Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.769
Filtrar
1.
ACS Nano ; 18(20): 12737-12748, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38717305

RESUMEN

Lipids are key factors in regulating membrane fusion. Lipids are not only structural components to form membranes but also active catalysts for vesicle fusion and neurotransmitter release, which are driven by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. SNARE proteins seem to be partially assembled before fusion, but the mechanisms that arrest vesicle fusion before Ca2+ influx are still not clear. Here, we show that phosphatidylinositol 4,5-bisphosphate (PIP2) electrostatically triggers vesicle fusion as an electrostatic catalyst by lowering the hydration energy and that a myristoylated alanine-rich C-kinase substrate (MARCKS), a PIP2-binding protein, arrests vesicle fusion in a vesicle docking state where the SNARE complex is partially assembled. Vesicle-mimicking liposomes fail to reproduce vesicle fusion arrest by masking PIP2, indicating that native vesicles are essential for the reconstitution of physiological vesicle fusion. PIP2 attracts cations to repel water molecules from membranes, thus lowering the hydration energy barrier.


Asunto(s)
Fusión de Membrana , Fosfatidilinositol 4,5-Difosfato , Electricidad Estática , Agua , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositol 4,5-Difosfato/química , Agua/química , Liposomas/química , Proteínas SNARE/metabolismo , Proteínas SNARE/química , Catálisis
2.
Nat Commun ; 15(1): 4132, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755165

RESUMEN

The regulated release of chemical messengers is crucial for cell-to-cell communication; abnormalities in which impact coordinated human body function. During vesicular secretion, multiple SNARE complexes assemble at the release site, leading to fusion pore opening. How membrane fusion regulators act on heterogeneous SNARE populations to assemble fusion pores in a timely and synchronized manner, is unknown. Here, we demonstrate the role of SNARE chaperones Munc13-1 and Munc18-1 in rescuing individual nascent fusion pores from their diacylglycerol lipid-mediated inhibitory states. At the onset of membrane fusion, Munc13-1 clusters multiple SNARE complexes at the release site and synchronizes release events, while Munc18-1 stoichiometrically interacts with trans-SNARE complexes to enhance N- to C-terminal zippering. When both Munc proteins are present simultaneously, they differentially access dynamic trans-SNARE complexes to regulate pore properties. Overall, Munc proteins' direct action on fusion pore assembly indicates their role in controlling quantal size during vesicular secretion.


Asunto(s)
Fusión de Membrana , Proteínas Munc18 , Proteínas del Tejido Nervioso , Proteínas SNARE , Proteínas Munc18/metabolismo , Proteínas Munc18/genética , Proteínas SNARE/metabolismo , Proteínas SNARE/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Animales , Humanos , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Ratas
3.
Sci Adv ; 10(20): eadi7024, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758791

RESUMEN

At the synapse, presynaptic neurotransmitter release is tightly controlled by release machinery, involving the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins and Munc13. The Ca2+ sensor Doc2 cooperates with Munc13 to regulate neurotransmitter release, but the underlying mechanisms remain unclear. In our study, we have characterized the binding mode between Doc2 and Munc13 and found that Doc2 originally occludes Munc13 to inhibit SNARE complex assembly. Moreover, our investigation unveiled that EphB2, a presynaptic adhesion molecule (SAM) with inherent tyrosine kinase functionality, exhibits the capacity to phosphorylate Doc2. This phosphorylation attenuates Doc2 block on Munc13 to promote SNARE complex assembly, which functionally induces spontaneous release and synaptic augmentation. Consistently, application of a Doc2 peptide that interrupts Doc2-Munc13 interplay impairs excitatory synaptic transmission and leads to dysfunction in spatial learning and memory. These data provide evidence that SAMs modulate neurotransmitter release by controlling SNARE complex assembly.


