Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.880
Filtrar
1.
PLoS One ; 19(7): e0306695, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39012901

RESUMEN

INTRODUCTION: Bacterial sexually transmitted infections (STIs) pose a major public health problem. The emergence of antibiotic-resistant strains of Neisseria gonorrhoeae represents a serious threat to successful treatment and epidemiological control. The first extensively drug-resistant (XDR) strains (ceftriaxone-resistant and high-level azithromycin-resistant [HLR AZY]) have been reported. AIMS: To identify molecular mechanisms implicated in azithromycin resistance in strains isolated from patients over a three-year period in a university hospital in Switzerland. MATERIAL AND METHODS: From January 2020 to December 2022, 34 isolates (one per patient) were recovered from samples analyzed at the University Hospital of Lausanne. Eight genes involved in azithromycin resistance were sequenced: mtrR repressor (mtrCDE operon repressor) and his promotor mtrR-pr, rplD gene (L4 ribosomal protein), rplV gene (L22 ribosomal protein) and the four alleles of the rrl gene (23S rRNA). RESULTS: With a cutoff value of 1 mg/L, 15 isolates were considered as being resistant to azithromycin, whereas the remaining 19 were susceptible. The C2597T mutation in 3 or 4 of the rrl allele confer a medium-level resistance to azithromycin (MIC = 16 mg/L, N = 2). The following mutations were significantly associated with MIC values ≥1 mg/L: the three mutations V125A, A147G, R157Q in the rplD gene (N = 10) and a substitution A->C in the mtrR promotor (N = 9). Specific mutations in the mtrR repressor and its promotor were observed in both susceptible and resistant isolates. CONCLUSIONS: Resistance to azithromycin was explained by the presence of mutations in many different copies of 23S RNA ribosomal genes and their regulatory genes. Other mutations, previously reported to be associated with azithromycin resistance, were documented in both susceptible and resistant isolates, suggesting they play little role, if any, in azithromycin resistance.


Asunto(s)
Antibacterianos , Azitromicina , Proteínas Bacterianas , Farmacorresistencia Bacteriana , Mutación , Neisseria gonorrhoeae , Proteínas Represoras , Azitromicina/farmacología , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/efectos de los fármacos , Humanos , Proteínas Represoras/genética , Farmacorresistencia Bacteriana/genética , Proteínas Bacterianas/genética , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Proteínas Ribosómicas/genética , Gonorrea/microbiología , Gonorrea/tratamiento farmacológico , Masculino , Femenino
2.
J Cell Biol ; 223(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39007857

RESUMEN

Eukaryotic ribosomal proteins contain extended regions essential for translation coordination. Dedicated chaperones stabilize the associated ribosomal proteins. We identified Bcp1 as the chaperone of uL14 in Saccharomyces cerevisiae. Rkm1, the lysine methyltransferase of uL14, forms a ternary complex with Bcp1 and uL14 to protect uL14. Rkm1 is transported with uL14 by importins to the nucleus, and Bcp1 disassembles Rkm1 and importin from uL14 simultaneously in a RanGTP-independent manner. Molecular docking, guided by crosslinking mass spectrometry and validated by a low-resolution cryo-EM map, reveals the correlation between Bcp1, Rkm1, and uL14, demonstrating the protection model. In addition, the ternary complex also serves as a surveillance point, whereas incorrect uL14 is retained on Rkm1 and prevented from loading to the pre-60S ribosomal subunits. This study reveals the molecular mechanism of how uL14 is protected and quality checked by serial steps to ensure its safe delivery from the cytoplasm until its incorporation into the 60S ribosomal subunit.


Asunto(s)
Proteínas Ribosómicas , Subunidades Ribosómicas Grandes de Eucariotas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/genética , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Unión Proteica , Simulación del Acoplamiento Molecular , Microscopía por Crioelectrón , Núcleo Celular/metabolismo , Núcleo Celular/genética
3.
Nat Commun ; 15(1): 5938, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39025855

