Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.051
Filtrar
1.
Sci Rep ; 14(1): 17450, 2024 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134590

RESUMEN

Because of the advent of genome-editing technology, gene knockout (KO) hamsters have become attractive research models for diverse diseases in humans. This study established a new KO model of diabetes by disrupting the insulin receptor substrate-2 (Irs2) gene in the golden (Syrian) hamster. Homozygous KO animals were born alive but with delayed postnatal growth until adulthood. They showed hyperglycemia, high HbA1c, and impaired glucose tolerance. However, they normally responded to insulin stimulation, unlike Irs2 KO mice, an obese type 2 diabetes (T2D) model. Consistent with this, Irs2 KO hamsters did not increase serum insulin levels upon glucose administration and showed ß-cell hypoplasia in their pancreas. Thus, our Irs2 KO hamster provide a unique T2D animal model that is distinct from the obese T2D models. This model may contribute to a better understanding of the pathophysiology of human non-obese T2D with ß-cell dysfunction, the most common type of T2D in East Asian countries, including Japan.


Asunto(s)
Diabetes Mellitus Tipo 2 , Modelos Animales de Enfermedad , Proteínas Sustrato del Receptor de Insulina , Células Secretoras de Insulina , Mesocricetus , Animales , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina/genética , Cricetinae , Insulina/metabolismo , Técnicas de Inactivación de Genes , Masculino , Humanos , Glucemia/metabolismo
2.
J Agric Food Chem ; 72(29): 16449-16460, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38996051

RESUMEN

Milk fat synthesis has garnered significant attention due to its influence on the quality of milk. Recently, an increasing amount of proofs have elucidated that microRNAs (miRNAs) are important post-transcriptional factor involved in regulating gene expression and play a significant role in milk fat synthesis. MiR-200a was differentially expressed in the mammary gland tissue of dairy cows during different lactation periods, which indicated that miR-200a was a candidate miRNA involved in regulating milk fat synthesis. In our research, we investigated the potential function of miR-200a in regulating milk fat biosynthesis in bovine mammary epithelial cells (BMECs). We discovered that miR-200a inhibited cellular triacylglycerol (TAG) synthesis and suppressed lipid droplet formation; at the same time, miR-200a overexpression suppressed the mRNA and protein expression of milk fat metabolism-related genes, such as fatty acid synthase (FASN), peroxisome proliferator-activated receptor gamma (PPARγ), sterol regulatory element-binding protein 1 (SREBP1), CCAAT enhancer binding protein alpha (CEBPα), etc. However, knocking down miR-200a displayed the opposite results. We uncovered that insulin receptor substrate 2 (IRS2) was a candidate target gene of miR-200a through the bioinformatics online program TargetScan. Subsequently, it was confirmed that miR-200a directly targeted the 3'-untranslated region (3'-UTR) of IRS2 via real-time fluorescence quantitative PCR (RT-qPCR), western blot analysis, and dual-luciferase reporter gene assay. Additionally, IRS2 knockdown in BMECs has similar effects to miR-200a overexpression. Our research set up the mechanism by which miR-200a interacted with IRS2 and discovered that miR-200a targeted IRS2 and modulated the activity of the PI3K/Akt signaling pathway, thereby taking part in regulating milk fat synthesis in BMECs. Our research results provided valuable information on the molecular mechanisms for enhancing milk quality from the view of miRNA-mRNA regulatory networks.


Asunto(s)
Células Epiteliales , Proteínas Sustrato del Receptor de Insulina , Glándulas Mamarias Animales , MicroARNs , Leche , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Animales , Bovinos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Leche/metabolismo , Leche/química , Células Epiteliales/metabolismo , Femenino , Proteínas Sustrato del Receptor de Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina/genética , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/citología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Triglicéridos/metabolismo , Triglicéridos/biosíntesis , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Grasas/metabolismo , Lactancia/genética
3.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3280-3287, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-39041090