Asunto(s)
Proteínas de Unión al Calcio , Proteínas del Tejido Nervioso , Neurotransmisores , Receptor EphB2 , Proteínas SNARE , Transmisión Sináptica , Proteínas SNARE/metabolismo , Animales , Neurotransmisores/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Fosforilación , Receptor EphB2/metabolismo , Receptor EphB2/genética , Proteínas de Unión al Calcio/metabolismo , Unión Proteica , Humanos , Ratones , Ratas
4.
Proc Natl Acad Sci U S A ; 121(16): e2321447121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38593076

RESUMEN

The SNAP receptor (SNARE) proteins syntaxin-1, SNAP-25, and synaptobrevin mediate neurotransmitter release by forming tight SNARE complexes that fuse synaptic vesicles with the plasma membranes in microseconds. Membrane fusion is generally explained by the action of proteins on macroscopic membrane properties such as curvature, elastic modulus, and tension, and a widespread model envisions that the SNARE motifs, juxtamembrane linkers, and C-terminal transmembrane regions of synaptobrevin and syntaxin-1 form continuous helices that act mechanically as semirigid rods, squeezing the membranes together as they assemble ("zipper") from the N to the C termini. However, the mechanism underlying fast SNARE-induced membrane fusion remains unknown. We have used all-atom molecular dynamics simulations to investigate this mechanism. Our results need to be interpreted with caution because of the limited number and length of the simulations, but they suggest a model of membrane fusion that has a natural physicochemical basis, emphasizes local molecular events over general membrane properties, and explains extensive experimental data. In this model, the central event that initiates fast (microsecond scale) membrane fusion occurs when the SNARE helices zipper into the juxtamembrane linkers which, together with the adjacent transmembrane regions, promote encounters of acyl chains from both bilayers at the polar interface. The resulting hydrophobic nucleus rapidly expands into stalk-like structures that gradually progress to form a fusion pore, aided by the SNARE transmembrane regions and without clearly discernible intermediates. The propensity of polyunsaturated lipids to participate in encounters that initiate fusion suggests that these lipids may be important for the high speed of neurotransmitter release.


Asunto(s)
Fusión de Membrana , Proteínas SNARE , Proteínas SNARE/metabolismo , Simulación de Dinámica Molecular , Proteínas R-SNARE , Sintaxina 1 , Neurotransmisores , Lípidos
5.
Genes (Basel) ; 15(4)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38674428

RESUMEN

BACKGROUND: Women with polycystic ovary syndrome (PCOS) have increased odds of concurrent depression, indicating that the relationship between PCOS and depression is more likely to be comorbid. However, the underlying mechanism remains unclear. Here, we aimed to use bioinformatic analysis to screen for the genetic elements shared between PCOS and depression. METHODS: Differentially expressed genes (DEGs) were screened out through GEO2R using the PCOS and depression datasets in NCBI. Protein-protein interaction (PPI) network analysis and enrichment analysis were performed to identify the potential hub genes. After verification using other PCOS and depression datasets, the associations between key gene polymorphism and comorbidity were further studied using data from the UK biobank (UKB) database. RESULTS: In this study, three key genes, namely, SNAP23, VTI1A, and PRKAR1A, and their related SNARE interactions in the vesicular transport pathway were identified in the comorbidity of PCOS and depression. The rs112568544 at SNAP23, rs11077579 and rs4458066 at PRKAR1A, and rs10885349 at VTI1A might be the genetic basis of this comorbidity. CONCLUSIONS: Our study suggests that the SNAP23, PRKAR1A, and VTI1A genes can directly or indirectly participate in the imbalanced assembly of SNAREs in the pathogenesis of the comorbidity of PCOS and depression. These findings may provide new strategies in diagnosis and therapy for this comorbidity.


Asunto(s)
Depresión , Síndrome del Ovario Poliquístico , Mapas de Interacción de Proteínas , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/epidemiología , Humanos , Femenino , Depresión/genética , Depresión/epidemiología , Mapas de Interacción de Proteínas/genética , Proteínas Qb-SNARE/genética , Comorbilidad , Proteínas Qc-SNARE/genética , Polimorfismo de Nucleótido Simple , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Biología Computacional/métodos , Predisposición Genética a la Enfermedad
6.
Proc Natl Acad Sci U S A ; 121(15): e2320505121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38568977

RESUMEN

The presynaptic SNARE-complex regulator complexin (Cplx) enhances the fusogenicity of primed synaptic vesicles (SVs). Consequently, Cplx deletion impairs action potential-evoked transmitter release. Conversely, though, Cplx loss enhances spontaneous and delayed asynchronous release at certain synapse types. Using electrophysiology and kinetic modeling, we show that such seemingly contradictory transmitter release phenotypes seen upon Cplx deletion can be explained by an additional of Cplx in the control of SV priming, where its ablation facilitates the generation of a "faulty" SV fusion apparatus. Supporting this notion, a sequential two-step priming scheme, featuring reduced vesicle fusogenicity and increased transition rates into the faulty primed state, reproduces all aberrations of transmitter release modes and short-term synaptic plasticity seen upon Cplx loss. Accordingly, we propose a dual presynaptic function for the SNARE-complex interactor Cplx, one as a "checkpoint" protein that guarantees the proper assembly of the fusion machinery during vesicle priming, and one in boosting vesicle fusogenicity.


Asunto(s)
Sinapsis , Vesículas Sinápticas , Sinapsis/metabolismo , Vesículas Sinápticas/metabolismo , Potenciales de Acción , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Transmisión Sináptica/fisiología
7.
Mol Biol Cell ; 35(5): ar71, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38536444

RESUMEN

Membrane fusion is regulated by Rab GTPases, their tethering effectors such as HOPS, SNARE proteins on each fusion partner, SM proteins to catalyze SNARE assembly, Sec17 (SNAP), and Sec18 (NSF). Though concentrated HOPS can support fusion without Sec18, we now report that fusion falls off sharply at lower HOPS levels, where direct Sec18 binding to HOPS restores fusion. This Sec18-dependent fusion needs adenine nucleotide but neither ATP hydrolysis nor Sec17. Sec18 enhances HOPS recognition of the Qc-SNARE. With high levels of HOPS, Qc has a Km for fusion of a few nM. Either lower HOPS levels, or substitution of a synthetic tether for HOPS, strikingly increases the Km for Qc to several hundred nM. With dilute HOPS, Sec18 returns the Km for Qc to low nM. In contrast, HOPS concentration and Sec18 have no effect on Qb-SNARE recognition. Just as Qc is required for fusion but not for the initial assembly of SNAREs in trans, impaired Qc recognition by limiting HOPS without Sec18 still allows substantial trans-SNARE assembly. Thus, in addition to the known Sec18 functions of disassembling SNARE complexes, oligomerizing Sec17 for membrane association, and allowing Sec17 to drive fusion without complete SNARE zippering, we report a fourth Sec18 function, the Sec17-independent binding of Sec18 to HOPS to enhance functional Qc-SNARE engagement.


Asunto(s)
Fusión de Membrana , Proteínas de Saccharomyces cerevisiae , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/metabolismo , Proteínas SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Vacuolas/metabolismo
8.
Funct Plant Biol ; 512024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38467137

RESUMEN

Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-associated proteins are a class of transmembrane proteins involved in intracellular trafficking pathways. However, the functions of many SNARE domain-containing proteins remain unclear. We have previously identified a SNARE-associated gene in alfalfa (Medicago sativa ) KILLING ME SLOWLY1 (MsKMS1 ), which is involved in various abiotic stresses. In this study, we investigated the function of MsKMS1 in the seed germination of transgenic tobacco (Nicotiana tabacum ). Phylogenetic analysis showed that MsKMS1 was homologous to the SNARE-associated or MAPR component-related proteins of other plants. Germination assays revealed that MsKMS1 negatively regulated seed germination under normal, D-mannitol and abscisic acid-induced stress conditions, yet MsKMS1 -overexpression could confer enhanced heat tolerance in transgenic tobacco. The suppressive effect on germination in MsKMS1 -overexpression lines was associated with higher abscisic acid and salicylic acid contents in seeds. This was accompanied by the upregulation of abscisic acid biosynthetic genes (ZEP and NCED ) and the downregulation of gibberellin biosynthetic genes (GA20ox2 and GA20ox3 ). Taken together, these results suggested that MsKMS1 negatively regulated seed germination by increasing abscisic acid and salicylic acid contents through the expression of genes related to abscisic acid and gibberellin biosynthesis. In addition, MsKMS1 could improve heat tolerance during the germination of transgenic tobacco seeds.


Asunto(s)
Ácido Abscísico , Germinación , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Germinación/genética , Medicago sativa/genética , Medicago sativa/metabolismo , Giberelinas/metabolismo , Giberelinas/farmacología , Nicotiana/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/genética , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacología , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Proteínas SNARE/farmacología
9.
Nat Commun ; 15(1): 2508, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509070

RESUMEN

In the secretory pathway the destination of trafficking vesicles is determined by specific proteins that, with the notable exception of SNAREs, are recruited from soluble pools. Previously we have shown that microinjected proteoliposomes containing early or late endosomal SNAREs, respectively, are targeted to the corresponding endogenous compartments, with targeting specificity being dependent on the recruitment of tethering factors by some of the SNAREs. Here, we show that targeting of SNARE-containing liposomes is refined upon inclusion of polyphosphoinositides and Rab5. Intriguingly, targeting specificity is dependent on the concentration of PtdIns(3)P, and on the recruitment of PtdIns(3)P binding proteins such as rabenosyn-5 and PIKfyve, with conversion of PtdIns(3)P into PtdIns(3,5)P2 re-routing the liposomes towards late endosomes despite the presence of GTP-Rab5 and early endosomal SNAREs. Our data reveal a complex interplay between permissive and inhibitory targeting signals that sharpen a basic targeting and fusion machinery for conveying selectivity in intracellular membrane traffic.


Asunto(s)
Proteínas SNARE , Proteínas de Unión al GTP rab , Proteínas SNARE/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Fosfatidilinositoles/metabolismo , Liposomas/metabolismo , Endosomas/metabolismo , Fusión de Membrana
10.
Methods Enzymol ; 694: 109-135, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38492948

RESUMEN

In neuroscience, understanding the mechanics of synapses, especially the function of force-sensitive proteins at the molecular level, is essential. This need emphasizes the importance of precise measurement of synaptic protein interactions. Addressing this, we introduce high-resolution magnetic tweezers (MT) as a novel method to probe the mechanics of synapse-related proteins with high precision. We demonstrate this technique through studying SNARE-complexin interactions, crucial for synaptic transmission, showcasing its capability to apply specific forces to individual molecules. Our results reveal that high-resolution MT provides in-depth insights into the stability and dynamic transitions of synaptic protein complexes. This method is a significant advancement in synapse biology, offering a new tool for researchers to investigate the impact of mechanical forces on synaptic functions and their implications for neurological disorders.


Asunto(s)
Proteínas SNARE , Sinapsis , Proteínas SNARE/metabolismo , Transmisión Sináptica , Fenómenos Magnéticos , Proteínas Adaptadoras del Transporte Vesicular/metabolismo
11.
Int J Biol Sci ; 20(5): 1905-1926, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481802

RESUMEN

Increasing evidence suggests that autophagy plays a major role during renal fibrosis. Transcription factor EB (TFEB) is a critical regulator of autophagy- and lysosome-related gene transcription. However, the pathophysiological roles of TFEB in renal fibrosis and fine-tuned mechanisms by which TFEB regulates fibrosis remain largely unknown. Here, we found that TFEB was downregulated in unilateral ureteral obstruction (UUO)-induced human and mouse fibrotic kidneys, and kidney-specific TFEB overexpression using recombinant AAV serotype 9 (rAAV9)-TFEB in UUO mice alleviated renal fibrosis pathogenesis. Mechanically, we found that TFEB's prevention of extracellular matrix (ECM) deposition depended on autophagic flux integrity and its subsequent blockade of G2/M arrest in tubular cells, rather than the autophagosome synthesis. In addition, we together RNA-seq with CUT&Tag analysis to determine the TFEB targeted gene ATP6V0C, and revealed that TFEB was directly bound to the ATP6V0C promoter only at specific site to promote its expression through CUT&Run-qPCR and luciferase reporter assay. Interestingly, TFEB induced autophagic flux integrity, mainly dependent on scaffold protein ATP6V0C-mediated autophagosome-lysosome fusion by bridging with STX17 and VAMP8 (major SNARE complex) by co-immunoprecipitation analysis, rather than its mediated lysosomal acidification and degradation function. Moreover, we further investigated the underlying mechanism behind the low expression of TEFB in UUO-induced renal fibrosis, and clearly revealed that TFEB suppression in fibrotic kidney was due to DNMT3a-associated TFEB promoter hypermethylation by utilizing methylation specific PCR (MSP) and bisulfite-sequencing PCR (BSP), which could be effectively recovered by 5-Aza-2'-deoxycytidine (5A-za) to alleviate renal fibrosis pathogenesis. These findings reveal for the first time that impaired TFEB-mediated autophagosome-lysosome fusion disorder, tubular cell G2/M arrest and renal fibrosis appear to be sequentially linked in UUO-induced renal fibrosis and suggest that DNMT3a/TFEB/ATP6V0C may serve as potential therapeutic targets to prevent renal fibrosis.


Asunto(s)
Enfermedades Renales , Obstrucción Ureteral , ATPasas de Translocación de Protón Vacuolares , Animales , Humanos , Ratones , Apoptosis , Autofagia/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Línea Celular Tumoral , Fibrosis , Puntos de Control de la Fase G2 del Ciclo Celular , Enfermedades Renales/metabolismo , Lisosomas/metabolismo , Proteínas SNARE/metabolismo , Proteínas SNARE/farmacología , Obstrucción Ureteral/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , ATPasas de Translocación de Protón Vacuolares/farmacología
12.
J Cell Biol ; 223(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38478017

RESUMEN

SM proteins including Sly1 are essential cofactors of SNARE-mediated membrane fusion. Using SNARE and Sly1 mutants and chemically defined in vitro assays, we separate and assess proposed mechanisms through which Sly1 augments fusion: (i) opening the closed conformation of the Qa-SNARE Sed5; (ii) close-range tethering of vesicles to target organelles, mediated by the Sly1-specific regulatory loop; and (iii) nucleation of productive trans-SNARE complexes. We show that all three mechanisms are important and operate in parallel, and that close-range tethering promotes trans-complex assembly when cis-SNARE assembly is a competing process. Further, we demonstrate that the autoinhibitory N-terminal Habc domain of Sed5 has at least two positive activities: it is needed for correct Sed5 localization, and it directly promotes Sly1-dependent fusion. "Split Sed5," with Habc presented solely as a soluble fragment, can function both in vitro and in vivo. Habc appears to facilitate events leading to lipid mixing rather than promoting opening or stability of the fusion pore.


Asunto(s)
Fusión de Membrana , Proteínas Munc18 , Proteínas SNARE , Proteínas de Saccharomyces cerevisiae , Proteínas Munc18/metabolismo , Unión Proteica , Proteínas Qa-SNARE/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Proteínas de Transporte Vesicular/metabolismo
13.
J Cell Biol ; 223(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38478018

RESUMEN

The essential Golgi protein Sly1 is a member of the Sec1/mammalian Unc-18 (SM) family of SNARE chaperones. Sly1 was originally identified through remarkable gain-of-function alleles that bypass requirements for diverse vesicle tethering factors. Employing genetic analyses and chemically defined reconstitutions of ER-Golgi fusion, we discovered that a loop conserved among Sly1 family members is not only autoinhibitory but also acts as a positive effector. An amphipathic lipid packing sensor (ALPS)-like helix within the loop directly binds high-curvature membranes. Membrane binding is required for relief of Sly1 autoinhibition and also allows Sly1 to directly tether incoming vesicles to the Qa-SNARE on the target organelle. The SLY1-20 mutation bypasses requirements for diverse tethering factors but loses this ability if the tethering activity is impaired. We propose that long-range tethers, including Golgins and multisubunit tethering complexes, hand off vesicles to Sly1, which then tethers at close range to initiate trans-SNARE complex assembly and fusion in the early secretory pathway.


