structures which can potentially inhibit the activity of Vpu in silico. To fulfill this goal, we set up a virtual screening based on molecular docking to evaluate the binding capacity of different marine products to Vpu. For validation, we used molecular dynamics simulation and monitored the root mean square deviation value and binding interactions. The results were intriguing when we realized that the hit compounds (phlorotannins) had previously been identified as reverse transcriptase and HIV protease inhibitors. This research inaugurates a new road to combat HIV by multifaceted mode of action of these marine natural products without putting the normal cells in jeopardy (with their safe toxicological profile).


Asunto(s)
Antirretrovirales/química , Organismos Acuáticos/química , Productos Biológicos/química , VIH-1/química , Proteínas del Virus de la Inmunodeficiencia Humana , Simulación del Acoplamiento Molecular , Proteínas Reguladoras y Accesorias Virales , Proteínas del Virus de la Inmunodeficiencia Humana/antagonistas & inhibidores , Proteínas del Virus de la Inmunodeficiencia Humana/química , Humanos , Proteínas Reguladoras y Accesorias Virales/antagonistas & inhibidores , Proteínas Reguladoras y Accesorias Virales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...