Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Database (Oxford) ; 20242024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39298565

RESUMEN

Autophagy pathway plays a central role in cellular degradation. The proteins involved in the core autophagy process are mostly localised on membranes or interact indirectly with lipid-associated proteins. Therefore, progress in structure determination of 'core autophagy proteins' remained relatively limited. Recent paradigm shift in structural biology that includes cutting-edge cryo-EM technology and robust AI-based Alphafold2 predicted models has significantly increased data points in biology. Here, we developed Autophagy3D, a web-based resource that provides an efficient way to access data associated with 40 core human autophagic proteins (80322 structures), their protein-protein interactors and ortholog structures from various species. Autophagy3D also offers detailed visualizations of protein structures, and, hence deriving direct biological insights. The database significantly enhances access to information as full datasets are available for download. The Autophagy3D can be publicly accessed via https://autophagy3d.igib.res.in. Database URL: https://autophagy3d.igib.res.in.


Asunto(s)
Autofagia , Bases de Datos de Proteínas , Humanos , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/química , Internet
2.
J Cell Biol ; 223(11)2024 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-39105757

RESUMEN

The characterization of lipid binding to lipid transfer proteins (LTPs) is fundamental to understand their molecular mechanism. However, several structures of LTPs, and notably those proposed to act as bridges between membranes, do not provide the precise location of their endogenous lipid ligands. To address this limitation, computational approaches are a powerful alternative methodology, but they are often limited by the high flexibility of lipid substrates. Here, we develop a protocol based on unbiased coarse-grain molecular dynamics simulations in which lipids placed away from the protein can spontaneously bind to LTPs. This approach accurately determines binding pockets in LTPs and provides a working hypothesis for the lipid entry pathway. We apply this approach to characterize lipid binding to bridge LTPs of the Vps13-Atg2 family, for which the lipid localization inside the protein is currently unknown. Overall, our work paves the way to determine binding pockets and entry pathways for several LTPs in an inexpensive, fast, and accurate manner.


Asunto(s)
Proteínas Portadoras , Simulación de Dinámica Molecular , Unión Proteica , Sitios de Unión , Proteínas Portadoras/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Lípidos/química , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/química , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/química
3.
Methods Mol Biol ; 2841: 215-224, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39115781

RESUMEN

Macroautophagy/autophagy is a highly conserved process for the degradation of cellular components and plays an essential role in cellular homeostasis maintenance. During autophagy, specialized double-membrane vesicles known as autophagosomes are formed and sequester cytoplasmic cargoes and deliver them to lysosomes or vacuoles for breakdown. Central to this process are autophagy-related (ATG) proteins, with the ATG9-the only integral membrane protein in this core machinery-playing a central role in mediating autophagosome formation. Recent years have witnessed the maturation of cryo-electron microscopy (cryo-EM) and single-particle analysis into powerful tools for high-resolution structural determination of protein complexes. These advancements have significantly deepened our understanding of the intricate molecular mechanisms underlying autophagosome biogenesis. In this study, we present a protocol detailing the acquisition of the three-dimensional structure of ATG9 from Arabidopsis thaliana. The structural resolution achieved 7.8 Å determined by single-particle cryo-electron microscopy (cryo-EM).


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Relacionadas con la Autofagia , Microscopía por Crioelectrón , Microscopía por Crioelectrón/métodos , Arabidopsis/metabolismo , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/ultraestructura , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/química , Autofagosomas/metabolismo , Autofagosomas/ultraestructura , Autofagia , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/ultraestructura
4.
Proc Natl Acad Sci U S A ; 121(33): e2405964121, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39121161

RESUMEN

Ubiquitination is one of the most common posttranslational modifications in eukaryotic cells. Depending on the architecture of polyubiquitin chains, substrate proteins can meet different cellular fates, but our understanding of how chain linkage controls protein fate remains limited. UBL-UBA shuttle proteins, such as UBQLN2, bind to ubiquitinated proteins and to the proteasome or other protein quality control machinery elements and play a role in substrate fate determination. Under physiological conditions, UBQLN2 forms biomolecular condensates through phase separation, a physicochemical phenomenon in which multivalent interactions drive the formation of a macromolecule-rich dense phase. Ubiquitin and polyubiquitin chains modulate UBQLN2's phase separation in a linkage-dependent manner, suggesting a possible link to substrate fate determination, but polyubiquitinated substrates have not been examined directly. Using sedimentation assays and microscopy we show that polyubiquitinated substrates induce UBQLN2 phase separation and incorporate into the resulting condensates. This substrate effect is strongest with K63-linked substrates, intermediate with mixed-linkage substrates, and weakest with K48-linked substrates. Proteasomes can be recruited to these condensates, but proteasome activity toward K63-linked and mixed linkage substrates is inhibited in condensates. Substrates are also protected from deubiquitinases by UBQLN2-induced phase separation. Our results suggest that phase separation could regulate the fate of ubiquitinated substrates in a chain-linkage-dependent manner, thus serving as an interpreter of the ubiquitin code.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Relacionadas con la Autofagia , Ubiquitinación , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/química , Proteínas Relacionadas con la Autofagia/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Humanos , Poliubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/química , Ubiquitina/metabolismo , Ubiquitina/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas Ubiquitinadas/metabolismo , Proteínas Ubiquitinadas/aislamiento & purificación , Proteínas Ubiquitinadas/química , Separación de Fases
5.
J Biol Chem ; 300(8): 107605, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39059492

RESUMEN

TNIP1 has been increasingly recognized as a security check to finely adjust the rate of mitophagy by disrupting the recycling of the Unc-51-like kinase complex during autophagosome formation. Through tank-binding kinase 1-mediated phosphorylation of the TNIP1 FIP200 interacting region (FIR) motif, the binding affinity of TNIP1 for FIP200, a component of the Unc-51-like kinase complex, is enhanced, allowing TNIP1 to outcompete autophagy receptors. Consequently, FIP200 is released from the autophagosome, facilitating further autophagosome expansion. However, the molecular basis by which FIP200 utilizes its claw domain to distinguish the phosphorylation status of residues in the TNIP1 FIR motif for recognition is not well understood. Here, we elucidated multiple crystal structures of the complex formed by the FIP200 claw domain and various phosphorylated TNIP1 FIR peptides. Structural and isothermal titration calorimetry analyses identified the crucial residues in the FIP200 claw domain responsible for the specific recognition of phosphorylated TNIP1 FIR peptides. Additionally, utilizing structural comparison and molecular dynamics simulation data, we demonstrated that the C-terminal tail of TNIP1 peptide affected its binding to the FIP200 claw domain. Moreover, the phosphorylation of TNIP1 Ser123 enabled the peptide to effectively compete with the peptide p-CCPG1 (the FIR motif of the autophagy receptor CCPG1) for binding with the FIP200 claw domain. Overall, our work provides a comprehensive understanding of the specific recognition of phosphorylated TNIP1 by the FIP200 claw domain, marking an initial step toward fully understanding the molecular mechanism underlying the TNIP1-dependent inhibition of mitophagy.


Asunto(s)
Proteínas Relacionadas con la Autofagia , Mitofagia , Unión Proteica , Humanos , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/química , Proteínas Relacionadas con la Autofagia/genética , Fosforilación , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/química , Cristalografía por Rayos X , Simulación de Dinámica Molecular , Dominios Proteicos
6.
Nat Struct Mol Biol ; 31(9): 1448-1459, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38834913

RESUMEN

The hallmark of non-selective autophagy is the formation of cup-shaped phagophores that capture bulk cytoplasm. The process is accompanied by the conjugation of LC3B to phagophores by an E3 ligase complex comprising ATG12-ATG5 and ATG16L1. Here we combined two complementary reconstitution approaches to reveal the function of LC3B and its ligase complex during phagophore expansion. We found that LC3B forms together with ATG12-ATG5-ATG16L1 a membrane coat that remodels flat membranes into cups that closely resemble phagophores. Mechanistically, we revealed that cup formation strictly depends on a close collaboration between LC3B and ATG16L1. Moreover, only LC3B, but no other member of the ATG8 protein family, promotes cup formation. ATG16L1 truncates that lacked the C-terminal membrane binding domain catalyzed LC3B lipidation but failed to assemble coats, did not promote cup formation and inhibited the biogenesis of non-selective autophagosomes. Our results thus demonstrate that ATG16L1 and LC3B induce and stabilize the characteristic cup-like shape of phagophores.


Asunto(s)
Autofagosomas , Proteínas Relacionadas con la Autofagia , Proteínas Asociadas a Microtúbulos , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/química , Proteínas Asociadas a Microtúbulos/metabolismo , Autofagosomas/metabolismo , Humanos , Autofagia , Animales
7.
J Mol Biol ; 435(22): 168293, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37775038

RESUMEN

Arl8b, a specific Arf-like family GTPase present on lysosome, and plays critical roles in many lysosome-related cellular processes such as autophagy. The active Arl8b can be specifically recognized by the RUN domains of two Arl8b-effectors PLEKHM1 and SKIP, thereby regulating the autophagosome/lysosome membrane fusion and the intracellular lysosome positioning, respectively. However, the mechanistic bases underlying the interactions of Arl8b with the RUN domains of PLEKHM1 and SKIP remain elusive. Here, we report the two high-resolution crystal structures of the active Arl8b in complex with the RUN domains of PLEKHM1 and SKIP. In addition to elucidating the detailed molecular mechanism governing the specific interactions of the active Arl8b with the RUN domains of PLEKHM1 and SKIP, the determined complex structures also reveal a general binding mode shared by the PLEKHM1 and SKIP RUN domains for interacting with the active Arl8b. Furthermore, we uncovered a competitive relationship between the RUN domains of PLEKHM1 and SKIP in binding to the active Arl8b as well as a unique small GTPase-binding mode adopted by the PLEKHM1 and SKIP RUN domains, thereby enriching the repertoire of the RUN domain/small GTPase interaction modes. In all, our findings provide new mechanistic insights into the interactions of the active Arl8b with PLEKHM1 and SKIP, and are valuable for further understanding the working modes of these proteins in relevant cellular processes.


Asunto(s)
Factores de Ribosilacion-ADP , Proteínas Adaptadoras Transductoras de Señales , Proteínas Relacionadas con la Autofagia , Coactivadores de Receptor Nuclear , Dominios y Motivos de Interacción de Proteínas , Proteínas Adaptadoras Transductoras de Señales/química , Lisosomas/metabolismo , Fusión de Membrana , Factores de Ribosilacion-ADP/química , Proteínas Relacionadas con la Autofagia/química , Coactivadores de Receptor Nuclear/química , Cristalografía por Rayos X , Humanos
8.
Cells ; 12(8)2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37190041

RESUMEN

Autophagy is a highly conserved recycling process of eukaryotic cells that degrades protein aggregates or damaged organelles with the participation of autophagy-related proteins. Membrane bending is a key step in autophagosome membrane formation and nucleation. A variety of autophagy-related proteins (ATGs) are needed to sense and generate membrane curvature, which then complete the membrane remodeling process. The Atg1 complex, Atg2-Atg18 complex, Vps34 complex, Atg12-Atg5 conjugation system, Atg8-phosphatidylethanolamine conjugation system, and transmembrane protein Atg9 promote the production of autophagosomal membranes directly or indirectly through their specific structures to alter membrane curvature. There are three common mechanisms to explain the change in membrane curvature. For example, the BAR domain of Bif-1 senses and tethers Atg9 vesicles to change the membrane curvature of the isolation membrane (IM), and the Atg9 vesicles are reported as a source of the IM in the autophagy process. The amphiphilic helix of Bif-1 inserts directly into the phospholipid bilayer, causing membrane asymmetry, and thus changing the membrane curvature of the IM. Atg2 forms a pathway for lipid transport from the endoplasmic reticulum to the IM, and this pathway also contributes to the formation of the IM. In this review, we introduce the phenomena and causes of membrane curvature changes in the process of macroautophagy, and the mechanisms of ATGs in membrane curvature and autophagosome membrane formation.


Asunto(s)
Autofagosomas , Proteínas Relacionadas con la Autofagia , Autofagia , Membrana Celular , Proteolisis , Membrana Celular/química , Membrana Celular/metabolismo , Agregado de Proteínas , Autofagosomas/química , Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/química , Proteínas Relacionadas con la Autofagia/metabolismo , Dominios Proteicos , Membrana Dobles de Lípidos , Humanos
9.
J Med Chem ; 66(4): 2457-2476, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36749313

RESUMEN

One possible strategy for modulating autophagy is to disrupt the critical protein-protein interactions (PPIs) formed during this process. Our attention is on the autophagy-related 12 (ATG12)-autophagy-related 5 (ATG5)-autophagy-related 16-like 1 (ATG16L1) heterotrimer complex, which is responsible for ATG8 translocation from ATG3 to phosphatidylethanolamine. In this work, we discovered a compound with an (E)-3-(2-furanylmethylene)-2-pyrrolidinone core moiety (T1742) that blocked the ATG5-ATG16L1 and ATG5-TECAIR interactions in the in vitro binding assay (IC50 = 1-2 µM) and also exhibited autophagy inhibition in cellular assays. The possible binding mode of T1742 to ATG5 was predicted through molecular modeling, and a batch of derivatives sharing essentially the same core moiety were synthesized and tested. The outcomes of the in vitro binding assay and the flow cytometry assay of those newly synthesized compounds were generally consistent. This work has validated our central hypothesis that small-molecule inhibitors of the PPIs involving ATG5 can tune down autophagy effectively, and their pharmaceutical potential may be further explored.


Asunto(s)
Antineoplásicos , Proteína 12 Relacionada con la Autofagia , Proteína 5 Relacionada con la Autofagia , Proteínas Relacionadas con la Autofagia , Autofagia , Complejos Multiproteicos , Autofagia/efectos de los fármacos , Proteína 12 Relacionada con la Autofagia/antagonistas & inhibidores , Proteína 12 Relacionada con la Autofagia/química , Proteína 5 Relacionada con la Autofagia/antagonistas & inhibidores , Proteína 5 Relacionada con la Autofagia/química , Proteínas Relacionadas con la Autofagia/antagonistas & inhibidores , Proteínas Relacionadas con la Autofagia/química , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Moleculares , Conformación Proteica , Complejos Multiproteicos/antagonistas & inhibidores , Complejos Multiproteicos/química , Antineoplásicos/química , Antineoplásicos/farmacología , Humanos , Animales
10.
Cell Biochem Biophys ; 80(4): 795-806, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36169801

RESUMEN

Recently, the study of autophagy and its mechanism on the cancer cell growth process has received much attention. lactoferrin (Lf) is a glycoprotein with various biological activities, including antibacterial, antiviral, anti-cancer, etc. In the present study, the effect of different concentrations of lactoferrin on the expression of ULK1 and ATG13 genes was evaluated in breast cancer cell line MCF7 using real-time PCR technique as well as the molecular mechanism of these two genes and their proteins in the autophagy pathway and the relationship between lactoferrin and these proteins were investigated by bioinformatics studies. The result showed that the expression of the ULK1 gene at a concentration of 500 µg/ml of lactoferrin was significantly (P < 0.007) increased compared to the control and two other concentrations. Also, the expression of the ATG13 gene at all three concentrations was not significantly different from each other and compared to the control (P = 0.635). In the immunoblot of ULK1 protein at a concentration of 500 µg, more protein expression was observed. The binding mode of lactoferrin with ULK1, ATG13, and ATG101 proteins was obtained using docking. According to docking results, the N-lobe region of lactoferrin interacts with the PS domain of the ULK1 protein, and the N-lobe region of lactoferrin interacts with the horma domain of the ATG 13 and ATG101 proteins. The results show that lactoferrin, in addition to acting on the gene, interacts with ULK1, ATG13, and ATG101 proteins. Since all three proteins are components of the autophagy initiation complex, lactoferrin can induce autophagy in this way.


Asunto(s)
Neoplasias de la Mama , Lactoferrina , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antibacterianos , Antivirales , Autofagia , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/química , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Neoplasias de la Mama/genética , Línea Celular , Biología Computacional , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lactoferrina/genética , Lactoferrina/metabolismo , Lactoferrina/farmacología
11.
J Med Chem ; 65(6): 4878-4892, 2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-35244402

RESUMEN

Autophagy inhibition is an attractive target for cancer therapy. In this study, we discovered inhibitors of Atg4B essential for autophagosome formation and evaluated their potential as therapeutics for prostate cancer. Seventeen compounds were identified as candidates after in silico screening and a thermal shift assay. Among them, compound 17 showed the most potent Atg4B inhibitory activity, inhibited autophagy induced by anti-castration-resistant prostate cancer (CRPC) drugs, and significantly enhanced apoptosis. Although 17 has been known as a phospholipase A2 (PLA2) inhibitor, other PLA2 inhibitors had no effect on Atg4B and autophagy. We then performed structural optimization based on molecular modeling and succeeded in developing 21f (by shortening the alkyl chain of 17), which was a potent competitive inhibitor for Atg4B (Ki = 3.1 µM) with declining PLA2 inhibitory potency. Compound 21f enhanced the anticancer activity of anti-CRPC drugs via autophagy inhibition. These findings suggest that 21f can be used as an adjuvant drug for therapy with anti-CRPC drugs.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Apoptosis , Autofagia , Proteínas Relacionadas con la Autofagia/química , Proteínas Relacionadas con la Autofagia/farmacología , Línea Celular Tumoral , Cisteína Endopeptidasas/química , Humanos , Masculino , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico
12.
J Cell Biol ; 220(12)2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34714326

RESUMEN

Mechanisms that turn over components of the nucleus and inner nuclear membrane (INM) remain to be fully defined. We explore how components of the INM are selected by a cytosolic autophagy apparatus through a transmembrane nuclear envelope-localized cargo adaptor, Atg39. A split-GFP reporter showed that Atg39 localizes to the outer nuclear membrane (ONM) and thus targets the INM across the nuclear envelope lumen. Consistent with this, sequence elements that confer both nuclear envelope localization and a membrane remodeling activity are mapped to the Atg39 lumenal domain; these lumenal motifs are required for the autophagy-mediated degradation of integral INM proteins. Interestingly, correlative light and electron microscopy shows that the overexpression of Atg39 leads to the expansion of the ONM and the enclosure of a network of INM-derived vesicles in the nuclear envelope lumen. Thus, we propose an outside-in model of nucleophagy where INM is delivered into vesicles in the nuclear envelope lumen, which can be targeted by the autophagosome.


Asunto(s)
Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Vesículas Citoplasmáticas/metabolismo , Membrana Nuclear/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Autofagosomas/ultraestructura , Autofagia , Proteínas Relacionadas con la Autofagia/química , Vesículas Citoplasmáticas/ultraestructura , Proteínas Fluorescentes Verdes/metabolismo , Membrana Nuclear/ultraestructura , Dominios Proteicos , Receptores Citoplasmáticos y Nucleares/química , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Relación Estructura-Actividad , Factores de Tiempo , Vacuolas/metabolismo , Vacuolas/ultraestructura , Proteínas de Transporte Vesicular/metabolismo
13.
Mol Med Rep ; 24(5)2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34542166

RESUMEN

Cycloastragenol (CAG), a secondary metabolite from the roots of Astragalus zahlbruckneri, has been reported to exert anti­inflammatory effects in heart, skin and liver diseases. However, its role in asthma remains unclear. The present study aimed to investigate the effect of CAG on airway inflammation in an ovalbumin (OVA)­induced mouse asthma model. The current study evaluated the lung function and levels of inflammation and autophagy via measurement of airway hyperresponsiveness (AHR), lung histology examination, inflammatory cytokine measurement and western blotting, amongst other techniques. The results demonstrated that CAG attenuated OVA­induced AHR in vivo. In addition, the total number of leukocytes and eosinophils, as well as the secretion of inflammatory cytokines, including interleukin (IL)­5, IL­13 and immunoglobulin E were diminished in bronchoalveolar lavage fluid of the OVA­induced murine asthma model. Histological analysis revealed that CAG suppressed inflammatory cell infiltration and goblet cell secretion. Notably, based on molecular docking simulation, CAG was demonstrated to bind to the active site of autophagy­related gene 4­microtubule­associated proteins light chain 3 complex, which explains the reduced autophagic flux in asthma caused by CAG. The expression levels of proteins associated with autophagy pathways were inhibited following treatment with CAG. Taken together, the results of the present study suggest that CAG exerts an anti­inflammatory effect in asthma, and its role may be associated with the inhibition of autophagy in lung cells.


Asunto(s)
Antiasmáticos/farmacología , Asma/etiología , Autofagia/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Sapogeninas/farmacología , Animales , Asma/tratamiento farmacológico , Asma/metabolismo , Proteínas Relacionadas con la Autofagia/antagonistas & inhibidores , Proteínas Relacionadas con la Autofagia/química , Proteínas Relacionadas con la Autofagia/metabolismo , Biomarcadores , Biopsia , Hiperreactividad Bronquial/tratamiento farmacológico , Hiperreactividad Bronquial/etiología , Hiperreactividad Bronquial/metabolismo , Líquido del Lavado Bronquioalveolar , Citocinas/metabolismo , Manejo de la Enfermedad , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Femenino , Inmunoglobulina E/sangre , Inmunoglobulina E/inmunología , Inmunohistoquímica , Mediadores de Inflamación/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Sapogeninas/química , Relación Estructura-Actividad
14.
Elife ; 102021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34505572

RESUMEN

Autophagy is a cellular process that degrades cytoplasmic cargo by engulfing it in a double-membrane vesicle, known as the autophagosome, and delivering it to the lysosome. The ATG12-5-16L1 complex is responsible for conjugating members of the ubiquitin-like ATG8 protein family to phosphatidylethanolamine in the growing autophagosomal membrane, known as the phagophore. ATG12-5-16L1 is recruited to the phagophore by a subset of the phosphatidylinositol 3-phosphate-binding seven-bladedß -propeller WIPI proteins. We determined the crystal structure of WIPI2d in complex with the WIPI2 interacting region (W2IR) of ATG16L1 comprising residues 207-230 at 1.85 Å resolution. The structure shows that the ATG16L1 W2IR adopts an alpha helical conformation and binds in an electropositive and hydrophobic groove between WIPI2 ß-propeller blades 2 and 3. Mutation of residues at the interface reduces or blocks the recruitment of ATG12-5-16 L1 and the conjugation of the ATG8 protein LC3B to synthetic membranes. Interface mutants show a decrease in starvation-induced autophagy. Comparisons across the four human WIPIs suggest that WIPI1 and 2 belong to a W2IR-binding subclass responsible for localizing ATG12-5-16 L1 and driving ATG8 lipidation, whilst WIPI3 and 4 belong to a second W34IR-binding subclass responsible for localizing ATG2, and so directing lipid supply to the nascent phagophore. The structure provides a framework for understanding the regulatory node connecting two central events in autophagy initiation, the action of the autophagic PI 3-kinase complex on the one hand and ATG8 lipidation on the other.


Asunto(s)
Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Autofagosomas/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/química , Proteínas Relacionadas con la Autofagia/genética , Cristalografía , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Modelos Moleculares , Proteínas de Unión a Fosfato/química , Proteínas de Unión a Fosfato/genética , Fosfatidilinositol 3-Quinasa/metabolismo , Mutación Puntual , Conformación Proteica en Hélice alfa , Transporte de Proteínas , Transducción de Señal , Relación Estructura-Actividad
15.
Biomolecules ; 11(7)2021 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-34356632

RESUMEN

Ubiquitin (Ub) specifically interacts with the Ub-associating domain (UBA) in a proteasomal shuttle factor, while the latter is involved in either proteasomal targeting or self-assembly coacervation. PINK1 phosphorylates Ub at S65 and makes Ub alternate between C-terminally relaxed (pUbRL) and retracted conformations (pUbRT). Using NMR spectroscopy, we show that pUbRL but not pUbRT preferentially interacts with the UBA from two proteasomal shuttle factors Ubqln2 and Rad23A. Yet discriminatorily, Ubqln2-UBA binds to pUb more tightly than Rad23A does and selectively enriches pUbRL upon complex formation. Further, we determine the solution structure of the complex between Ubqln2-UBA and pUbRL and uncover the thermodynamic basis for the stronger interaction. NMR kinetics analysis at different timescales further suggests an indued-fit binding mechanism for pUb-UBA interaction. Notably, at a relatively low saturation level, the dissociation rate of the UBA-pUbRL complex is comparable with the exchange rate between pUbRL and pUbRT. Thus, a kinetic constraint would dictate the interaction between Ub and UBA, thus fine-tuning the functional state of the proteasomal shuttle factors.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Relacionadas con la Autofagia/química , Enzimas Reparadoras del ADN/química , Proteínas de Unión al ADN/química , Proteínas Quinasas/química , Ubiquitina/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Dominios Proteicos , Proteínas Quinasas/metabolismo , Termodinámica , Ubiquitina/metabolismo
16.
Clin Genet ; 100(3): 280-291, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33988247

RESUMEN

Non-obstructive azoospermia (NOA) is the most severe form of male infertility, and it is primarily associated with genetic defects. We performed whole-exome sequencing of 236 patients with NOA and identified a homozygous pathogenic variant of autophagy-related 4D cysteine peptidase (ATG4D) in two siblings from a consanguineous family and compound heterozygous pathogenic variants of ATG4D in two sporadic cases. The expression of LC3B, a regulator of autophagic activity, was significantly decreased, and the apoptosis rate of spermatogenic cells in testicular tissues was increased. Transfection of GC-2spd cells with a ATG4D mutant plasmid (Flag-Atg4dmut ) significantly decreased the expression level of Lc3b and increased the rate of apoptosis. Moreover, a pathogenic variant in X-linked ATG4A and compound heterozygous pathogenic variants of ATG4B were identified in one patient each. All novel variants were segregated by disease phenotype and were predicted to be pathogenic. Our findings revealed that autophagy-related cysteine peptidase family genes may play crucial roles in human spermatogenesis and identified ATG4D as a novel candidate gene for male infertility due to NOA.


Asunto(s)
Proteínas Relacionadas con la Autofagia/genética , Azoospermia/genética , Cisteína Endopeptidasas/genética , Mutación , Adulto , Animales , Proteínas Relacionadas con la Autofagia/química , Azoospermia/enzimología , Células Cultivadas , Consanguinidad , Cisteína Endopeptidasas/química , Humanos , Masculino , Ratones , Proteínas Asociadas a Microtúbulos/genética , Modelos Moleculares , Linaje , Conformación Proteica , Espermatogénesis/genética , Secuenciación del Exoma , Adulto Joven
17.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33975948

RESUMEN

Hydrogen sulfide (H2S) is an endogenously generated gaseous signaling molecule, which recently has been implicated in autophagy regulation in both plants and mammals through persulfidation of specific targets. Persulfidation has been suggested as the molecular mechanism through which sulfide regulates autophagy in plant cells. ATG18a is a core autophagy component that is required for bulk autophagy and also for reticulophagy during endoplasmic reticulum (ER) stress. In this research, we revealed the role of sulfide in plant ER stress responses as a negative regulator of autophagy. We demonstrate that sulfide regulates ATG18a phospholipid-binding activity by reversible persulfidation at Cys103, and that this modification activates ATG18a binding capacity to specific phospholipids in a reversible manner. Our findings strongly suggest that persulfidation of ATG18a at C103 regulates autophagy under ER stress, and that the impairment of persulfidation affects both the number and size of autophagosomes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia/genética , Estrés del Retículo Endoplásmico , Sulfuro de Hidrógeno/metabolismo , Procesamiento Proteico-Postraduccional , Sulfuros/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/química , Proteínas Relacionadas con la Autofagia/genética , Sitios de Unión , Cisteína/metabolismo , Regulación de la Expresión Génica de las Plantas , Modelos Moleculares , Fosfolípidos/metabolismo , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Transducción de Señal
18.
Protein Sci ; 30(7): 1467-1481, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34029402

RESUMEN

Shuttle protein UBQLN2 functions in protein quality control (PQC) by binding to proteasomal receptors and ubiquitinated substrates via its N-terminal ubiquitin-like (UBL) and C-terminal ubiquitin-associated (UBA) domains, respectively. Between these two folded domains are low-complexity STI1-I and STI1-II regions, connected by disordered linkers. The STI1 regions bind other components, such as HSP70, that are important to the PQC functions of UBQLN2. We recently determined that the STI1-II region enables UBQLN2 to undergo liquid-liquid phase separation (LLPS) to form liquid droplets in vitro and biomolecular condensates in cells. However, how the interplay between the folded (UBL/UBA) domains and the intrinsically disordered regions mediates phase separation is largely unknown. Using engineered domain deletion constructs, we found that removing the UBA domain inhibits UBQLN2 LLPS while removing the UBL domain enhances LLPS, suggesting that UBA and UBL domains contribute asymmetrically in modulating UBQLN2 LLPS. To explain these differential effects, we interrogated the interactions that involve the UBA and UBL domains across the entire UBQLN2 molecule using nuclear magnetic resonance spectroscopy. To our surprise, aside from well-studied canonical UBL:UBA interactions, there also exist moderate interactions between the UBL and several disordered regions, including STI1-I and residues 555-570, the latter of which is a known contributor to UBQLN2 LLPS. Our findings are essential for the understanding of both the molecular driving forces of UBQLN2 LLPS and the effects of ligand binding to UBL, UBA, or disordered regions on the phase behavior and physiological functions of UBQLN2.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Relacionadas con la Autofagia/química , Proteínas Intrínsecamente Desordenadas/química , Pliegue de Proteína , Humanos , Dominios Proteicos
19.
Nat Commun ; 12(1): 1570, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33692357

RESUMEN

The ULK complex initiates the autophagosome formation, and has recently been implicated in selective autophagy by interacting with autophagy receptors through its FIP200 subunit. However, the structural mechanism underlying the interactions of autophagy receptors with FIP200 and the relevant regulatory mechanism remain elusive. Here, we discover that the interactions of FIP200 Claw domain with autophagy receptors CCPG1 and Optineurin can be regulated by the phosphorylation in their respective FIP200-binding regions. We determine the crystal structures of FIP200 Claw in complex with the phosphorylated CCPG1 and Optineurin, and elucidate the detailed molecular mechanism governing the interactions of FIP200 Claw with CCPG1 and Optineurin as well as their potential regulations by kinase-mediated phosphorylation. In addition, we define the consensus FIP200 Claw-binding motif, and find other autophagy receptors that contain this motif within their conventional LC3-interacting regions. In all, our findings uncover a general and phosphoregulatable binding mode shared by many autophagy receptors to interact with FIP200 Claw for autophagosome biogenesis, and are valuable for further understanding the molecular mechanism of selective autophagy.


Asunto(s)
Proteínas Relacionadas con la Autofagia/química , Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia/fisiología , Secuencias de Aminoácidos , Animales , Cromatografía en Gel , Cristalografía por Rayos X , Espectroscopía de Resonancia Magnética , Fosforilación , Unión Proteica , Células Sf9
20.
EMBO J ; 40(6): e105543, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33586810

RESUMEN

Influenza A virus (IAV) and SARS-CoV-2 (COVID-19) cause pandemic infections where cytokine storm syndrome and lung inflammation lead to high mortality. Given the high social and economic cost of respiratory viruses, there is an urgent need to understand how the airways defend against virus infection. Here we use mice lacking the WD and linker domains of ATG16L1 to demonstrate that ATG16L1-dependent targeting of LC3 to single-membrane, non-autophagosome compartments - referred to as non-canonical autophagy - protects mice from lethal IAV infection. Mice with systemic loss of non-canonical autophagy are exquisitely sensitive to low-pathogenicity IAV where extensive viral replication throughout the lungs, coupled with cytokine amplification mediated by plasmacytoid dendritic cells, leads to fulminant pneumonia, lung inflammation and high mortality. IAV was controlled within epithelial barriers where non-canonical autophagy reduced IAV fusion with endosomes and activation of interferon signalling. Conditional mouse models and ex vivo analysis showed that protection against IAV infection of lung was independent of phagocytes and other leucocytes. This establishes non-canonical autophagy in airway epithelial cells as a novel innate defence that restricts IAV infection and lethal inflammation at respiratory surfaces.


Asunto(s)
Proteínas Relacionadas con la Autofagia/genética , Virus de la Influenza A/patogenicidad , Proteínas Asociadas a Microtúbulos/metabolismo , Infecciones por Orthomyxoviridae/genética , Eliminación de Secuencia , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/virología , Animales , Autofagia , Proteínas Relacionadas con la Autofagia/química , Proteínas Relacionadas con la Autofagia/metabolismo , Embrión de Pollo , Citocinas/metabolismo , Perros , Células de Riñón Canino Madin Darby , Ratones , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/mortalidad , Dominios Proteicos , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...