Asunto(s)
Vesículas Citoplasmáticas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animales , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Mamíferos/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Munc18/análisis , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Vesículas Citoplasmáticas/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo
14.
Nat Commun ; 15(1): 2652, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38531902

RESUMEN

Tomosyns are widely thought to attenuate membrane fusion by competing with synaptobrevin-2/VAMP2 for SNARE-complex assembly. Here, we present evidence against this scenario. In a novel mouse model, tomosyn-1/2 deficiency lowered the fusion barrier and enhanced the probability that synaptic vesicles fuse, resulting in stronger synapses with faster depression and slower recovery. While wild-type tomosyn-1m rescued these phenotypes, substitution of its SNARE motif with that of synaptobrevin-2/VAMP2 did not. Single-molecule force measurements indeed revealed that tomosyn's SNARE motif cannot substitute synaptobrevin-2/VAMP2 to form template complexes with Munc18-1 and syntaxin-1, an essential intermediate for SNARE assembly. Instead, tomosyns extensively bind synaptobrevin-2/VAMP2-containing template complexes and prevent SNAP-25 association. Structure-function analyses indicate that the C-terminal polybasic region contributes to tomosyn's inhibitory function. These results reveal that tomosyns regulate synaptic transmission by cooperating with synaptobrevin-2/VAMP2 to prevent SNAP-25 binding during SNARE assembly, thereby limiting initial synaptic strength and equalizing it during repetitive stimulation.


Asunto(s)
Proteínas SNARE , Proteína 2 de Membrana Asociada a Vesículas , Animales , Ratones , Proteínas SNARE/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/metabolismo , Fusión de Membrana , Depresión , Sintaxina 1/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas R-SNARE/metabolismo
15.
J Biol Chem ; 300(3): 105782, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38395304

RESUMEN

Intracellular vesicle fusion is driven by the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and their cofactors, including Sec1/Munc18 (SM), α-SNAP, and NSF. α-SNAP and NSF play multiple layers of regulatory roles in the SNARE assembly, disassembling the cis-SNARE complex and the prefusion SNARE complex. How SM proteins coupled with NSF and α-SNAP regulate SNARE-dependent membrane fusion remains incompletely understood. Munc18c, an SM protein involved in the exocytosis of the glucose transporter GLUT4, binds and activates target (t-) SNAREs to accelerate the fusion reaction through a SNARE-like peptide (SLP). Here, using an in vitro reconstituted system, we discovered that α-SNAP blocks the GLUT4 SNAREs-mediated membrane fusion. Munc18c interacts with t-SNAREs to displace α-SNAP, which overcomes the fusion inhibition. Furthermore, Munc18c shields the trans-SNARE complex from NSF/α-SNAP-mediated disassembly and accelerates SNARE-dependent fusion kinetics in the presence of NSF and α-SNAP. The SLP in domain 3a is indispensable in Munc18c-assisted resistance to NSF and α-SNAP. Together, our findings demonstrate that Munc18c protects the prefusion SNARE complex from α-SNAP and NSF, promoting SNARE-dependent membrane fusion through its SLP.


Asunto(s)
Fusión de Membrana , Proteínas Munc18 , Proteínas SNARE , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida , Fusión de Membrana/fisiología , Proteínas Munc18/metabolismo , Proteínas Sensibles a N-Etilmaleimida/genética , Proteínas Sensibles a N-Etilmaleimida/metabolismo , Orgánulos/metabolismo , Péptidos/metabolismo , Proteínas SNARE/metabolismo , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/genética , Animales , Ratones
16.
J Mol Biol ; 436(8): 168502, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38417672

RESUMEN

Regulation of neurotransmitter release during presynaptic plasticity underlies varied forms of information processing in the brain. Munc13s play essential roles in release via their conserved C-terminal region, which contains a MUN domain involved in SNARE complex assembly, and controls multiple presynaptic plasticity processes. Munc13s also have a variable N-terminal region, which in Munc13-1 includes a calmodulin binding (CaMb) domain involved in short-term plasticity and a C2A domain that forms an inhibitory homodimer. The C2A domain is activated by forming a heterodimer with the zinc-finger domain of αRIMs, providing a link to αRIM-dependent short- and long-term plasticity. However, it is unknown how the functions of the N- and C-terminal regions are integrated, in part because of the difficulty of purifying Munc13-1 fragments containing both regions. We describe for the first time the purification of a Munc13-1 fragment spanning its entire sequence except for a flexible region between the C2A and CaMb domains. We show that this fragment is much less active than the Munc13-1 C-terminal region in liposome fusion assays and that its activity is strongly enhanced by the RIM2α zinc-finger domain together with calmodulin. NMR experiments show that the C2A and CaMb domains bind to the MUN domain and that these interactions are relieved by the RIM2α ZF domain and calmodulin, respectively. These results suggest a model whereby Munc13-1 activity in promoting SNARE complex assembly and neurotransmitter release are inhibited by interactions of the C2A and CaMb domains with the MUN domain that are relieved by αRIMs and calmodulin.


Asunto(s)
Calmodulina , Proteínas del Tejido Nervioso , Calmodulina/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Neurotransmisores , Proteínas SNARE/metabolismo , Zinc/metabolismo , Humanos
17.
Sci Rep ; 14(1): 3200, 2024 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331993

RESUMEN

In the Drosophila larval salivary gland, developmentally programmed fusions between lysosomes and secretory granules (SGs) and their subsequent acidification promote the maturation of SGs that are secreted shortly before puparium formation. Subsequently, ongoing fusions between non-secreted SGs and lysosomes give rise to degradative crinosomes, where the superfluous secretory material is degraded. Lysosomal fusions control both the quality and quantity of SGs, however, its molecular mechanism is incompletely characterized. Here we identify the R-SNARE Ykt6 as a novel regulator of crinosome formation, but not the acidification of maturing SGs. We show that Ykt6 localizes to Lamp1+ carrier vesicles, and forms a SNARE complex with Syntaxin 13 and Snap29 to mediate fusion with SGs. These Lamp1 carriers represent a distinct vesicle population that are functionally different from canonical Arl8+, Cathepsin L+ lysosomes, which also fuse with maturing SGs but are controlled by another SNARE complex composed of Syntaxin 13, Snap29 and Vamp7. Ykt6- and Vamp7-mediated vesicle fusions also determine the fate of SGs, as loss of either of these SNAREs prevents crinosomes from acquiring endosomal PI3P. Our results highlight that fusion events between SGs and different lysosome-related vesicle populations are critical for fine regulation of the maturation and crinophagic degradation of SGs.


Asunto(s)
Proteínas SNARE , Vesículas Secretoras , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , Proteínas Qa-SNARE/metabolismo , Vesículas Secretoras/metabolismo , Fusión de Membrana/fisiología , Lisosomas/metabolismo
18.
J Virol ; 98(2): e0140823, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38189252

RESUMEN

Autophagy generally functions as a cellular surveillance mechanism to combat invading viruses, but viruses have evolved various strategies to block autophagic degradation and even subvert it to promote viral propagation. White spot syndrome virus (WSSV) is the most highly pathogenic crustacean virus, but little is currently known about whether crustacean viruses such as WSSV can subvert autophagic degradation for escape. Here, we show that even though WSSV proliferation triggers the accumulation of autophagosomes, autophagic degradation is blocked in the crustacean species red claw crayfish. Interestingly, the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex including CqSNAP29, CqVAMP7, and the novel autophagosome SNARE protein CqSyx12 is required for autophagic flux to restrict WSSV replication, as revealed by gene silencing experiments. Simultaneously, the expressed WSSV tegument protein VP26, which likely localizes on autophagic membrane mediated by its transmembrane region, binds the Qb-SNARE domain of CqSNAP29 to competitively inhibit the binding of CqSyx12-Qa-SNARE with CqSNAP29-Qb-SNARE; this in turn disrupts the assembly of the CqSyx12-SNAP29-VAMP7 SNARE complex, which is indispensable for the proposed fusion of autophagosomes and lysosomes. Consequently, the autophagic degradation of WSSV is likely suppressed by the expressed VP26 protein in vivo in crayfish, thus probably protecting WSSV components from degradation via the autophagosome-lysosome pathway, resulting in evasion by WSSV. Collectively, these findings highlight how a DNA virus can subvert autophagic degradation by impairing the assembly of the SNARE complex to achieve evasion, paving the way for understanding host-DNA virus interactions from an evolutionary point of view, from crustaceans to mammals.IMPORTANCEWhite spot syndrome virus (WSSV) is one of the largest animal DNA viruses in terms of its genome size and has caused huge economic losses in the farming of crustaceans such as shrimp and crayfish. Detailed knowledge of WSSV-host interactions is still lacking, particularly regarding viral escape from host immune clearance. Intriguingly, we found that the presence of WSSV-VP26 might inhibit the autophagic degradation of WSSV in vivo in the crustacean species red claw crayfish. Importantly, this study is the first to show that viral protein VP26 functions as a core factor to benefit WSSV escape by disrupting the assembly of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, which is necessary for the proposed fusion of autophagosomes with lysosomes for subsequent degradation. These findings highlight a novel mechanism of DNA virus evasion by blocking SNARE complex assembly and identify viral VP26 as a key candidate for anti-WSSV targeting.


Asunto(s)
Astacoidea , Autofagia , Virus del Síndrome de la Mancha Blanca 1 , Animales , Astacoidea/metabolismo , Autofagosomas/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida , Virus del Síndrome de la Mancha Blanca 1/fisiología
19.
Plant J ; 118(4): 1036-1053, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38289468

RESUMEN

In plants so-called plasma membrane intrinsic proteins (PIPs) are major water channels governing plant water status. Membrane trafficking contributes to functional regulation of major PIPs and is crucial for abiotic stress resilience. Arabidopsis PIP2;1 is rapidly internalised from the plasma membrane in response to high salinity to regulate osmotic water transport, but knowledge of the underlying mechanisms is fragmentary. Here we show that PIP2;1 occurs in complex with SYNTAXIN OF PLANTS 132 (SYP132) together with the plasma membrane H+-ATPase AHA1 as evidenced through in vivo and in vitro analysis. SYP132 is a multifaceted vesicle trafficking protein, known to interact with AHA1 and promote endocytosis to impact growth and pathogen defence. Tracking native proteins in immunoblot analysis, we found that salinity stress enhances SYP132 interactions with PIP2;1 and PIP2;2 isoforms to promote redistribution of the water channels away from the plasma membrane. Concurrently, AHA1 binding within the SYP132-complex was significantly reduced under salinity stress and increased the density of AHA1 proteins at the plasma membrane in leaf tissue. Manipulating SYP132 function in Arabidopsis thaliana enhanced resilience to salinity stress and analysis in heterologous systems suggested that the SNARE influences PIP2;1 osmotic water permeability. We propose therefore that SYP132 coordinates AHA1 and PIP2;1 abundance at the plasma membrane and influences leaf hydraulics to regulate plant responses to abiotic stress signals.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Qa-SNARE , Estrés Salino , Arabidopsis/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Qa-SNARE/metabolismo , Proteínas Qa-SNARE/genética , Membrana Celular/metabolismo , Transporte de Proteínas , Acuaporinas/metabolismo , Acuaporinas/genética , ATPasas de Translocación de Protón/metabolismo , ATPasas de Translocación de Protón/genética , Proteínas SNARE/metabolismo , Proteínas SNARE/genética
20.
J Biol Chem ; 300(3): 105677, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272225

RESUMEN

The emerging roles of O-GlcNAcylation, a distinctive post-translational modification, are increasingly recognized for their involvement in the intricate processes of protein trafficking and secretion. This modification exerts its influence on both conventional and unconventional secretory pathways. Under healthy and stress conditions, such as during diseases, it orchestrates the transport of proteins within cells, ensuring timely delivery to their intended destinations. O-GlcNAcylation occurs on key factors, like coat protein complexes (COPI and COPII), clathrin, SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors), and GRASP55 (Golgi reassembly stacking protein of 55 kDa) that control vesicle budding and fusion in anterograde and retrograde trafficking and unconventional secretion. The understanding of O-GlcNAcylation offers valuable insights into its critical functions in cellular physiology and the progression of diseases, including neurodegeneration, cancer, and metabolic disorders. In this review, we summarize and discuss the latest findings elucidating the involvement of O-GlcNAc in protein trafficking and its significance in various human disorders.


Asunto(s)
Clatrina , Proteínas SNARE , Humanos , Acetilglucosamina/metabolismo , Clatrina/metabolismo , Procesamiento Proteico-Postraduccional , Transporte de Proteínas/fisiología , Proteínas SNARE/metabolismo , Animales , Acetilación , Glucosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA