Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 496
Filtrar
1.
Nat Commun ; 15(1): 4132, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755165

RESUMEN

The regulated release of chemical messengers is crucial for cell-to-cell communication; abnormalities in which impact coordinated human body function. During vesicular secretion, multiple SNARE complexes assemble at the release site, leading to fusion pore opening. How membrane fusion regulators act on heterogeneous SNARE populations to assemble fusion pores in a timely and synchronized manner, is unknown. Here, we demonstrate the role of SNARE chaperones Munc13-1 and Munc18-1 in rescuing individual nascent fusion pores from their diacylglycerol lipid-mediated inhibitory states. At the onset of membrane fusion, Munc13-1 clusters multiple SNARE complexes at the release site and synchronizes release events, while Munc18-1 stoichiometrically interacts with trans-SNARE complexes to enhance N- to C-terminal zippering. When both Munc proteins are present simultaneously, they differentially access dynamic trans-SNARE complexes to regulate pore properties. Overall, Munc proteins' direct action on fusion pore assembly indicates their role in controlling quantal size during vesicular secretion.


Asunto(s)
Fusión de Membrana , Proteínas Munc18 , Proteínas del Tejido Nervioso , Proteínas SNARE , Proteínas Munc18/metabolismo , Proteínas Munc18/genética , Proteínas SNARE/metabolismo , Proteínas SNARE/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Animales , Humanos , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Ratas
2.
Genes (Basel) ; 15(4)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38674428

RESUMEN

BACKGROUND: Women with polycystic ovary syndrome (PCOS) have increased odds of concurrent depression, indicating that the relationship between PCOS and depression is more likely to be comorbid. However, the underlying mechanism remains unclear. Here, we aimed to use bioinformatic analysis to screen for the genetic elements shared between PCOS and depression. METHODS: Differentially expressed genes (DEGs) were screened out through GEO2R using the PCOS and depression datasets in NCBI. Protein-protein interaction (PPI) network analysis and enrichment analysis were performed to identify the potential hub genes. After verification using other PCOS and depression datasets, the associations between key gene polymorphism and comorbidity were further studied using data from the UK biobank (UKB) database. RESULTS: In this study, three key genes, namely, SNAP23, VTI1A, and PRKAR1A, and their related SNARE interactions in the vesicular transport pathway were identified in the comorbidity of PCOS and depression. The rs112568544 at SNAP23, rs11077579 and rs4458066 at PRKAR1A, and rs10885349 at VTI1A might be the genetic basis of this comorbidity. CONCLUSIONS: Our study suggests that the SNAP23, PRKAR1A, and VTI1A genes can directly or indirectly participate in the imbalanced assembly of SNAREs in the pathogenesis of the comorbidity of PCOS and depression. These findings may provide new strategies in diagnosis and therapy for this comorbidity.


Asunto(s)
Depresión , Síndrome del Ovario Poliquístico , Mapas de Interacción de Proteínas , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/epidemiología , Humanos , Femenino , Depresión/genética , Depresión/epidemiología , Mapas de Interacción de Proteínas/genética , Proteínas Qb-SNARE/genética , Comorbilidad , Proteínas Qc-SNARE/genética , Polimorfismo de Nucleótido Simple , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Biología Computacional/métodos , Predisposición Genética a la Enfermedad
3.
Proc Natl Acad Sci U S A ; 121(15): e2320505121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38568977

RESUMEN

The presynaptic SNARE-complex regulator complexin (Cplx) enhances the fusogenicity of primed synaptic vesicles (SVs). Consequently, Cplx deletion impairs action potential-evoked transmitter release. Conversely, though, Cplx loss enhances spontaneous and delayed asynchronous release at certain synapse types. Using electrophysiology and kinetic modeling, we show that such seemingly contradictory transmitter release phenotypes seen upon Cplx deletion can be explained by an additional of Cplx in the control of SV priming, where its ablation facilitates the generation of a "faulty" SV fusion apparatus. Supporting this notion, a sequential two-step priming scheme, featuring reduced vesicle fusogenicity and increased transition rates into the faulty primed state, reproduces all aberrations of transmitter release modes and short-term synaptic plasticity seen upon Cplx loss. Accordingly, we propose a dual presynaptic function for the SNARE-complex interactor Cplx, one as a "checkpoint" protein that guarantees the proper assembly of the fusion machinery during vesicle priming, and one in boosting vesicle fusogenicity.