RESUMEN

Numerous molecular machines are required to drive the central dogma of molecular biology. However, the means by which these numerous proteins emerged in the early evolutionary stage of life remains enigmatic. Many of them possess small ß-barrel folds with different topologies, represented by double-psi ß-barrels (DPBBs) conserved in DNA and RNA polymerases, and similar but topologically distinct six-stranded ß-barrel RIFT or five-stranded ß-barrel folds such as OB and SH3 in ribosomal proteins. Here, we discover that the previously reconstructed ancient DPBB sequence could also adopt a ß-barrel fold named Double-Zeta ß-barrel (DZBB), as a metamorphic protein. The DZBB fold is not found in any modern protein, although its structure shares similarities with RIFT and OB. Indeed, DZBB could be transformed into them through simple engineering experiments. Furthermore, the OB designs could be further converted into SH3 by circular-permutation as previously predicted. These results indicate that these ß-barrels diversified quickly from a common ancestor at the beginning of the central dogma evolution.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Evolución Molecular , Modelos Moleculares , Proteínas Ribosómicas , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/química , Pliegue de Proteína , Secuencia de Aminoácidos
4.
Function (Oxf) ; 5(4)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38985000

RESUMEN

Pancreatic ß-cells are essential for survival, being the only cell type capable of insulin secretion. While they are believed to be vulnerable to damage by inflammatory cytokines such as interleukin-1 beta (IL-1ß) and interferon-gamma, we have recently identified physiological roles for cytokine signaling in rodent ß-cells that include the stimulation of antiviral and antimicrobial gene expression and the inhibition of viral replication. In this study, we examine cytokine-stimulated changes in gene expression in human islets using single-cell RNA sequencing. Surprisingly, the global responses of human islets to cytokine exposure were remarkably blunted compared to our previous observations in the mouse. The small population of human islet cells that were cytokine responsive exhibited increased expression of IL-1ß-stimulated antiviral guanylate-binding proteins, just like in the mouse. Most human islet cells were not responsive to cytokines, and this lack of responsiveness was associated with high expression of genes encoding ribosomal proteins. We further correlated the expression levels of RPL5 with stress response genes, and when expressed at high levels, RPL5 is predictive of failure to respond to cytokines in all endocrine cells. We postulate that donor causes of death and isolation methodologies may contribute to stress of the islet preparation. Our findings indicate that activation of stress responses in human islets limits cytokine-stimulated gene expression, and we urge caution in the evaluation of studies that have examined cytokine-stimulated gene expression in human islets without evaluation of stress-related gene expression.


Asunto(s)
Citocinas , Islotes Pancreáticos , Análisis de la Célula Individual , Humanos , Análisis de la Célula Individual/métodos , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Citocinas/metabolismo , Citocinas/genética , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Análisis de Secuencia de ARN , Estrés Fisiológico/efectos de los fármacos , Interleucina-1beta/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Masculino , Ratones , Animales , RNA-Seq , Femenino , Persona de Mediana Edad , Análisis de Expresión Génica de una Sola Célula
5.
J Clin Invest ; 134(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949021

RESUMEN

Mechanical stress from cardiomyocyte contraction causes misfolded sarcomeric protein replacement. Sarcomeric maintenance utilizes localized pools of mRNAs and translation machinery, yet the importance of localized translation remains unclear. In this issue of the JCI, Haddad et al. identify the Z-line as a critical site for localized translation of sarcomeric proteins, mediated by ribosomal protein SA (RPSA). RPSA localized ribosomes at Z-lines and was trafficked via microtubules. Cardiomyocyte-specific loss of RPSA in mice resulted in mislocalized protein translation and caused structural dilation from myocyte atrophy. These findings demonstrate the necessity of RPSA-dependent spatially localized translation for sarcomere maintenance and cardiac structure and function.


Asunto(s)
Miocitos Cardíacos , Biosíntesis de Proteínas , Proteínas Ribosómicas , Sarcómeros , Sarcómeros/metabolismo , Sarcómeros/patología , Animales , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ribosomas/metabolismo , Ribosomas/genética , Humanos , Microtúbulos/metabolismo
6.
Cancer Med ; 13(13): e7424, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38988047

RESUMEN

BACKGROUND: Gastric cancer (GC) is the fourth leading cause of cancer-related death worldwide. Minichromsome maintenance proteins family member 8 (MCM8) assists DNA repair and DNA replication. MCM8 exerts tumor promotor function in multiple digestive system tumors. MCM8 is also considered as a potential cancer therapeutic target. METHODS: Bioinformatics methods were used to analyze MCM8 expression and clinicopathological significance. MCM8 expression was detected by immunohistochemistry (IHC) staining and qRT-PCR. MCM8 functions in GC cell were explored by Celigo cell counting, colony formation, wound-healing, transwell, and annexin V-APC staining assays. The target of MCM8 was determined by human gene expression profile microarray. Human phospho-kinase array kit evaluated changes in key proteins after ribosomal protein S15A (RPS15A) knockdown. MCM8 functions were reassessed in xenograft mouse model. IHC detected related proteins expression in mouse tumor sections. RESULTS: MCM8 was significantly upregulated and predicted poor prognosis in GC. High expression of MCM8 was positively correlated with lymph node positive (p < 0.001), grade (p < 0.05), AJCC Stage (p < 0.001), pathologic T (p < 0.01), and pathologic N (p < 0.001). MCM8 knockdown inhibited proliferation, migration, and invasion while promoting apoptosis. RPS15A expression decreased significantly after MCM8 knockdown. It was also the only candidate target, which ranked among the top 10 downregulated differentially expressed genes (DEGs) in sh-MCM8 group. RPS15A was identified as the target of MCM8 in GC. MCM8/RPS15A promoted phosphorylation of P38α, LYN, and p70S6K. Moreover, MCM8 knockdown inhibited tumor growth, RPS15A expression, and phosphorylation of P38α, LYN, and p70S6K in vivo. CONCLUSIONS: MCM8 is an oncogene and predicts poor prognosis in GC. MCM8/RPS15A facilitates GC progression.


Asunto(s)
Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Proteínas Ribosómicas , Neoplasias Gástricas , Humanos , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidad , Animales , Ratones , Pronóstico , Femenino , Masculino , Línea Celular Tumoral , Progresión de la Enfermedad , Persona de Mediana Edad , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas de Mantenimiento de Minicromosoma/genética , Apoptosis , Ratones Desnudos , Movimiento Celular , Ensayos Antitumor por Modelo de Xenoinjerto , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética
7.
PLoS Genet ; 20(7): e1011331, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38968290

RESUMEN

Nucleolar morphology is a well-established indicator of ribosome biogenesis activity that has served as the foundation of many screens investigating ribosome production. Missing from this field of study is a broad-scale investigation of the regulation of ribosomal DNA morphology, despite the essential role of rRNA gene transcription in modulating ribosome output. We hypothesized that the morphology of rDNA arrays reflects ribosome biogenesis activity. We established GapR-GFP, a prokaryotic DNA-binding protein that recognizes transcriptionally-induced overtwisted DNA, as a live visual fluorescent marker for quantitative analysis of rDNA organization in Schizosaccharomyces pombe. We found that the morphology-which we refer to as spatial organization-of the rDNA arrays is dynamic throughout the cell cycle, under glucose starvation, RNA pol I inhibition, and TOR activation. Screening the haploid S. pombe Bioneer deletion collection for spatial organization phenotypes revealed large ribosomal protein (RPL) gene deletions that alter rDNA organization. Further work revealed RPL gene deletion mutants with altered rDNA organization also demonstrate resistance to the TOR inhibitor Torin1. A genetic analysis of signaling pathways essential for this resistance phenotype implicated many factors including a conserved MAPK, Pmk1, previously linked to extracellular stress responses. We propose RPL gene deletion triggers altered rDNA morphology due to compensatory changes in ribosome biogenesis via multiple signaling pathways, and we further suggest compensatory responses may contribute to human diseases such as ribosomopathies. Altogether, GapR-GFP is a powerful tool for live visual reporting on rDNA morphology under myriad conditions.


Asunto(s)
ADN Ribosómico , Ribosomas , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , ADN Ribosómico/genética , Ribosomas/metabolismo , Ribosomas/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , ARN Polimerasa I/genética , ARN Polimerasa I/metabolismo , Regulación Fúngica de la Expresión Génica , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Transducción de Señal/genética , Ciclo Celular/genética , Eliminación de Gen
8.
Cells ; 13(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38891052