RESUMEN

Based on the insulin receptor substrate(IRS)/phosphoinositide 3-kinase(PI3K)/protein kinase B(Akt) pathway, the intervention effect of Yupingfeng Powder on type 2 diabetes mellitus(T2DM) rats was studied, and the potential mechanism of improving T2DM hepatic insulin resistance was explored. A T2DM rat model was established by feeding with high-fat and high-sugar feed combined with intraperitoneal injection of streptozotocin. Successfully modeled rats were selected and divided into a model group, a positive control group(MET), and a Yupingfeng Powder group. At the same time, a blank group was set up, and corresponding drugs were given by gavage. The model group and blank group were given an equal amount of physiological saline by gavage. During the experiment, body mass and fasting blood glucose were regularly measured, and glucose tolerance and insulin tolerance were measured at the end of the experiment. After the experiment, the levels of blood glucose, insulin, blood lipids, and related liver function indicators were measured; changes in liver pathological damage were observed, levels of liver monoamine oxidase were detected, and qRT-PCR was used to detect mRNA expression levels of IRS/PI3K/Akt pathway related genes. Compared with the model group, the Yupingfeng Powder group had an increase in body weight, a decrease in fasting blood glucose, fasting insulin, and steady-state model evaluation index, a decrease in the area under the curve of glucose tolerance and insulin tolerance tests, a decrease in serum total cholesterol, triglycerides, and low-density lipoprotein cholesterol content, and an increase in high-density lipoprotein cholesterol content. Compared with the model group, the Yupingfeng Powder group showed a decrease in liver monoamine oxidase levels, a decrease in serum aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and total bilirubin levels, and an increase in total protein and albumin levels. Hematoxylin-eosin(HE) staining showed a reduction in pathological liver cell damage. Compared with the model group, the Yupingfeng Powder group showed a significant increase in the mRNA expression levels of IRS1, PI3K, and Akt in the liver of rats, as well as a significant decrease in the mRNA expression levels of interleukin-6(IL-6) and tumor necrosis factor-α(TNF-α). This indicates that Yupingfeng Powder can regulate the IRS/PI3K/Akt signaling pathway and glucose and lipid metabolism disorders, increase insulin sensitivity, improve hepatic insulin resistance, and thus play a therapeutic role in T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Medicamentos Herbarios Chinos , Proteínas Sustrato del Receptor de Insulina , Resistencia a la Insulina , Hígado , Fosfatidilinositol 3-Quinasas , Polvos , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Animales , Ratas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/administración & dosificación , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Hígado/metabolismo , Hígado/efectos de los fármacos , Masculino , Proteínas Sustrato del Receptor de Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina/genética , Transducción de Señal/efectos de los fármacos , Ratas Sprague-Dawley , Glucemia/metabolismo , Insulina/metabolismo , Humanos
4.
Front Biosci (Landmark Ed) ; 29(7): 257, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39082352

RESUMEN

BACKGROUND: The importance of N6-methyladenosine (m6A) modification in tumorigenesis and progression have been highlighted. This study aimed to investigate the modification of insulin receptor substrate 1 (IRS1) by m6A and its role in oral squamous cell carcinoma (OSCC). METHODS: Bioinformatics was employed to predict differential genes related to epithelial-mesenchymal transition (EMT) in OSCC. Seventeen pairs of OSCC and paracancerous tissue samples were collected. The impact of IRS1 on OSCC cell growth and EMT was evaluated. The fluctuations in IRS1 enrichment and the involvement of p53/Line-1 were investigated. RESULTS: IRS1 was highly expressed in OSCC. IRS1 silencing decreased OSCC cell proliferation and increased apoptosis. IRS1 silencing hindered EMT by regulating related markers. IRS1 silencing upregulated p53 and downregulated Line-1 ORF1p. The p53 inhibition reversed the effects of IRS1 silencing and induced EMT in OSCC cells. Furthermore, the m6A modification of IRS1 was increased in OSCC cells. IRS1 were positively regulated by the m6A regulators methyltransferase-like 14 (METTL14) and YTH domain-containing protein 1 (YTHDC1). IRS1 bound to YTHDC1, and YTHDC1 knockdown inhibited the IRS1 nuclear export. The obesity-associated protein (FTO) negatively regulated IRS1, and FTO overexpression reversed the IRS1-induced OSCC tumor growth. CONCLUSIONS: m6A methylation-mediated IRS1 regulated EMT in OSCC through p53/Line-1. These findings provide potential therapeutic strategies for managing OSCC.


Asunto(s)
Adenosina , Carcinoma de Células Escamosas , Proliferación Celular , Transición Epitelial-Mesenquimal , Proteínas Sustrato del Receptor de Insulina , Neoplasias de la Boca , Transducción de Señal , Proteína p53 Supresora de Tumor , Proteínas Sustrato del Receptor de Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina/genética , Humanos , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Adenosina/análogos & derivados , Adenosina/metabolismo , Línea Celular Tumoral , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Apoptosis/genética , Animales , Ratones , Ratones Desnudos
5.
J Insect Sci ; 24(4)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38958928

RESUMEN

Insulin receptor substrate (IRS) proteins are key mediators in insulin signaling pathway. In social insect lives, IRS proteins played important roles in caste differentiation and foraging, but there function in disease defenses such as active immunization has not been reported yet. To investigate the issue, we successfully suppressed the IRS gene 3 days after dsRNA injection. Suppressing IRS gene increased the contents of glucose, trehalose, glycogen, and triglyceride and decreased the content of pyruvate in termites, and led to the metabolic disorder of glucose and lipids. IRS suppressing significantly enhanced grooming behaviors of nestmates of fungus-contaminated termites and hence increased the conidial load in the guts of the nestmates. Additionally, IRS suppressing led to significant downregulation of the immune genes Gram-negative bacteria-binding protein2 (GNBP2) and termicin and upregulation of the apoptotic gene caspase8, and hence diminished antifungal activity of nestmates of fungus-contaminated termites. The above abnormal behavioral and physiological responses significantly decreased the survival rate of dsIRS-injected nestmates of the fungus-contaminated termites. These findings suggest that IRS is involved in regulation of active immunization in termites, providing a better understanding of the link between insulin signaling and the social immunity of termites.


Asunto(s)
Proteínas Sustrato del Receptor de Insulina , Isópteros , Animales , Isópteros/inmunología , Proteínas Sustrato del Receptor de Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética
6.
Cereb Cortex ; 34(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38836287

RESUMEN

Somatic mutations have been identified in 10% to 63% of focal cortical dysplasia type II samples, primarily linked to the mTOR pathway. When the causative genetic mutations are not identified, this opens the possibility of discovering new pathogenic genes or pathways that could be contributing to the condition. In our previous study, we identified a novel candidate pathogenic somatic variant of IRS-1 c.1791dupG in the brain tissue of a child with focal cortical dysplasia type II. This study further explored the variant's role in causing type II focal cortical dysplasia through in vitro overexpression in 293T and SH-SY5Y cells and in vivo evaluation via in utero electroporation in fetal brains, assessing effects on neuronal migration, morphology, and network integrity. It was found that the mutant IRS-1 variant led to hyperactivity of p-ERK, increased cell volume, and was predominantly associated with the MAPK signaling pathway. In vivo, the IRS-1 c.1791dupG variant induced abnormal neuron migration, cytomegaly, and network hyperexcitability. Notably, the ERK inhibitor GDC-0994, rather than the mTOR inhibitor rapamycin, effectively rescued the neuronal defects. This study directly highlighted the ERK signaling pathway's role in the pathogenesis of focal cortical dysplasia II and provided a new therapeutic target for cases of focal cortical dysplasia II that are not treatable by rapamycin analogs.


Asunto(s)
Proteínas Sustrato del Receptor de Insulina , Sistema de Señalización de MAP Quinasas , Mutación , Humanos , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Animales , Malformaciones del Desarrollo Cortical de Grupo I/genética , Malformaciones del Desarrollo Cortical de Grupo I/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Neuronas/metabolismo , Neuronas/patología , Movimiento Celular/genética , Células HEK293 , Femenino , Displasia Cortical Focal , Epilepsia
7.
Proc Natl Acad Sci U S A ; 121(17): e2401716121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38625937

RESUMEN

Serine phosphorylations on insulin receptor substrate 1 (IRS-1) by diverse kinases aoccur widely during obesity-, stress-, and inflammation-induced conditions in models of insulin resistance and type 2 diabetes. In this study, we define a region within the human IRS-1, which is directly C-terminal to the PTB domain encompassing numerous serine phosphorylation sites including Ser307 (mouse Ser302) and Ser312 (mouse 307) creating a phosphorylation insulin resistance (PIR) domain. We demonstrate that the IRS-1 PTB-PIR with its unphosphorylated serine residues interacts with the insulin receptor (IR) but loses the IR-binding when they are phosphorylated. Surface plasmon resonance studies further confirm that the PTB-PIR binds stronger to IR than just the PTB domain, and that phosphorylations at Ser307, Ser312, Ser315, and Ser323 within the PIR domain result in abrogating the binding. Insulin-responsive cells containing the mutant IRS-1 with all these four serines changed into glutamates to mimic phosphorylations show decreased levels of phosphorylations in IR, IRS-1, and AKT compared to the wild-type IRS-1. Hydrogen-deuterium exchange mass spectrometry experiments indicating the PIR domain interacting with the N-terminal lobe and the hinge regions of the IR kinase domain further suggest the possibility that the IRS-1 PIR domain protects the IR from the PTP1B-mediated dephosphorylation.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Ratones , Humanos , Animales , Fosforilación , Serina/metabolismo , Receptor de Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Línea Celular , Fosfoproteínas/metabolismo , Insulina/metabolismo
8.
J Sci Food Agric ; 104(11): 6933-6946, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38597456

RESUMEN

BACKGROUND: Tea dregs, typically generated during the production of instant tea or tea beverages, have conventionally been regarded as waste material and routinely discarded. Nevertheless, contemporary research endeavors are concentrating on discovering efficient methods for utilizing the potential of this discarded resource. RESULTS: In this study, we employed a sequential extraction method using chemical chelating agents to extract and isolate four distinct cell wall polysaccharides, designated as CWTPS-1 through CWTPS-4, from the tea dregs of Liubao brick tea. A comprehensive investigation into their physicochemical, structural, and hypoglycemic properties was conducted. The analysis of chemical composition and physicochemical characteristics revealed that all four CWTPSs were characterized as acidic polysaccharides, albeit with varying chemical compositions and physicochemical attributes. Specifically, the xyloglucan fractions, CWTPS-3 and CWTPS-4, were found to be rich in glucose and xylose, displaying a more uniform molecular weight distribution, greater structural stability, and a more irregular surface compared to the others. Moreover, they exhibited a higher diversity of monosaccharide residues. Importantly, our research unveiled that all four CWTPSs exhibited the capacity to modulate key glucose-regulated and antioxidant enzyme activities within HepG2 cells via the IRS-1-PI3K/AKT signaling pathway, thereby ameliorating cellular insulin resistance. Furthermore, our correlation analysis highlighted significant associations between monosaccharide composition and neutral sugar content with the observed hypoglycemic activity of CWTPSs. CONCLUSION: This study highlights the potential of utilizing tea dregs as a valuable resource, making a significant contribution to the advancement of the tea industry. Furthermore, CWTPS-4 exhibits promising prospects for further development as a functional food ingredient or additive. © 2024 Society of Chemical Industry.


Asunto(s)
Camellia sinensis , Pared Celular , Hipoglucemiantes , Polisacáridos , , Polisacáridos/química , Polisacáridos/farmacología , Polisacáridos/aislamiento & purificación , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/aislamiento & purificación , Pared Celular/química , Humanos , Células Hep G2 , Té/química , Camellia sinensis/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/aislamiento & purificación , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/química , Proteínas Sustrato del Receptor de Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina/genética
9.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167173, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38631410

RESUMEN

Here, we show that insulin induces palmitoylation turnover of Caveolin-2 (Cav-2) in adipocytes. Acyl protein thioesterases-1 (APT1) catalyzes Cav-2 depalmitoylation, and zinc finger DHHC domain-containing protein palmitoyltransferase 21 (ZDHHC21) repalmitoylation of the depalmitoylated Cav-2 for the turnover, thereby controlling insulin receptor (IR)-Cav-2-insulin receptor substrate-1 (IRS-1)-Akt-driven signaling. Insulin-induced palmitoylation turnover of Cav-2 facilitated glucose uptake and fat storage through induction of lipogenic genes. Cav-2-, APT1-, and ZDHHC21-deficient adipocytes, however, showed increased induction of lipolytic genes and glycerol release. In addition, white adipose tissues from insulin sensitive and resistant obese patients exhibited augmented expression of LYPLA1 (APT1) and ZDHHC20 (ZDHHC20). Our study identifies the specific enzymes regulating Cav-2 palmitoylation turnover, and reveals a new mechanism by which insulin-mediated lipid metabolism is controlled in adipocytes.


Asunto(s)
Adipocitos , Caveolina 2 , Proteínas Sustrato del Receptor de Insulina , Insulina , Metabolismo de los Lípidos , Lipoilación , Receptor de Insulina , Humanos , Adipocitos/metabolismo , Animales , Proteínas Sustrato del Receptor de Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina/genética , Ratones , Caveolina 2/metabolismo , Caveolina 2/genética , Receptor de Insulina/metabolismo , Receptor de Insulina/genética , Insulina/metabolismo , Obesidad/metabolismo , Obesidad/genética , Tioléster Hidrolasas/metabolismo , Tioléster Hidrolasas/genética , Aciltransferasas/metabolismo , Aciltransferasas/genética , Transducción de Señal , Resistencia a la Insulina , Células 3T3-L1 , Masculino
10.
Int J Obes (Lond) ; 48(7): 934-940, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38491191

RESUMEN

BACKGROUND/OBJECTIVE: Insulin resistance is more prominent in men than women. If this involves adipose tissue is unknown and was presently examined. SUBJECTS/METHODS: AdipoIR (in vivo adipose insulin resistance index) was measured in 2344 women and 787 men. In 259 of the women and 54 of the men, insulin induced inhibition of lipolysis (acylglycerol breakdown) and stimulation of lipogenesis (glucose conversion to acylglycerols) were determined in subcutaneous adipocytes; in addition, basal (spontaneous) lipolysis was also determined in the fat cells. In 234 women and 115 men, RNAseq expression of canonical insulin signal genes were measured in subcutaneous adipose tissue. Messenger RNA transcripts of the most discriminant genes were quantified in 175 women and 109 men. RESULTS: Men had higher AdipoIR values than women but only when obesity (body mass index 30 kg/m2 or more) was present (p < 0.0001). The latter sex dimorphism was found among physically active and sedentary people, in those with and without cardiometabolic disease and in people using nicotine or not (p = 0.0003 or less). In obesity, adipocyte insulin sensitivity (half maximum effective hormone concentration) and maximal antilipolytic effect were tenfold and 10% lower, respectively, in men than women (p = 0.005 or less). Basal rate of lipolysis was two times higher in men than women (p > 0.0001). Sensitivity and maximum effect of insulin on lipogenesis were similar in both sexes (p = 0.26 and p = 0.18, respectively). When corrected for multiple comparison only RNAseq expression of insulin receptor substrate 1 (IRS1) was lower in men than women (p < 0.0001). The mRNA transcript for IRS1 was 60% higher in women than men (p < 0.0001). CONCLUSIONS: In obesity, adipose tissue insulin resistance is more pronounced in men than in women. The mechanism involves less efficient insulin-mediated inhibition of adipocyte lipolysis, increased basal rate of lipolysis and decreased adipose expression of a key element of insulin signaling, IRS1.


Asunto(s)
Proteínas Sustrato del Receptor de Insulina , Resistencia a la Insulina , Lipólisis , Obesidad , Humanos , Femenino , Masculino , Lipólisis/fisiología , Resistencia a la Insulina/fisiología , Obesidad/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina/genética , Adulto , Persona de Mediana Edad , Tejido Adiposo/metabolismo , Caracteres Sexuales , Adipocitos/metabolismo , Factores Sexuales
11.
FASEB J ; 38(3): e23432, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38300173

RESUMEN

The IGF signaling pathway plays critical role in regulating skeletal myogenesis. We have demonstrated that KIF5B, the heavy chain of kinesin-1 motor, promotes myoblast differentiation through regulating IGF-p38MAPK activation. However, the roles of the kinesin light chain (Klc) in IGF pathway and myoblast differentiation remain elusive. In this study, we found that Klc1 was upregulated during muscle regeneration and downregulated in senescence mouse muscles and dystrophic muscles from mdx (X-linked muscular dystrophic) mice. Gain- and loss-of-function experiments further displayed that Klc1 promotes AKT-mTOR activity and positively regulates myogenic differentiation. We further identified that the expression levels of IRS1, the critical node of IGF-1 signaling, are downregulated in Klc1-depleted myoblasts. Coimmunoprecipitation study revealed that IRS1 interacted with the 88-154 amino acid sequence of Klc1 via its PTB domain. Notably, the reduced Klc1 levels were found in senescence and osteoporosis skeletal muscle samples from both mice and human. Taken together, our findings suggested a crucial role of Klc1 in the regulation of IGF-AKT pathway during myogenesis through stabilizing IRS1, which might ultimately influence the development of muscle-related disorders.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina , Proteínas Proto-Oncogénicas c-akt , Animales , Humanos , Ratones , Proteínas Sustrato del Receptor de Insulina/genética , Cinesinas/genética , Ratones Endogámicos mdx , Mioblastos , Transducción de Señal
12.
Clin Endocrinol (Oxf) ; 100(3): 284-293, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172081

RESUMEN

OBJECTIVE: Insulin receptor substract 1 (IRS1) protein is an important signal transduction adapter for extracellular signal transduction from insulin-like growth factor-1 receptor and its family members to IRS1 downstream proteins. IRS1 has been reported to be involved in tumourigenesis and metastasis in some of solid tumors. Investigating the role of IRS1 in thyroid cancer can help to screen high risk patients at the initial diagnosis. DESIGN, PATIENTS AND MEASUREMENTS: Immunohistochemical assay was used to detect the expression levels of IRS1 in 131 metastatic thyroid cancer tissues. Wound healing, cell invasion and colony formation assays were used to study the functions of IRS1 in vitro. RNA sequencing (RNA-seq) and Western blot analysis analyses were performed to examine the underlying regulation mechanisms of IRS1 in thyroid cancer cells. RESULTS: IRS1 was highly expressed in thyroid cancers and its expression was positively associated with distant metastasis and advanced clinical stages. In vitro studies demonstrated that IRS1 is an important mediator of migration, invasion and colony formation of thyroid cancer cells. RNA-seq showed that IRS1 promoted the metastasis of thyroid cancer by regulating epithelial-mesenchymal transition and phosphoinositide 3-kinase (PI3K)/AKT pathway. CONCLUSIONS: IRS1 overexpression contributes to the aggressiveness of thyroid cancer and is expected to be a stratified marker and a potential therapeutic target for thyroid cancer.


Asunto(s)
Fosfatidilinositol 3-Quinasa , Neoplasias de la Tiroides , Humanos , Fosfatidilinositol 3-Quinasa/genética , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Proliferación Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Neoplasias de la Tiroides/patología , Regulación Neoplásica de la Expresión Génica , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo
13.
Int J Oncol ; 64(3)2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38214343

RESUMEN

Triple­negative breast cancer (TNBC) is the most malignant subtype of breast cancer. Androgen receptor (AR) has been identified as a potential therapeutic target for AR­positive TNBC; however, clinical trials have not yet produced an effective treatment. The present study aimed to identify a novel treatment regimen to improve the prognosis of AR­positive TNBC. First, a combination of an AR inhibitor (enzalutamide, Enz) and a selective histone deacetylase inhibitor (chidamide, Chid) was used to treat AR­positive TNBC cell lines, and a synergistic effect of these drugs was observed. The combination treatment inhibited cell proliferation and migration by arresting the cell cycle at the G2/M phase. Subsequently, next­generation sequencing was performed to detect changes in gene regulation. The results showed that the PI3K/Akt signalling pathway was significantly inhibited by the combination treatment of Enz and Chid. Gene Set Enrichment Analysis revealed that the combination group was significantly enriched in KRAS signalling. Analysis of the associated genes revealed that insulin receptor substrate 4 (IRS4) may have a critical role in blocking the activation of KRAS signalling. In a mouse xenograft model, combination treatment also inhibited the PI3K/Akt signalling pathway by upregulating the expression of IRS4 and thereby suppressing tumour growth. In conclusion, the results of the present study revealed that combination treatment with Enz and Chid can upregulate IRS4, which results in the blocking of KRAS signalling and suppression of tumour growth. It may be hypothesised that the expression levels of IRS4 could be used as a biomarker for screening patients with AR­positive TNBC using Enz and Chid combination therapy.


Asunto(s)
Inhibidores de Histona Desacetilasas , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proliferación Celular , Línea Celular Tumoral
14.
Lab Med ; 55(2): 215-219, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-37481466

RESUMEN

OBJECTIVE: Nonalcoholic fatty liver disease (NAFLD), which is an emerging global chronic liver disease, has a close association with insulin resistance. We aimed to determine whether the Gly1057Asp (rs1805097) polymorphism of the insulin receptor substrate 2 (IRS2) gene is associated with NAFLD. METHODS: Using the polymerase chain reaction-restriction fragment length polymorphism method, 135 patients with biopsy-proven NAFLD and 135 controls underwent IRS2 genotype analysis. RESULTS: Genotype and allele distributions of the IRS2 gene Gly1057Asp variant conformed to the Hardy-Weinberg equilibrium in both the case and control groups (P > .05). The Asp/Asp genotype of IRS2 gene Gly1057Asp polymorphism compared with Gly/Gly genotype was associated with a 2.1-fold increased risk for NAFLD after adjustment for confounding factors (P = .029; odds ratio = 2.10, 95% CI = 1.23-3.97). CONCLUSION: Our findings revealed for the first time that the Gly1057Asp Asp/Asp genotype of the IRS2 gene is a marker of increased NAFLD susceptibility; however, studies in other populations are required to confirm the results.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Estudios de Casos y Controles , Predisposición Genética a la Enfermedad , Genotipo , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Polimorfismo Genético , Polimorfismo de Nucleótido Simple/genética , Factores de Riesgo
15.
Mol Oncol ; 18(3): 762-777, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37983945

RESUMEN

Lung cancer is the leading cause of cancer-related deaths worldwide. Lung adenocarcinomas (LUADs) are a major subtype of non-small-cell lung cancers (NSCLCs). About 25% of LUADs harbor GTPase KRAS mutations associated with poor prognosis and limited treatment options. While encouraging tumor response to novel covalent inhibitors specifically targeting KRASG12C has been shown in the clinic, either intrinsic resistance exists or acquired therapeutic resistance arises upon treatment. There is an unmet need to identify new therapeutic targets for treating LUADs with activating KRAS mutations, particularly those with resistance to KRASG12C inhibitor(s). In this study, we have revealed that F-box/LRR-repeat protein 16 (FBXL16) is selectively upregulated in LUAD with KRAS mutations. It promotes LUAD cell growth and transforms lung epithelial cells. Importantly, FBXL16 depletion greatly enhances sensitivity to the KRASG12C inhibitor (sotorasib) in resistant cells by downregulating phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB; also known as AKT) signaling. Mechanistically, FBXL16 upregulates insulin receptor substrate 1 (IRS1) protein stability, leading to an increase of IGF1/AKT signaling, thereby promoting cell growth and migration. Taken together, our study highlights the potential of FBXL16 as a therapeutic target for treating LUAD with KRAS activating mutations.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Resistencia a Medicamentos , Mutación/genética
16.
J Sci Food Agric ; 104(6): 3437-3447, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38111200

RESUMEN

BACKGROUND: Obesity induces insulin resistance and chronic inflammation, impacting human health. The relationship between obesity, gut microbiota, and regulatory mechanisms has been studied extensively. Dendrobium officinale polysaccharide (DOP), a traditional Chinese herbal medicine, potentially reduces insulin resistance. However, the mechanism through which DOP affects gut microbiota and alleviates obesity-induced insulin resistance in rats requires further investigation. RESULTS: The current study aimed to assess the impact of DOP on gut microbiota and insulin resistance in rats on a high-fat diet. The results revealed that DOP effectively reduced blood lipids, glucose disorders, oxidative stress, and inflammatory infiltration in the liver of obese Sprague Dawley rats. This was achieved by downregulating SOCS3 expression and upregulating insulin receptor substrate-1 (IRS-1) by regulating the JAK/STAT/SOCS3 signaling pathway. Notably, DOP intervention enhanced the abundance of beneficial gut microbiota and reduced harmful microbiota. Correlation analysis demonstrated significant associations among intestinal microbiota, SOCS3-mediated IRS-1 expression, and inflammatory factors. CONCLUSION: Dendrobium officinale polysaccharide regulated the gut microbiota, enhanced IRS-1 expression, and mitigated liver injury and insulin resistance due to a high-fat diet. These findings depict the potential anti-insulin resistance properties of DOP and offer further evidence for addressing obesity and its complications. © 2023 Society of Chemical Industry.


Asunto(s)
Dendrobium , Microbioma Gastrointestinal , Resistencia a la Insulina , Ratas , Humanos , Animales , Dendrobium/química , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Ratas Sprague-Dawley , Polisacáridos/química , Transducción de Señal , Obesidad/tratamiento farmacológico , Proteína 3 Supresora de la Señalización de Citocinas/genética , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo
17.
Acta Med Indones ; 55(3): 255-260, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37915155

RESUMEN

BACKGROUND: Cardiovascular disease is driven by traditional risk factors, sex, and genetic differences. The Asian population, specifically Indonesians, has been known at high risk of insulin resistance and endothelial dysfunction. A possible genetic risk factor related to cardiovascular diseases is Gly972Arg polymorphism of insulin receptor substrate 1 (IRS-1) gene, as this impairs endothelial function. To date, whether there is a gender difference in Gly972Arg polymorphism of the IRS-1 gene in Indonesians is unknown. This study aimed to to define whether there is a gender difference in Gly972Arg polymorphism of the IRS-1 gene in Indonesians. METHODS: We studied adults living in two areas (rural and urban) in Indonesia. We collected demographic and clinical data from the study subjects. Gly972Arg polymorphism of the IRS-1 gene (rs1801278) was detected using TaqMan real-time polymerase chain reaction. RESULTS: A total of 378 subjects were recruited. The wild-type allele (CC) was found in 86 (22.8%) subjects, heterozygous mutant allele (CT) in 245 (64.8%), and homozygous mutant allele in 47 (12.4%). The proportion of subjects with T alleles was significantly higher among women than men (54.6% vs. 45.4%, odds ratio: 1.89; p = 0.01). Subjects with T allele more often have hypertension (odds ratio: 1.69, p = 0.058). CONCLUSION: There were a higher proportion of women than men carrying the T allele of Gly972Arg polymorphism among Indonesians. Individuals with the T allele appeared to show a greater prevalence of hypertension. These results may explain a possible mechanism of the high prevalence of metabolic syndrome in Indonesia, especially in women.


Asunto(s)
Enfermedades Cardiovasculares , Hipertensión , Resistencia a la Insulina , Adulto , Femenino , Humanos , Masculino , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/genética , Hipertensión/epidemiología , Hipertensión/genética , Indonesia/epidemiología , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Resistencia a la Insulina/genética , Factores de Riesgo , Factores Sexuales
18.
J Agric Food Chem ; 71(48): 18780-18791, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37991345

RESUMEN

Quinoa is a nutrient-rich pseudocereal with a lower glycemic index and glycemic load. However, its therapeutic potency and underlying mechanism against insulin resistance (IR) have not been fully elucidated. In this work, network pharmacology was applied to screen IR targets and their related pathways. The efficacy and mechanism of black quinoa polyphenols (BQP) on IR improvement were evaluated and uncovered based on the IR model in vitro combined with molecular docking. Ten phenolic constituents of BQP were detected, and the network pharmacology results show that PI3K/Akt pathways are the main pathways in BQP against IR. The in vitro assay proved that BQP increases the glucose consumption and glycogen synthesis via upregulating insulin receptor substrate 1 (IRS1)/PI3K/Akt/glucose transporters (GLUTs) signaling pathways to alleviate IR. Rutin, resveratrol, and catechin show lower binding energy docking with IRS1, PI3K, Akt, and GLUT4 proteins, indicating better interactions. It might be an effective constituent against IR. Hence, BQP could become a potential functional food source for blood glucose management among insulin-resistant people.


Asunto(s)
Chenopodium quinoa , Resistencia a la Insulina , Humanos , Glucosa/metabolismo , Resistencia a la Insulina/fisiología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Chenopodium quinoa/metabolismo , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Células Hep G2 , Simulación del Acoplamiento Molecular , Transducción de Señal , Insulina/metabolismo , Fenoles/farmacología
19.
Int J Mol Sci ; 24(20)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37894751

RESUMEN

Insulin receptor substrate-2 (IRS-2), a substrate of the insulin-like growth factor (IGF)-I receptor, is highly expressed in the prostate cancer cell line, PC3. We recently demonstrated that extracellular signal-regulated kinase (Erk1/2), a kinase downstream of IGF signaling, is activated in PC3 cells under serum starvation, and this activation can be inhibited by IRS-2 knockdown. Here, we observed that adding an IGF-I-neutralizing antibody to the culture medium inhibited the activation of Erk1/2. Suppression of Erk1/2 in IRS-2 knockdown cells was restored by the addition of a PC3 serum-free conditioned medium. In contrast, the IRS-2-silenced PC3 conditioned medium could not restore Erk1/2 activation, suggesting that IRS-2 promotes the secretion of proteins that activate the IGF signaling pathway. Furthermore, gelatin zymography analysis of the conditioned medium showed that matrix metalloproteinase-9 (MMP-9) was secreted extracellularly in an IRS-2 dependent manner when PC3 was cultured under serum starvation conditions. Moreover, MMP-9 knockdown suppressed Erk1/2 activation, DNA synthesis, and migratory activity. The IRS-2 levels were positively correlated with Gleason grade in human prostate cancer tissues. These data suggest that highly expressed IRS-2 activates IGF signaling by enabling the secretion of MMP-9, which is associated with hyperproliferation and malignancy of prostate cancer cell line, PC3.


Asunto(s)
Carcinoma , Neoplasias de la Próstata , Humanos , Masculino , Carcinoma/metabolismo , Línea Celular , Medios de Cultivo Condicionados/metabolismo , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Células PC-3 , Fosfoproteínas/metabolismo , Fosforilación , Próstata/patología , Neoplasias de la Próstata/metabolismo
20.
J Neurosci ; 43(43): 7226-7241, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37699718

RESUMEN

The insulin/IGF-1 signaling (IIS) regulates a wide range of biological processes, including aging and lifespan, and has also been implicated in the pathogenesis of Alzheimer's disease (AD). We and others have reported that reduced signaling by genetic ablation of the molecules involved in IIS (e.g., insulin receptor substrate 2 [IRS-2]) markedly mitigates amyloid plaque formation in the brains of mouse models of AD, although the molecular underpinnings of the amelioration remain unsolved. Here, we revealed, by a transcriptomic analysis of the male murine cerebral cortices, that the expression of genes encoding extracellular matrix (ECM) was significantly upregulated by the loss of IRS-2. Insulin signaling activity negatively regulated the phosphorylation of Smad2 and Smad3 in the brain, and suppressed TGF-ß/Smad-dependent expression of a subset of ECM genes in brain-derived cells. The ECM proteins inhibited Aß fibril formation in vitro, and IRS-2 deficiency suppressed the aggregation process of Aß in the brains of male APP transgenic mice as revealed by injection of aggregation seeds in vivo Our results propose a novel mechanism in AD pathophysiology whereby IIS modifies Aß aggregation and amyloid pathology by altering the expression of ECM genes in the brain.SIGNIFICANCE STATEMENT The insulin/IGF-1 signaling (IIS) has been recognized as a regulator of aging, a leading risk factor for the onset of Alzheimer's disease (AD). In AD mouse models, genetic deletion of key IIS molecules markedly reduces the amyloid plaque formation in the brain, although the molecular underpinnings of this amelioration remain elusive. We found that the deficiency of insulin receptor substrate 2 leads to an increase in the expression of various extracellular matrices (ECMs) in the brain, potentially through TGF-ß/Smad signaling. Furthermore, some of those ECMs exhibited the potential to inhibit amyloid plaque accumulation by disrupting the formation of Aß fibrils. This study presents a novel mechanism by which IIS regulates Aß accumulation, which may involve altered brain ECM expression.


Asunto(s)
Enfermedad de Alzheimer , Masculino , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Insulina , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Placa Amiloide/patología , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Ratones Transgénicos , Modelos Animales de Enfermedad , Factor de Crecimiento Transformador beta/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...