Asunto(s)
Sinapsis , Vesículas Sinápticas , Sinapsis/metabolismo , Vesículas Sinápticas/metabolismo , Potenciales de Acción , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Transmisión Sináptica/fisiología
4.
Funct Plant Biol ; 512024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38467137

RESUMEN

Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-associated proteins are a class of transmembrane proteins involved in intracellular trafficking pathways. However, the functions of many SNARE domain-containing proteins remain unclear. We have previously identified a SNARE-associated gene in alfalfa (Medicago sativa ) KILLING ME SLOWLY1 (MsKMS1 ), which is involved in various abiotic stresses. In this study, we investigated the function of MsKMS1 in the seed germination of transgenic tobacco (Nicotiana tabacum ). Phylogenetic analysis showed that MsKMS1 was homologous to the SNARE-associated or MAPR component-related proteins of other plants. Germination assays revealed that MsKMS1 negatively regulated seed germination under normal, D-mannitol and abscisic acid-induced stress conditions, yet MsKMS1 -overexpression could confer enhanced heat tolerance in transgenic tobacco. The suppressive effect on germination in MsKMS1 -overexpression lines was associated with higher abscisic acid and salicylic acid contents in seeds. This was accompanied by the upregulation of abscisic acid biosynthetic genes (ZEP and NCED ) and the downregulation of gibberellin biosynthetic genes (GA20ox2 and GA20ox3 ). Taken together, these results suggested that MsKMS1 negatively regulated seed germination by increasing abscisic acid and salicylic acid contents through the expression of genes related to abscisic acid and gibberellin biosynthesis. In addition, MsKMS1 could improve heat tolerance during the germination of transgenic tobacco seeds.


Asunto(s)
Ácido Abscísico , Germinación , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Germinación/genética , Medicago sativa/genética , Medicago sativa/metabolismo , Giberelinas/metabolismo , Giberelinas/farmacología , Nicotiana/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/genética , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacología , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Proteínas SNARE/farmacología
5.
J Cell Biol ; 223(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38478017

RESUMEN

SM proteins including Sly1 are essential cofactors of SNARE-mediated membrane fusion. Using SNARE and Sly1 mutants and chemically defined in vitro assays, we separate and assess proposed mechanisms through which Sly1 augments fusion: (i) opening the closed conformation of the Qa-SNARE Sed5; (ii) close-range tethering of vesicles to target organelles, mediated by the Sly1-specific regulatory loop; and (iii) nucleation of productive trans-SNARE complexes. We show that all three mechanisms are important and operate in parallel, and that close-range tethering promotes trans-complex assembly when cis-SNARE assembly is a competing process. Further, we demonstrate that the autoinhibitory N-terminal Habc domain of Sed5 has at least two positive activities: it is needed for correct Sed5 localization, and it directly promotes Sly1-dependent fusion. "Split Sed5," with Habc presented solely as a soluble fragment, can function both in vitro and in vivo. Habc appears to facilitate events leading to lipid mixing rather than promoting opening or stability of the fusion pore.


Asunto(s)
Fusión de Membrana , Proteínas Munc18 , Proteínas SNARE , Proteínas de Saccharomyces cerevisiae , Proteínas Munc18/metabolismo , Unión Proteica , Proteínas Qa-SNARE/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Proteínas de Transporte Vesicular/metabolismo
6.
J Cell Biol ; 223(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38478018

RESUMEN

The essential Golgi protein Sly1 is a member of the Sec1/mammalian Unc-18 (SM) family of SNARE chaperones. Sly1 was originally identified through remarkable gain-of-function alleles that bypass requirements for diverse vesicle tethering factors. Employing genetic analyses and chemically defined reconstitutions of ER-Golgi fusion, we discovered that a loop conserved among Sly1 family members is not only autoinhibitory but also acts as a positive effector. An amphipathic lipid packing sensor (ALPS)-like helix within the loop directly binds high-curvature membranes. Membrane binding is required for relief of Sly1 autoinhibition and also allows Sly1 to directly tether incoming vesicles to the Qa-SNARE on the target organelle. The SLY1-20 mutation bypasses requirements for diverse tethering factors but loses this ability if the tethering activity is impaired. We propose that long-range tethers, including Golgins and multisubunit tethering complexes, hand off vesicles to Sly1, which then tethers at close range to initiate trans-SNARE complex assembly and fusion in the early secretory pathway.


Asunto(s)
Vesículas Citoplasmáticas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animales , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Mamíferos/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Munc18/análisis , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Vesículas Citoplasmáticas/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo
7.
Sci Rep ; 14(1): 3200, 2024 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331993

RESUMEN

In the Drosophila larval salivary gland, developmentally programmed fusions between lysosomes and secretory granules (SGs) and their subsequent acidification promote the maturation of SGs that are secreted shortly before puparium formation. Subsequently, ongoing fusions between non-secreted SGs and lysosomes give rise to degradative crinosomes, where the superfluous secretory material is degraded. Lysosomal fusions control both the quality and quantity of SGs, however, its molecular mechanism is incompletely characterized. Here we identify the R-SNARE Ykt6 as a novel regulator of crinosome formation, but not the acidification of maturing SGs. We show that Ykt6 localizes to Lamp1+ carrier vesicles, and forms a SNARE complex with Syntaxin 13 and Snap29 to mediate fusion with SGs. These Lamp1 carriers represent a distinct vesicle population that are functionally different from canonical Arl8+, Cathepsin L+ lysosomes, which also fuse with maturing SGs but are controlled by another SNARE complex composed of Syntaxin 13, Snap29 and Vamp7. Ykt6- and Vamp7-mediated vesicle fusions also determine the fate of SGs, as loss of either of these SNAREs prevents crinosomes from acquiring endosomal PI3P. Our results highlight that fusion events between SGs and different lysosome-related vesicle populations are critical for fine regulation of the maturation and crinophagic degradation of SGs.


Asunto(s)
Proteínas SNARE , Vesículas Secretoras , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , Proteínas Qa-SNARE/metabolismo , Vesículas Secretoras/metabolismo , Fusión de Membrana/fisiología , Lisosomas/metabolismo
8.
Elife ; 122024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38411501

RESUMEN

SNAP25 is one of three neuronal SNAREs driving synaptic vesicle exocytosis. We studied three mutations in SNAP25 that cause epileptic encephalopathy: V48F, and D166Y in the synaptotagmin-1 (Syt1)-binding interface, and I67N, which destabilizes the SNARE complex. All three mutations reduced Syt1-dependent vesicle docking to SNARE-carrying liposomes and Ca2+-stimulated membrane fusion in vitro and when expressed in mouse hippocampal neurons. The V48F and D166Y mutants (with potency D166Y > V48F) led to reduced readily releasable pool (RRP) size, due to increased spontaneous (miniature Excitatory Postsynaptic Current, mEPSC) release and decreased priming rates. These mutations lowered the energy barrier for fusion and increased the release probability, which are gain-of-function features not found in Syt1 knockout (KO) neurons; normalized mEPSC release rates were higher (potency D166Y > V48F) than in the Syt1 KO. These mutations (potency D166Y > V48F) increased spontaneous association to partner SNAREs, resulting in unregulated membrane fusion. In contrast, the I67N mutant decreased mEPSC frequency and evoked EPSC amplitudes due to an increase in the height of the energy barrier for fusion, whereas the RRP size was unaffected. This could be partly compensated by positive charges lowering the energy barrier. Overall, pathogenic mutations in SNAP25 cause complex changes in the energy landscape for priming and fusion.


Neurons in the brain communicate with one another by passing molecules called neurotransmitters across the synapse connecting them together. Mutations in the machinery that controls neurotransmitter release can lead to epilepsy or developmental delays in early childhood, but how exactly is poorly understood. Neurotransmitter release is primarily controlled by three proteins that join together to form the SNARE complex, and another protein called synaptotagmin-1. This assembly of proteins primes vesicles containing neurotransmitter molecules to be released from the neuron. When calcium ions bind to synaptotagmin-1, this triggers vesicles in this readily releasable pool to then fuse with the cell membrane and secrete their contents into the small gap between the communicating neurons. Mutations associated with epilepsy and developmental delays have been found in all components of this release machinery. Here, Kádková, Murach, Østergaard et al. set out to find how three of these mutations, which are found in a protein in the SNARE complex called SNAP25, lead to aberrant neurotransmitter release. Two of these mutations are located in the interface between the SNARE complex and synaptotagmin-1, while the other is found within the bundle of proteins that make up the SNARE complex. In vitro and ex vivo experiments in mice revealed that the two interface mutations led to defects in vesicle priming, while at the same time bypassing the control by synaptotagmin-1, resulting in vesicles spontaneously fusing with the cell membrane in an unregulated manner. These mutations therefore combine loss-of-function and gain-of-function features. In contrast, the bundle mutation did not impact the number of vesicles in the releasable pool but reduced spontaneous and calcium ion evoked vesicle fusion. This was due to the mutation destabilizing the SNARE complex, which reduced the amount of energy available for merging vesicles to the membrane. These findings reveal how SNAP25 mutations can have different effects on synapse activity, and how these defects disrupt the release of neurotransmitters. This experimental framework could be used to study how other synaptic mutations lead to diseases such as epilepsy. Applying this approach to human neurons and live model organisms may lead to the discovery of new therapeutic targets for epilepsy and delayed development.