RESUMEN

Diamond-Blackfan anemia (DBA) is a rare genetic disorder affecting the bone marrow's ability to produce red blood cells, leading to severe anemia and various physical abnormalities. Approximately 75% of DBA cases involve heterozygous mutations in ribosomal protein (RP) genes, classifying it as a ribosomopathy, with RPS19 being the most frequently mutated gene. Non-RP mutations, such as in GATA1, have also been identified. Current treatments include glucocorticosteroids, blood transfusions, and hematopoietic stem cell transplantation (HSCT), with HSCT being the only curative option, albeit with challenges like donor availability and immunological complications. Gene therapy, particularly using lentiviral vectors and CRISPR/Cas9 technology, emerges as a promising alternative. This review explores the potential of gene therapy, focusing on lentiviral vectors and CRISPR/Cas9 technology in combination with non-integrating lentiviral vectors, as a curative solution for DBA. It highlights the transformative advancements in the treatment landscape of DBA, offering hope for individuals affected by this condition.


Asunto(s)
Anemia de Diamond-Blackfan , Terapia Genética , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/terapia , Terapia Genética/métodos , Humanos , Sistemas CRISPR-Cas/genética , Vectores Genéticos , Lentivirus/genética , Animales , Proteínas Ribosómicas/genética , Mutación/genética , Edición Génica/métodos
9.
Sci Rep ; 14(1): 13246, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38853173

RESUMEN

Although alternative splicing (AS) is a major mechanism that adds diversity to gene expression patterns, its precise role in generating variability in ribosomal proteins, known as ribosomal heterogeneity, remains unclear. The ribosomal protein S24 (RPS24) gene, encoding a ribosomal component, undergoes AS; however, in-depth studies have been challenging because of three microexons between exons 4 and 6. We conducted a detailed analysis of RPS24 AS isoforms using a direct approach to investigate the splicing junctions related to these microexons, focusing on four AS isoforms. Each of these isoforms showed tissue specificity and relative differences in expression among cancer types. Significant differences in the proportions of these RPS24 AS isoforms between cancerous and normal tissues across diverse cancer types were also observed. Our study highlighted a significant correlation between the expression levels of a specific RPS24 AS isoform and the epithelial-mesenchymal transition process in lung and breast cancers. Our research contributes to a better understanding of the intricate regulatory mechanisms governing AS of ribosomal protein genes and highlights the biological implications of RPS24 AS isoforms in tissue development and tumorigenesis.


Asunto(s)
Empalme Alternativo , Biomarcadores de Tumor , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Proteínas Ribosómicas , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Transición Epitelial-Mesenquimal/genética , Humanos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Neoplasias/genética , Neoplasias/patología , Progresión de la Enfermedad , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Línea Celular Tumoral , Exones/genética
10.
Mol Cell ; 84(12): 2337-2352.e9, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38870935

RESUMEN

Ribosome assembly requires precise coordination between the production and assembly of ribosomal components. Mutations in ribosomal proteins that inhibit the assembly process or ribosome function are often associated with ribosomopathies, some of which are linked to defects in proteostasis. In this study, we examine the interplay between several yeast proteostasis enzymes, including deubiquitylases (DUBs) Ubp2 and Ubp14, and E3 ligases Ufd4 and Hul5, and we explore their roles in the regulation of the cellular levels of K29-linked unanchored polyubiquitin (polyUb) chains. Accumulating K29-linked unanchored polyUb chains associate with maturing ribosomes to disrupt their assembly, activate the ribosome assembly stress response (RASTR), and lead to the sequestration of ribosomal proteins at the intranuclear quality control compartment (INQ). These findings reveal the physiological relevance of INQ and provide insights into mechanisms of cellular toxicity associated with ribosomopathies.


Asunto(s)
Poliubiquitina , Proteínas Ribosómicas , Ribosomas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/genética , Ribosomas/metabolismo , Ribosomas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Poliubiquitina/metabolismo , Poliubiquitina/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Proteostasis , Núcleo Celular/metabolismo
11.
PLoS One ; 19(6): e0304557, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38941348

RESUMEN

Prenatal alcohol exposure (PAE) causes cognitive impairment and a distinctive craniofacial dysmorphology, due in part to apoptotic losses of the pluripotent cranial neural crest cells (CNCs) that form facial bones and cartilage. We previously reported that PAE rapidly represses expression of >70 ribosomal proteins (padj = 10-E47). Ribosome dysbiogenesis causes nucleolar stress and activates p53-MDM2-mediated apoptosis. Using primary avian CNCs and the murine CNC line O9-1, we tested whether nucleolar stress and p53-MDM2 signaling mediates this apoptosis. We further tested whether haploinsufficiency in genes that govern ribosome biogenesis, using a blocking morpholino approach, synergizes with alcohol to worsen craniofacial outcomes in a zebrafish model. In both avian and murine CNCs, pharmacologically relevant alcohol exposure (20mM, 2hr) causes the dissolution of nucleolar structures and the loss of rRNA synthesis; this nucleolar stress persisted for 18-24hr. This was followed by reduced proliferation, stabilization of nuclear p53, and apoptosis that was prevented by overexpression of MDM2 or dominant-negative p53. In zebrafish embryos, low-dose alcohol or morpholinos directed against ribosomal proteins Rpl5a, Rpl11, and Rps3a, the Tcof homolog Nolc1, or mdm2 separately caused modest craniofacial malformations, whereas these blocking morpholinos synergized with low-dose alcohol to reduce and even eliminate facial elements. Similar results were obtained using a small molecule inhibitor of RNA Polymerase 1, CX5461, whereas p53-blocking morpholinos normalized craniofacial outcomes under high-dose alcohol. Transcriptome analysis affirmed that alcohol suppressed the expression of >150 genes essential for ribosome biogenesis. We conclude that alcohol causes the apoptosis of CNCs, at least in part, by suppressing ribosome biogenesis and invoking a nucleolar stress that initiates their p53-MDM2 mediated apoptosis. We further note that the facial deficits that typify PAE and some ribosomopathies share features including reduced philtrum, upper lip, and epicanthal distance, suggesting the facial deficits of PAE represent, in part, a ribosomopathy.


Asunto(s)
Apoptosis , Etanol , Cresta Neural , Ribosomas , Proteína p53 Supresora de Tumor , Pez Cebra , Animales , Cresta Neural/metabolismo , Cresta Neural/efectos de los fármacos , Ribosomas/metabolismo , Ribosomas/efectos de los fármacos , Etanol/toxicidad , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Apoptosis/efectos de los fármacos , Ratones , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/genética , Nucléolo Celular/metabolismo , Nucléolo Celular/efectos de los fármacos , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/genética , Cráneo/patología , Cráneo/metabolismo , Cráneo/efectos de los fármacos , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
12.
J Mol Biol ; 436(14): 168642, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38848866

RESUMEN

The heat shock response (HSR) is a gene regulatory program controlling expression of molecular chaperones implicated in aging, cancer, and neurodegenerative disease. Long presumed to be activated by toxic protein aggregates, recent work suggests a new functional paradigm for the HSR in yeast. Rather than toxic aggregates, adaptive biomolecular condensates comprised of orphan ribosomal proteins (oRP) and stress granule components have been shown to be physiological chaperone clients. By titrating away the chaperones Sis1 and Hsp70 from the transcription factor Hsf1, these condensates activate the HSR. Upon release from Hsp70, Hsf1 forms spatially distinct transcriptional condensates that drive high expression of HSR genes. In this manner, the negative feedback loop controlling HSR activity - in which Hsf1 induces Hsp70 expression and Hsp70 represses Hsf1 activity - is embedded in the biophysics of the system. By analogy to phosphorylation cascades that transmit information via the dynamic activity of kinases, we propose that the HSR is organized as a condensate cascade that transmits information via the localized activity of molecular chaperones.


Asunto(s)
Respuesta al Choque Térmico , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Condensados Biomoleculares/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/genética , Factores de Transcripción del Choque Térmico/metabolismo , Factores de Transcripción del Choque Térmico/genética , Fosforilación
13.
Nat Commun ; 15(1): 5290, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38906865

RESUMEN

Long-term non-progressors (LTNPs) of HIV-1 infection may provide important insights into mechanisms involved in viral control and pathogenesis. Here, our results suggest that the ribosomal protein lateral stalk subunit P1 (RPLP1) is expressed at higher levels in LTNPs compared to regular progressors (RPs). Functionally, RPLP1 inhibits transcription of clade B HIV-1 strains by occupying the C/EBPß binding sites in the viral long terminal repeat (LTR). This interaction requires the α-helixes 2 and 4 domains of RPLP1 and is evaded by HIV-1 group M subtype C and group N, O and P strains that do not require C/EBPß for transcription. We further demonstrate that HIV-1-induced translocation of RPLP1 from the cytoplasm to the nucleus is essential for antiviral activity. Finally, knock-down of RPLP1 promotes reactivation of latent HIV-1 proviruses. Thus, RPLP1 may play a role in the maintenance of HIV-1 latency and resistance to RPLP1 restriction may contribute to the effective spread of clade C HIV-1 strains.


Asunto(s)
Proteína beta Potenciadora de Unión a CCAAT , Infecciones por VIH , Duplicado del Terminal Largo de VIH , VIH-1 , Proteínas Ribosómicas , Humanos , Sitios de Unión , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Proteína beta Potenciadora de Unión a CCAAT/genética , Núcleo Celular/metabolismo , Regulación Viral de la Expresión Génica , Células HEK293 , Infecciones por VIH/virología , Infecciones por VIH/metabolismo , Infecciones por VIH/genética , Duplicado del Terminal Largo de VIH/genética , VIH-1/genética , VIH-1/metabolismo , VIH-1/fisiología , Unión Proteica , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/genética , Transcripción Genética , Latencia del Virus/genética
14.
Bioessays ; 46(7): e2300247, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38769702

RESUMEN

Dormancy or hibernation is a non-proliferative state of cells with low metabolic activity and gene expression. Dormant cells sequester ribosomes in a translationally inactive state, called dormant/hibernating ribosomes. These dormant ribosomes are important for the preservation of ribosomes and translation shut-off. While recent studies attempted to elucidate their modes of formation, the regulation and roles of the diverse dormant ribosomal populations are still largely understudied. The mechanistic details of the formation of dormant ribosomes in stress and especially their disassembly during recovery remain elusive. In this review, we discuss the roles of dormant ribosomes and their potential regulatory mechanisms. Furthermore, we highlight the paradigms that need to be answered in the field of ribosomal dormancy.


Asunto(s)
Homeostasis , Biosíntesis de Proteínas , Ribosomas , Ribosomas/metabolismo , Humanos , Animales , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/genética
15.
Biochem Soc Trans ; 52(3): 1317-1325, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38695725

RESUMEN

Ribosomes are universally conserved cellular machines that catalyze protein biosynthesis. The active sites underly immense evolutionary conservation resulting in virtually identical core structures of ribosomes in all domains of life including organellar ribosomes. However, more peripheral structures of cytosolic ribosomes changed during evolution accommodating new functions and regulatory options. The expansion occurred at the riboprotein level, including more and larger ribosomal proteins and at the RNA level increasing the length of ribosomal RNA. Expansions within the ribosomal RNA occur as clusters at conserved sites that face toward the periphery of the cytosolic ribosome. Recent biochemical and structural work has shed light on how rRNA-specific expansion segments (ESs) recruit factors during translation and how they modulate translation dynamics in the cytosol. Here we focus on recent work on yeast, human and trypanosomal cytosolic ribosomes that explores the role of two specific rRNA ESs within the small and large subunit respectively. While no single regulatory strategy exists, the absence of ESs has consequences for proteomic stability and cellular fitness, rendering them fascinating evolutionary tools for tailored protein biosynthesis.


Asunto(s)
Biosíntesis de Proteínas , ARN Ribosómico , Ribosomas , ARN Ribosómico/metabolismo , ARN Ribosómico/genética , Humanos , Ribosomas/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/genética , Conformación de Ácido Nucleico , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética
16.
EBioMedicine ; 104: 105156, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38768529

RESUMEN

BACKGROUND: Kabuki syndrome (KS) is a genetic disorder caused by DNA mutations in KMT2D, a lysine methyltransferase that methylates histones and other proteins, and therefore modifies chromatin structure and subsequent gene expression. Ketones, derived from the ketogenic diet, are histone deacetylase inhibitors that can 'open' chromatin and encourage gene expression. Preclinical studies have shown that the ketogenic diet rescues hippocampal memory neurogenesis in mice with KS via the epigenetic effects of ketones. METHODS: Single-cell RNA sequencing and mass spectrometry-based proteomics were used to explore molecular mechanisms of disease in individuals with KS (n = 4) versus controls (n = 4). FINDINGS: Pathway enrichment analysis indicated that loss of function mutations in KMT2D are associated with ribosomal protein dysregulation at an RNA and protein level in individuals with KS (FDR <0.05). Cellular proteomics also identified immune dysregulation and increased abundance of other lysine modification and histone binding proteins, representing a potential compensatory mechanism. A 12-year-old boy with KS, suffering from recurrent episodes of cognitive decline, exhibited improved cognitive function and neuropsychological assessment performance after 12 months on the ketogenic diet, with concomitant improvement in transcriptomic ribosomal protein dysregulation. INTERPRETATION: Our data reveals that lysine methyltransferase deficiency is associated with ribosomal protein dysfunction, with secondary immune dysregulation. Diet and the production of bioactive molecules such as ketone bodies serve as a significant environmental factor that can induce epigenetic changes and improve clinical outcomes. Integrating transcriptomic, proteomic, and clinical data can define mechanisms of disease and treatment effects in individuals with neurodevelopmental disorders. FUNDING: This study was supported by the Dale NHMRC Investigator Grant (APP1193648) (R.D), Petre Foundation (R.D), and The Sydney Children's Hospital Foundation/Kids Research Early and Mid-Career Researcher Grant (E.T).


Asunto(s)
Proteínas de Unión al ADN , Dieta Cetogénica , Cara , Enfermedades Hematológicas , Proteómica , Proteínas Ribosómicas , Enfermedades Vestibulares , Enfermedades Vestibulares/genética , Enfermedades Vestibulares/metabolismo , Enfermedades Vestibulares/dietoterapia , Humanos , Cara/anomalías , Masculino , Enfermedades Hematológicas/metabolismo , Enfermedades Hematológicas/genética , Enfermedades Hematológicas/etiología , Enfermedades Hematológicas/dietoterapia , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Niño , Proteómica/métodos , Femenino , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Regulación de la Expresión Génica , Mutación , Transcriptoma , Anomalías Múltiples
17.
J Clin Invest ; 134(13)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743494

RESUMEN

Cardiomyocyte sarcomeres contain localized ribosomes, but the factors responsible for their localization and the significance of localized translation are unknown. Using proximity labeling, we identified ribosomal protein SA (RPSA) as a Z-line protein. In cultured cardiomyocytes, the loss of RPSA led to impaired local protein translation and reduced sarcomere integrity. By employing CAS9-expressing mice, along with adeno-associated viruses expressing CRE recombinase and single-guide RNAs targeting Rpsa, we knocked out Rpsa in vivo and observed mislocalization of ribosomes and diminished local translation. These genetic mosaic mice with Rpsa knockout in a subset of cardiomyocytes developed dilated cardiomyopathy, featuring atrophy of RPSA-deficient cardiomyocytes, compensatory hypertrophy of unaffected cardiomyocytes, left ventricular dilation, and impaired contractile function. We demonstrated that RPSA C-terminal domain is sufficient for localization to the Z-lines and that if the microtubule network is disrupted RPSA loses its sarcomeric localization. These findings highlight RPSA as a ribosomal factor essential for ribosome localization to the Z-line, facilitating local translation and sarcomere maintenance.


Asunto(s)
Ratones Noqueados , Miocitos Cardíacos , Biosíntesis de Proteínas , Proteínas Ribosómicas , Sarcómeros , Animales , Sarcómeros/metabolismo , Sarcómeros/patología , Sarcómeros/genética , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ribosomas/metabolismo , Ribosomas/genética , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología
18.
Exp Hematol ; 135: 104235, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38740323

RESUMEN

The emergence of multiomic single-cell technologies over the last decade has led to improved insights into both normal hematopoiesis and its perturbation in a variety of hematological disorders. Diamond-Blackfan anemia (DBA) syndrome is one such disorder where single-cell assays have helped to delineate the cellular and molecular defects underlying the disease. DBA is caused by heterozygous loss-of-function germline variants in genes encoding ribosomal proteins (RPs). Despite the widespread role of ribosomes in hematopoiesis, the most frequent and severe cytopenia in DBA is anemia. In this review we discussed how single-cell studies, including clonogenic cell culture assays, fluorescence-activated cell sorting (FACS) and single-cell RNA sequencing (scRNA-seq), have led to insights into the pathogenesis of DBA. The main therapies are regular blood transfusions, glucocorticoids, or hematopoietic stem cell transplantation (HSCT) but all are associated with significant morbidity and mortality. We will therefore outline how single-cell studies can inform new therapies for DBA. Furthermore, we discussed how DBA serves as a useful model for understanding normal erythropoiesis in terms of its cellular hierarchy, molecular regulation during homeostasis, and response to "stress."


Asunto(s)
Anemia de Diamond-Blackfan , Análisis de la Célula Individual , Anemia de Diamond-Blackfan/terapia , Anemia de Diamond-Blackfan/genética , Humanos , Eritropoyesis/genética , Trasplante de Células Madre Hematopoyéticas , Proteínas Ribosómicas/genética
19.
Redox Biol ; 73: 103174, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38701646

RESUMEN

Ribosomes mediate protein synthesis, which is one of the most energy-demanding activities within the cell, and mitochondria are one of the main sources generating energy. How mitochondrial morphology and functions are adjusted to cope with ribosomal defects, which can impair protein synthesis and affect cell viability, is poorly understood. Here, we used the fission yeast Schizosaccharomyces Pombe as a model organism to investigate the interplay between ribosome and mitochondria. We found that a ribosomal insult, caused by the absence of Rpl2702, activates a signaling pathway involving Sty1/MAPK and mTOR to modulate mitochondrial morphology and functions. Specifically, we demonstrated that Sty1/MAPK induces mitochondrial fragmentation in a mTOR-independent manner while both Sty1/MAPK and mTOR increases the levels of mitochondrial membrane potential and mitochondrial reactive oxygen species (mROS). Moreover, we demonstrated that Sty1/MAPK acts upstream of Tor1/TORC2 and Tor1/TORC2 and is required to activate Tor2/TORC1. The enhancements of mitochondrial membrane potential and mROS function to promote proliferation of cells bearing ribosomal defects. Hence, our study reveals a previously uncharacterized Sty1/MAPK-mTOR signaling axis that regulates mitochondrial morphology and functions in response to ribosomal insults and provides new insights into the molecular and physiological adaptations of cells to impaired protein synthesis.


Asunto(s)
Potencial de la Membrana Mitocondrial , Mitocondrias , Proteínas Ribosómicas , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Transducción de Señal , Serina-Treonina Quinasas TOR , Serina-Treonina Quinasas TOR/metabolismo , Mitocondrias/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/genética , Schizosaccharomyces/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Especies Reactivas de Oxígeno/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Ribosomas/metabolismo , Sistema de Señalización de MAP Quinasas
20.
PLoS One ; 19(5): e0292152, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753846

RESUMEN

In the protozoan parasite Leishmania, most genes encoding for ribosomal proteins (RPs) are present as two or more copies in the genome. However, their untranslated regions (UTRs) are predominantly divergent and might be associated with a distinct regulation of the expression of paralogous genes. Herein, we investigated the expression profiles of two RPs (S16 and L13a) encoded by duplicated genes in Leishmania major. The genes encoding for the S16 protein possess identical coding sequences (CDSs) and divergent UTRs, whereas the CDSs of L13a diverge by two amino acids and by their UTRs. Using CRISPR/Cas9 genome editing, we generated knockout (Δ) and endogenously tagged transfectants for each paralog of L13a and S16 genes. Combining tagged and Δ cell lines we found evidence of differential expression of both RPS16 and RPL13a isoforms throughout parasite development, with one isoform consistently more abundant than its respective copy. In addition, compensatory expression was observed for each paralog upon deletion of the corresponding isoform, suggesting functional conservation between these proteins. This differential expression pattern relates to post-translational processes, given compensation occurs at the level of the protein, with no alterations detected at transcript level. Ribosomal profiles for RPL13a indicate a standard behavior for these paralogues suggestive of interaction with heavy RNA-protein complexes, as already reported for other RPs in trypanosomatids. We identified paralog-specific bound to their 3'UTRs which may be influential in regulating paralog expression. In support, we identified conserved cis-elements within the 3'UTRs of RPS16 and RPL13a; cis-elements exclusive to the UTR of the more abundant paralog or to the less abundant ones were identified.


Asunto(s)
Leishmania major , Proteínas Protozoarias , Proteínas Ribosómicas , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Leishmania major/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Sistemas CRISPR-Cas , Regulación de la Expresión Génica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...