Asunto(s)
Fusión de Membrana , Transmisión Sináptica , Animales , Ratones , Exocitosis , Mutación , Proteínas SNARE/genética
9.
J Virol ; 98(2): e0140823, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38189252

RESUMEN

Autophagy generally functions as a cellular surveillance mechanism to combat invading viruses, but viruses have evolved various strategies to block autophagic degradation and even subvert it to promote viral propagation. White spot syndrome virus (WSSV) is the most highly pathogenic crustacean virus, but little is currently known about whether crustacean viruses such as WSSV can subvert autophagic degradation for escape. Here, we show that even though WSSV proliferation triggers the accumulation of autophagosomes, autophagic degradation is blocked in the crustacean species red claw crayfish. Interestingly, the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex including CqSNAP29, CqVAMP7, and the novel autophagosome SNARE protein CqSyx12 is required for autophagic flux to restrict WSSV replication, as revealed by gene silencing experiments. Simultaneously, the expressed WSSV tegument protein VP26, which likely localizes on autophagic membrane mediated by its transmembrane region, binds the Qb-SNARE domain of CqSNAP29 to competitively inhibit the binding of CqSyx12-Qa-SNARE with CqSNAP29-Qb-SNARE; this in turn disrupts the assembly of the CqSyx12-SNAP29-VAMP7 SNARE complex, which is indispensable for the proposed fusion of autophagosomes and lysosomes. Consequently, the autophagic degradation of WSSV is likely suppressed by the expressed VP26 protein in vivo in crayfish, thus probably protecting WSSV components from degradation via the autophagosome-lysosome pathway, resulting in evasion by WSSV. Collectively, these findings highlight how a DNA virus can subvert autophagic degradation by impairing the assembly of the SNARE complex to achieve evasion, paving the way for understanding host-DNA virus interactions from an evolutionary point of view, from crustaceans to mammals.IMPORTANCEWhite spot syndrome virus (WSSV) is one of the largest animal DNA viruses in terms of its genome size and has caused huge economic losses in the farming of crustaceans such as shrimp and crayfish. Detailed knowledge of WSSV-host interactions is still lacking, particularly regarding viral escape from host immune clearance. Intriguingly, we found that the presence of WSSV-VP26 might inhibit the autophagic degradation of WSSV in vivo in the crustacean species red claw crayfish. Importantly, this study is the first to show that viral protein VP26 functions as a core factor to benefit WSSV escape by disrupting the assembly of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, which is necessary for the proposed fusion of autophagosomes with lysosomes for subsequent degradation. These findings highlight a novel mechanism of DNA virus evasion by blocking SNARE complex assembly and identify viral VP26 as a key candidate for anti-WSSV targeting.


Asunto(s)
Astacoidea , Autofagia , Virus del Síndrome de la Mancha Blanca 1 , Animales , Astacoidea/metabolismo , Autofagosomas/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida , Virus del Síndrome de la Mancha Blanca 1/fisiología
10.
Plant J ; 118(4): 1036-1053, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38289468

RESUMEN

In plants so-called plasma membrane intrinsic proteins (PIPs) are major water channels governing plant water status. Membrane trafficking contributes to functional regulation of major PIPs and is crucial for abiotic stress resilience. Arabidopsis PIP2;1 is rapidly internalised from the plasma membrane in response to high salinity to regulate osmotic water transport, but knowledge of the underlying mechanisms is fragmentary. Here we show that PIP2;1 occurs in complex with SYNTAXIN OF PLANTS 132 (SYP132) together with the plasma membrane H+-ATPase AHA1 as evidenced through in vivo and in vitro analysis. SYP132 is a multifaceted vesicle trafficking protein, known to interact with AHA1 and promote endocytosis to impact growth and pathogen defence. Tracking native proteins in immunoblot analysis, we found that salinity stress enhances SYP132 interactions with PIP2;1 and PIP2;2 isoforms to promote redistribution of the water channels away from the plasma membrane. Concurrently, AHA1 binding within the SYP132-complex was significantly reduced under salinity stress and increased the density of AHA1 proteins at the plasma membrane in leaf tissue. Manipulating SYP132 function in Arabidopsis thaliana enhanced resilience to salinity stress and analysis in heterologous systems suggested that the SNARE influences PIP2;1 osmotic water permeability. We propose therefore that SYP132 coordinates AHA1 and PIP2;1 abundance at the plasma membrane and influences leaf hydraulics to regulate plant responses to abiotic stress signals.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Qa-SNARE , Estrés Salino , Arabidopsis/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Qa-SNARE/metabolismo , Proteínas Qa-SNARE/genética , Membrana Celular/metabolismo , Transporte de Proteínas , Acuaporinas/metabolismo , Acuaporinas/genética , ATPasas de Translocación de Protón/metabolismo , ATPasas de Translocación de Protón/genética , Proteínas SNARE/metabolismo , Proteínas SNARE/genética
11.
Life Sci Alliance ; 7(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38238088

RESUMEN

The precise cell-to-cell communication relies on SNARE-catalyzed membrane fusion. Among ∼70 copies of synaptobrevin2 (syb2) in synaptic vesicles, only ∼3 copies are sufficient to facilitate the fusion process at the presynaptic terminal. It is unclear what dictates the number of SNARE complexes that constitute the fusion pore assembly. The structure-function relation of these dynamic pores is also unknown. Here, we demonstrate that syb2 monomers and dimers differentially engage in regulating the trans-SNARE assembly during membrane fusion. The differential recruitment of two syb2 structures at the membrane fusion site has consequences in regulating individual nascent fusion pore properties. We have identified a few syb2 transmembrane domain residues that control monomer/dimer conversion. Overall, our study indicates that syb2 monomers and dimers are differentially recruited at the release sites for regulating membrane fusion events.


Asunto(s)
Fusión de Membrana , Proteínas SNARE , Fusión de Membrana/fisiología , Proteínas SNARE/genética , Sinapsis , Comunicación Celular , Terminales Presinápticos
12.
J Biol Chem ; 300(1): 105541, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38072052

RESUMEN

Munc18-interacting proteins (Mints) are multidomain adaptors that regulate neuronal membrane trafficking, signaling, and neurotransmission. Mint1 and Mint2 are highly expressed in the brain with overlapping roles in the regulation of synaptic vesicle fusion required for neurotransmitter release by interacting with the essential synaptic protein Munc18-1. Here, we have used AlphaFold2 to identify and then validate the mechanisms that underpin both the specific interactions of neuronal Mint proteins with Munc18-1 as well as their wider interactome. We found that a short acidic α-helical motif within Mint1 and Mint2 is necessary and sufficient for specific binding to Munc18-1 and binds a conserved surface on Munc18-1 domain3b. In Munc18-1/2 double knockout neurosecretory cells, mutation of the Mint-binding site reduces the ability of Munc18-1 to rescue exocytosis, and although Munc18-1 can interact with Mint and Sx1a (Syntaxin1a) proteins simultaneously in vitro, we find that they have mutually reduced affinities, suggesting an allosteric coupling between the proteins. Using AlphaFold2 to then examine the entire cellular network of putative Mint interactors provides a structural model for their assembly with a variety of known and novel regulatory and cargo proteins including ADP-ribosylation factor (ARF3/ARF4) small GTPases and the AP3 clathrin adaptor complex. Validation of Mint1 interaction with a new predicted binder TJAP1 (tight junction-associated protein 1) provides experimental support that AlphaFold2 can correctly predict interactions across such large-scale datasets. Overall, our data provide insights into the diversity of interactions mediated by the Mint family and show that Mints may help facilitate a key trigger point in SNARE (soluble N-ethylmaleimide-sensitive factor attachment receptor) complex assembly and vesicle fusion.


Asunto(s)
Mentha , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Membrana Celular/metabolismo , Mentha/metabolismo , Proteínas Munc18/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Unión Proteica , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Sintaxina 1/metabolismo , Humanos , Animales , Ratas , Células PC12
13.
Plant Cell Rep ; 42(12): 1951-1965, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37805949

RESUMEN

KEY MESSAGE: VAMP726/VAMP725 and SYP131 can form a part of a SNARE complex to mediate vesicle secretion at the pollen tube apex. Secretory vesicle fusion with the plasma membrane of the pollen tube tip is a key step in pollen tube growth. Membrane fusion was mediated by SNAREs. However, little is known about the composition and function of the SNARE complex during pollen tube tip growth. In this study, we constructed a double mutant vamp725 vamp726 via CRISPR‒Cas9. Fluorescence labeling combined with microscopic observation, luciferase complementation imaging, co-immunoprecipitation and GST pull-down were applied in the study. We show that double mutation of the R-SNAREs VAMP726 and VAMP725 significantly inhibits pollen tube growth in Arabidopsis and slows vesicle exocytosis at the apex of the pollen tube. GFP-VAMP726 and VAMP725-GFP localize mainly to secretory vesicles and the plasma membrane at the apex of the pollen tube. In addition, fluorescence recovery after photobleaching (FRAP) experiments showed that mCherry-VAMP726 colocalizes with Qa-SNARE SYP131 in the central region of the pollen tube apical plasma membrane. Furthermore, we found that VAMP726 and VAMP725 can interact with the SYP131. Based on these results, we suggest that VAMP726/VAMP725 and SYP131 can form a part of a SNARE complex to mediate vesicle secretion at the pollen tube apex, and vesicle secretion may mainly occur at the central region of the pollen tube apical plasma membrane.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Tubo Polínico/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo
14.
Biomolecules ; 13(10)2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37892145

RESUMEN

Retinal neurons that form ribbon-style synapses operate over a wide dynamic range, continuously relaying visual information to their downstream targets. The remarkable signaling abilities of these neurons are supported by specialized presynaptic machinery, one component of which is syntaxin3B. Syntaxin3B is an essential t-SNARE protein of photoreceptors and bipolar cells that is required for neurotransmitter release. It has a light-regulated phosphorylation site in its N-terminal domain at T14 that has been proposed to modulate membrane fusion. However, a direct test of the latter has been lacking. Using a well-controlled in vitro fusion assay, we found that a phosphomimetic T14 syntaxin3B mutation leads to a small but significant enhancement of SNARE-mediated membrane fusion following the formation of the t-SNARE complex. While the addition of Munc18a had only a minimal effect on membrane fusion mediated by SNARE complexes containing wild-type syntaxin3B, a more significant enhancement was observed in the presence of Munc18a when the SNARE complexes contained a syntaxin3B T14 phosphomimetic mutant. Finally, we showed that the retinal-specific complexins (Cpx III and Cpx IV) inhibited membrane fusion mediated by syntaxin3B-containing SNARE complexes in a dose-dependent manner. Collectively, our results establish that membrane fusion mediated by syntaxin3B-containing SNARE complexes is regulated by the T14 residue of syntaxin3B, Munc18a, and Cpxs III and IV.


Asunto(s)
Fusión de Membrana , Sinapsis , Fusión de Membrana/fisiología , Sinapsis/metabolismo , Transmisión Sináptica/genética , Retina/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Unión Proteica
15.
Plant Cell ; 35(12): 4347-4365, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37713604

RESUMEN

The extended tubular shape of root hairs is established by tip growth and concomitant hardening. Here, we demonstrate that a syntaxin of plants (SYP)123-vesicle-associated membrane protein (VAMP)727-dependent secretion system delivers secondary cell wall components for hardening the subapical zone and shank of Arabidopsis (Arabidopsis thaliana) root hairs. We found increased SYP123 localization at the plasma membrane (PM) of the subapical and shank zones compared with the tip region in elongating root hairs. Inhibition of phosphatidylinositol (PtdIns)(3,5)P2 production impaired SYP123 localization at the PM and SYP123-mediated root hair shank hardening. Moreover, root hair elongation in the syp123 mutant was insensitive to a PtdIns(3,5)P2 synthesis inhibitor. SYP123 interacts with both VAMP721 and VAMP727. syp123 and vamp727 mutants exhibited reduced shank cell wall stiffness due to impaired secondary cell wall component deposition. Based on these results, we conclude that SYP123 is involved in VAMP721-mediated conventional secretion for root hair elongation as well as in VAMP727-mediated secretory functions for the delivery of secondary cell wall components to maintain root hair tubular morphology.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citoplasma/metabolismo , Pared Celular/metabolismo , Fosfatidilinositoles/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Raíces de Plantas , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo
16.
Plant J ; 116(6): 1633-1651, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37659090

RESUMEN

The final step in secretion is membrane fusion facilitated by SNARE proteins that reside in opposite membranes. The formation of a trans-SNARE complex between one R and three Q coiled-coiled SNARE domains drives the final approach of the membranes providing the mechanical energy for fusion. Biological control of this mechanism is exerted by additional domains within some SNAREs. For example, the N-terminal Longin domain (LD) of R-SNAREs (also called Vesicle-associated membrane proteins, VAMPs) can fold back onto the SNARE domain blocking interaction with other cognate SNAREs. The LD may also determine the subcellular localization via interaction with other trafficking-related proteins. Here, we provide cell-biological and genetic evidence that phosphorylation of the Tyrosine57 residue regulates the functionality of VAMP721. We found that an aspartate mutation mimics phosphorylation, leading to protein instability and subsequent degradation in lytic vacuoles. The mutant SNARE also fails to rescue the defects of vamp721vamp722 loss-of-function lines in spite of its wildtype-like localization within the secretory pathway and the ability to interact with cognate SNARE partners. Most importantly, it imposes a dominant negative phenotype interfering with root growth, normal secretion and cytokinesis in wildtype plants generating large aggregates that mainly contain secretory vesicles. Non-phosphorylatable VAMP721Y57F needs higher gene dosage to rescue double mutants in comparison to native VAMP721 underpinning that phosphorylation modulates SNARE function. We propose a model where short-lived phosphorylation of Y57 serves as a regulatory step to control VAMP721 activity, favoring its open state and interaction with cognate partners to ultimately drive membrane fusion.


Asunto(s)
Arabidopsis , Proteínas SNARE , Membrana Celular/metabolismo , Fusión de Membrana , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Tirosina/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo
17.
J Clin Invest ; 133(19)2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37561580

RESUMEN

Negative regulation of exocytosis from secretory cells is accomplished through inhibitory signals from Gi/o GPCRs by Gßγ subunit inhibition of 2 mechanisms: decreased calcium entry and direct interaction of Gßγ with soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor (SNARE) plasma membrane fusion machinery. Previously, we disabled the second mechanism with a SNAP25 truncation (SNAP25Δ3) that decreased Gßγ affinity for the SNARE complex, leaving exocytotic fusion and modulation of calcium entry intact and removing GPCR-Gßγ inhibition of SNARE-mediated exocytosis. Here, we report substantial metabolic benefit in mice carrying this mutation. Snap25Δ3/Δ3 mice exhibited enhanced insulin sensitivity and beiging of white fat. Metabolic protection was amplified in Snap25Δ3/Δ3 mice challenged with a high-fat diet. Glucose homeostasis, whole-body insulin action, and insulin-mediated glucose uptake into white adipose tissue were improved along with resistance to diet-induced obesity. Metabolic protection in Snap25Δ3/Δ3 mice occurred without compromising the physiological response to fasting or cold. All metabolic phenotypes were reversed at thermoneutrality, suggesting that basal autonomic activity was required. Direct electrode stimulation of sympathetic neuron exocytosis from Snap25Δ3/Δ3 inguinal adipose depots resulted in enhanced and prolonged norepinephrine release. Thus, the Gßγ-SNARE interaction represents a cellular mechanism that deserves further exploration as an additional avenue for combating metabolic disease.


Asunto(s)
Subunidades beta de la Proteína de Unión al GTP , Subunidades gamma de la Proteína de Unión al GTP , Insulinas , Ratones , Animales , Calcio/metabolismo , Subunidades beta de la Proteína de Unión al GTP/genética , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/genética , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Exocitosis/fisiología , Proteínas SNARE/genética , Dieta , Obesidad/genética , Adipocitos/metabolismo , Insulinas/metabolismo , Insulina/metabolismo
18.
Platelets ; 34(1): 2237114, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37545110

RESUMEN

Platelet secretion requires Soluble N-ethylmaleimide Sensitive Attachment Protein Receptors (SNAREs). Vesicle SNAREs/Vesicle-Associated Membrane Proteins (v-SNAREs/VAMPs) on granules and t-SNAREs in plasma membranes mediate granule release. Platelet VAMP heterogeneity has complicated the assessment of how/if each is used and affects hemostasis. To address the importance of VAMP-7 (V7), we analyzed mice with global deletions of V3 and V7 together or platelet-specific deletions of V2, V3, and global deletion of V7. We measured the kinetics of cargo release, and its effects on three injury models to define the context-specific roles of these VAMPs. Loss of V7 minimally affected dense and α granule release but did affect lysosomal release. V3-/-7-/- and V2Δ3Δ7-/- platelets showed partial defects in α and lysosomal release; dense granule secretion was unaffected. In vivo assays showed that loss of V2, V3, and V7 caused no bleeding or occlusive thrombosis. These data indicate a role for V7 in lysosome release that is partially compensated by V3. V7 and V3, together, contribute to α granule release, however none of these deletions affected hemostasis/thrombosis. Our results confirm the dominance of V8. When it is present, deletion of V2, V3, or V7 alone or in combination minimally affects platelet secretion and hemostasis.


What did we know? V8 is the primary VAMP isoform for platelet granule secretion, but V2 and V3 play compensatory roles.V3 is important for platelet endocytosis.V7 plays a minimal role in secretion and does not affect hemostasis.What did we discover? The loss of both V3 and V7 increases α and lysosomal secretion defects.Platelet-specific deletion of V2 and V3 with global V7-deletion causes defective α and lysosomal release.Secretion deficiencies in V3−/−7−/− and V2Δ3Δ7−/− have no effect on hemostasis or thrombosis.What is the impact? We show that endosomal v-SNAREs (V3 and V7) play minor roles in secretion.V3−/−7−/− and platelet-specific V2Δ3Δ7−/− mice are viable and will be valuable in in vivo studies of membrane trafficking.


Asunto(s)
Trombosis , Proteína 2 de Membrana Asociada a Vesículas , Ratones , Animales , Proteína 2 de Membrana Asociada a Vesículas/metabolismo , Plaquetas/metabolismo , Hemostasis , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Trombosis/metabolismo , Exocitosis
19.
J Biol Chem ; 299(8): 104968, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37380075

RESUMEN

Ykt6 is one of the most conserved SNARE (N-ethylmaleimide-sensitive factor attachment protein receptor) proteins involved in multiple intracellular membrane trafficking processes. The membrane-anchoring function of Ykt6 has been elucidated to result from its conformational transition from a closed state to an open state. Two ways of regulating the conformational transition were proposed: the C-terminal lipidation and the phosphorylation at the SNARE core. Despite many aspects of common properties, Ykt6 displays differential cellular localizations and functional behaviors in different species, such as yeast, mammals, and worms. The structure-function relationship underlying these differences remains elusive. Here, we combined biochemical characterization, single-molecule FRET measurement, and molecular dynamics simulation to compare the conformational dynamics of yeast and rat Ykt6. Compared to rat Ykt6 (rYkt6), yeast Ykt6 (yYkt6) has more open conformations and could not bind dodecylphosphocholine that inhibits rYkt6 in the closed state. A point mutation T46L/Q57A was shown to be able to convert yYkt6 to a more closed and dodecylphosphocholine-bound state, where Leu46 contributes key hydrophobic interactions for the closed state. We also demonstrated that the phospho-mutation S174D could shift the conformation of rYkt6 to a more open state, but the corresponding mutation S176D in yYkt6 leads to a slightly more closed conformation. These observations shed light on the regulatory mechanism underlying the variations of Ykt6 functions across species.


Asunto(s)
Proteínas SNARE , Saccharomyces cerevisiae , Animales , Ratas , Mamíferos/metabolismo , Proteínas R-SNARE/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo
20.
Am J Physiol Cell Physiol ; 324(6): C1249-C1262, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37125772

RESUMEN

Control of the movement of ions and water across epithelia is essential for homeostasis. Changing the number or activity of ion channels at the plasma membrane is a significant regulator of epithelial transport. In polarized epithelia, the intermediate-conductance calcium-activated potassium channel, KCa3.1 is delivered to the basolateral membrane where it generates and maintains the electrochemical gradients required for epithelial transport. The mechanisms that control the delivery of KCa3.1 to the basolateral membrane are still emerging. Herein, we investigated the role of the highly conserved tethering complex exocyst. In epithelia, exocyst is involved in the tethering of post-Golgi secretory vesicles with the basolateral membrane, which is required before membrane fusion. In our Fisher rat thyroid cell line that stably expresses KCa3.1, siRNA knockdown of either of the exocyst subunits Sec3, Sec6, or Sec8 significantly decreased KCa3.1-specific current. In addition, knockdown of exocyst complex subunits significantly reduced the basolateral membrane protein level of KCa3.1. Finally, co-immunoprecipitation experiments suggest associations between Sec6 and KCa3.1, but not between Sec8 and KCa3.1. Collectively, based on these data and our previous studies, we suggest that components of exocyst complex are crucially important in the tethering of KCa3.1 to the basolateral membrane. After which, Soluble N-ethylmaleimide-sensitive factor (SNF) Attachment Receptors (SNARE) proteins aid in the insertion of KCa3.1-containing vesicles into the basolateral membrane of polarized epithelia.NEW & NOTEWORTHY Our Ussing chamber and immunoblot experiments demonstrate that when subunits of the exocyst complex were transiently knocked down, this significantly reduced the basolateral population and functional expression of KCa3.1. These data suggest, combined with our protein association experiments, that the exocyst complex regulates the tethering of KCa3.1-containing vesicles to the basolateral membrane prior to the SNARE-dependent insertion of channels into the basolateral membrane of epithelial cells.


Asunto(s)
Células Epiteliales , Fusión de Membrana , Ratas , Animales , Membrana Celular/metabolismo , Epitelio , Células Epiteliales/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA