Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.739
Filtrar
1.
Drug Des Devel Ther ; 18: 1165-1174, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38623566

RESUMEN

Purpose: Citric acid (CA) is a tricarboxylic acid with antioxidant and antimicrobial properties. Based on previous studies, the small compound with its three carboxylic groups can be considered a protein tyrosine phosphatase inhibitor. YopH, a protein tyrosine phosphatase, is an essential virulence factor in Yersinia bacteria. Materials and Methods: We performed enzymatic activity assays of YopH phosphatase after treatment with citric acid in comparison with the inhibitory compound trimesic acid, which has a similar structure. We also measured the cytotoxicity of these compounds in Jurkat T E6.1 and macrophage J774.2 cell lines. We performed molecular docking analysis of the binding of citric acid molecules to YopH phosphatase. Results: Citric acid and trimesic acid reversibly reduced the activity of YopH enzyme and decreased the viability of Jurkat and macrophage cell lines. Importantly, these two compounds showed greater inhibitory properties against bacterial YopH activity than against human CD45 phosphatase activity. Molecular docking simulations confirmed that citric acid could bind to YopH phosphatase. Conclusion: Citric acid, a known antioxidant, can be considered an inhibitor of bacterial phosphatases.


Asunto(s)
Antioxidantes , Proteínas Tirosina Fosfatasas , Ácidos Tricarboxílicos , Humanos , Simulación del Acoplamiento Molecular , Proteínas Tirosina Fosfatasas/química , Proteínas Tirosina Fosfatasas/metabolismo , Tirosina
2.
Biomolecules ; 14(3)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38540761

RESUMEN

Protein phosphatases are primarily responsible for dephosphorylation modification within signal transduction pathways. Phosphatase of regenerating liver-3 (PRL-3) is a dual-specific phosphatase implicated in cancer pathogenesis. Understanding PRL-3's intricate functions and developing targeted therapies is crucial for advancing cancer treatment. This review highlights its regulatory mechanisms, expression patterns, and multifaceted roles in cancer progression. PRL-3's involvement in proliferation, migration, invasion, metastasis, angiogenesis, and drug resistance is discussed. Regulatory mechanisms encompass transcriptional control, alternative splicing, and post-translational modifications. PRL-3 exhibits selective expressions in specific cancer types, making it a potential target for therapy. Despite advances in small molecule inhibitors, further research is needed for clinical application. PRL-3-zumab, a humanized antibody, shows promise in preclinical studies and clinical trials. Our review summarizes the current understanding of the cancer-related cellular function of PRL-3, its prognostic value, and the research progress of therapeutic inhibitors.


Asunto(s)
Neoplasias , Transducción de Señal , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Proteínas Tirosina Fosfatasas/metabolismo , Procesamiento Proteico-Postraduccional , Fosfoproteínas Fosfatasas , Línea Celular Tumoral
3.
Nutrients ; 16(5)2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38474775

RESUMEN

Protein tyrosine phosphatases (PTPs) are pivotal contributors to the development of type 2 diabetes (T2DM). Hence, directing interventions towards PTPs emerges as a valuable therapeutic approach for managing type 2 diabetes. In particular, PTPN6 and PTPN9 are targets for anti-diabetic effects. Through high-throughput drug screening, quercetagitrin (QG) was recognized as a dual-target inhibitor of PTPN6 and PTPN9. We observed that QG suppressed the catalytic activity of PTPN6 (IC50 = 1 µM) and PTPN9 (IC50 = 1.7 µM) in vitro and enhanced glucose uptake by mature C2C12 myoblasts. Additionally, QG increased the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and insulin-dependent phosphorylation of Akt in mature C2C12 myoblasts. It further promoted the phosphorylation of Akt in the presence of palmitic acid, suggesting the attenuation of insulin resistance. In summary, our results indicate QG's role as a potent inhibitor targeting both PTPN6 and PTPN9, showcasing its potential as a promising treatment avenue for T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Insulina/metabolismo , Fosforilación , Proteínas Tirosina Fosfatasas/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo
4.
J Biomed Sci ; 31(1): 33, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38532423

RESUMEN

BACKGROUND: T cell receptor (TCR) signaling and T cell activation are tightly regulated by gatekeepers to maintain immune tolerance and avoid autoimmunity. The TRAIL receptor (TRAIL-R) is a TNF-family death receptor that transduces apoptotic signals to induce cell death. Recent studies have indicated that TRAIL-R regulates T cell-mediated immune responses by directly inhibiting T cell activation without inducing apoptosis; however, the distinct signaling pathway that regulates T cell activation remains unclear. In this study, we screened for intracellular TRAIL-R-binding proteins within T cells to explore the novel signaling pathway transduced by TRAIL-R that directly inhibits T cell activation. METHODS: Whole-transcriptome RNA sequencing was used to identify gene expression signatures associated with TRAIL-R signaling during T cell activation. High-throughput screening with mass spectrometry was used to identify the novel TRAIL-R binding proteins within T cells. Co-immunoprecipitation, lipid raft isolation, and confocal microscopic analyses were conducted to verify the association between TRAIL-R and the identified binding proteins within T cells. RESULTS: TRAIL engagement downregulated gene signatures in TCR signaling pathways and profoundly suppressed phosphorylation of TCR proximal tyrosine kinases without inducing cell death. The tyrosine phosphatase SHP-1 was identified as the major TRAIL-R binding protein within T cells, using high throughput mass spectrometry-based proteomics analysis. Furthermore, Lck was co-immunoprecipitated with the TRAIL-R/SHP-1 complex in the activated T cells. TRAIL engagement profoundly inhibited phosphorylation of Lck (Y394) and suppressed the recruitment of Lck into lipid rafts in the activated T cells, leading to the interruption of proximal TCR signaling and subsequent T cell activation. CONCLUSIONS: TRAIL-R associates with phosphatase SHP-1 and transduces a unique and distinct immune gatekeeper signal to repress TCR signaling and T cell activation via inactivating Lck. Thus, our results define TRAIL-R as a new class of immune checkpoint receptors for restraining T cell activation, and TRAIL-R/SHP-1 axis can serve as a potential therapeutic target for immune-mediated diseases.


Asunto(s)
Receptores de Antígenos de Linfocitos T , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF , Humanos , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Células Jurkat , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Transducción de Señal , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo , Fosforilación , Activación de Linfocitos , Tirosina/metabolismo
5.
BMC Cancer ; 24(1): 326, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461240

RESUMEN

BACKGROUND: FLI1 is an oncogenic transcription factor that promotes diverse malignancies through mechanisms that are not fully understood. Herein, FLI1 is shown to regulate the expression of Ubiquitin Associated and SH3 Domain Containing A/B (UBASH3A/B) genes. UBASH3B and UBASH3A are found to act as an oncogene and tumor suppressor, respectively, and their combined effect determines erythroleukemia progression downstream of FLI1. METHODS: Promoter analysis combined with luciferase assays and chromatin immunoprecipitation (ChIP) analysis were applied on the UBASH3A/B promoters. RNAseq analysis combined with bioinformatic was used to determine the effect of knocking-down UBASH3A and UBASH3B in leukemic cells. Downstream targets of UBASH3A/B were inhibited in leukemic cells either via lentivirus-shRNAs or small molecule inhibitors. Western blotting and RT-qPCR were used to determine transcription levels, MTT assays to assess proliferation rate, and flow cytometry to examine apoptotic index. RESULTS: Knockdown of FLI1 in erythroleukemic cells identified the UBASH3A/B genes as potential downstream targets. Herein, we show that FLI1 directly binds to the UBASH3B promoter, leading to its activation and leukemic cell proliferation. In contrast, FLI1 indirectly inhibits UBASH3A transcription via GATA2, thereby antagonizing leukemic growth. These results suggest oncogenic and tumor suppressor roles for UBASH3B and UBASH3A in erythroleukemia, respectively. Mechanistically, we show that UBASH3B indirectly inhibits AP1 (FOS and JUN) expression, and that its loss leads to inhibition of apoptosis and acceleration of proliferation. UBASH3B also positively regulates the SYK gene expression and its inhibition suppresses leukemia progression. High expression of UBASH3B in diverse tumors was associated with worse prognosis. In contrast, UBASH3A knockdown in erythroleukemic cells increased proliferation; and this was associated with a dramatic induction of the HSP70 gene, HSPA1B. Accordingly, knockdown of HSPA1B in erythroleukemia cells significantly accelerated leukemic cell proliferation. Accordingly, overexpression of UBASH3A in different cancers was predominantly associated with good prognosis. These results suggest for the first time that UBASH3A plays a tumor suppressor role in part through activation of HSPA1B. CONCLUSIONS: FLI1 promotes erythroleukemia progression in part by modulating expression of the oncogenic UBASH3B and tumor suppressor UBASH3A.


Asunto(s)
Leucemia Eritroblástica Aguda , Proteína Proto-Oncogénica c-fli-1 , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Línea Celular Tumoral , Regulación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Leucemia Eritroblástica Aguda/genética , Leucemia Eritroblástica Aguda/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteína Proto-Oncogénica c-fli-1/genética , Proteína Proto-Oncogénica c-fli-1/metabolismo , ARN Interferente Pequeño/genética , Proteína EWS de Unión a ARN/genética , Proteínas Tirosina Fosfatasas/metabolismo
6.
Biochim Biophys Acta Rev Cancer ; 1879(3): 189098, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38555001

RESUMEN

The Eya family of proteins (consisting of Eyas1-4 in mammals) play vital roles in embryogenesis by regulating processes such as proliferation, migration/invasion, cellular survival and pluripotency/plasticity of epithelial and mesenchymal states. Eya proteins carry out such diverse functions through a unique combination of transcriptional co-factor, Tyr phosphatase, and PP2A/B55α-mediated Ser/Thr phosphatase activities. Since their initial discovery, re-expression of Eyas has been observed in numerous tumor types, where they are known to promote tumor progression through a combination of their transcriptional and enzymatic activities. Eya proteins thus reinstate developmental processes during malignancy and represent a compelling class of therapeutic targets for inhibiting tumor progression.


Asunto(s)
Neoplasias , Proteínas Tirosina Fosfatasas , Humanos , Neoplasias/genética , Neoplasias/patología , Neoplasias/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Tirosina Fosfatasas/genética , Animales , Regulación Neoplásica de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas del Ojo/metabolismo , Proteínas del Ojo/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética
7.
Acta Neuropathol Commun ; 12(1): 32, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38395965

RESUMEN

Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are clinically linked major neurodegenerative diseases. Notably, TAR DNA-binding protein-43 (TDP43) accumulations are hallmark pathologies of FTD/ALS and mutations in the gene encoding TDP43 cause familial FTD/ALS. There are no cures for FTD/ALS. FTD/ALS display damage to a broad range of physiological functions, many of which are regulated by signaling between the endoplasmic reticulum (ER) and mitochondria. This signaling is mediated by the VAPB-PTPIP51 tethering proteins that serve to recruit regions of ER to the mitochondrial surface so as to facilitate inter-organelle communications. Several studies have now shown that disrupted ER-mitochondria signaling including breaking of the VAPB-PTPIP51 tethers are features of FTD/ALS and that for TDP43 and other familial genetic FTD/ALS insults, this involves activation of glycogen kinase-3ß (GSK3ß). Such findings have prompted suggestions that correcting damage to ER-mitochondria signaling and the VAPB-PTPIP51 interaction may be broadly therapeutic. Here we provide evidence to support this notion. We show that overexpression of VAPB or PTPIP51 to enhance ER-mitochondria signaling corrects mutant TDP43 induced damage to inositol 1,4,5-trisphosphate (IP3) receptor delivery of Ca2+ to mitochondria which is a primary function of the VAPB-PTPIP51 tethers, and to synaptic function. Moreover, we show that ursodeoxycholic acid (UDCA), an FDA approved drug linked to FTD/ALS and other neurodegenerative diseases therapy and whose precise therapeutic target is unclear, corrects TDP43 linked damage to the VAPB-PTPIP51 interaction. We also show that this effect involves inhibition of TDP43 mediated activation of GSK3ß. Thus, correcting damage to the VAPB-PTPIP51 tethers may have therapeutic value for FTD/ALS and other age-related neurodegenerative diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Enfermedades Neurodegenerativas , Proteínas de Transporte Vesicular , Humanos , Esclerosis Amiotrófica Lateral/patología , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Sinapsis/patología , Proteinopatías TDP-43/metabolismo , Proteínas de Transporte Vesicular/genética
8.
Immunity ; 57(2): 256-270.e10, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38354703

RESUMEN

Antibodies can block immune receptor engagement or trigger the receptor machinery to initiate signaling. We hypothesized that antibody agonists trigger signaling by sterically excluding large receptor-type protein tyrosine phosphatases (RPTPs) such as CD45 from sites of receptor engagement. An agonist targeting the costimulatory receptor CD28 produced signals that depended on antibody immobilization and were sensitive to the sizes of the receptor, the RPTPs, and the antibody itself. Although both the agonist and a non-agonistic anti-CD28 antibody locally excluded CD45, the agonistic antibody was more effective. An anti-PD-1 antibody that bound membrane proximally excluded CD45, triggered Src homology 2 domain-containing phosphatase 2 recruitment, and suppressed systemic lupus erythematosus and delayed-type hypersensitivity in experimental models. Paradoxically, nivolumab and pembrolizumab, anti-PD-1-blocking antibodies used clinically, also excluded CD45 and were agonistic in certain settings. Reducing these agonistic effects using antibody engineering improved PD-1 blockade. These findings establish a framework for developing new and improved therapies for autoimmunity and cancer.


Asunto(s)
Proteínas Tirosina Fosfatasas , Transducción de Señal , Proteínas Tirosina Fosfatasas/metabolismo , Antígenos CD28 , Receptores Inmunológicos
9.
Cells ; 13(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38334623

RESUMEN

Advances in immunotherapy have brought significant therapeutic benefits to many cancer patients. Nonetheless, many cancer types are refractory to current immunotherapeutic approaches, meaning that further targets are required to increase the number of patients who benefit from these technologies. Protein tyrosine phosphatases (PTPs) have long been recognised to play a vital role in the regulation of cancer cell biology and the immune response. In this review, we summarize the evidence for both the pro-tumorigenic and tumour-suppressor function of non-receptor PTPs in cancer cells and discuss recent data showing that several of these enzymes act as intracellular immune checkpoints that suppress effective tumour immunity. We highlight new data showing that the deletion of inhibitory PTPs is a rational approach to improve the outcomes of adoptive T cell-based cancer immunotherapies and describe recent progress in the development of PTP inhibitors as anti-cancer drugs.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Proteínas Tirosina Fosfatasas/metabolismo , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Inmunoterapia
10.
EMBO J ; 43(7): 1325-1350, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38321267

RESUMEN

Exit from mitosis is brought about by dramatic changes in the phosphoproteome landscape. A drop in Cyclin-dependent kinase (Cdk) activity, the master regulatory kinase, and activation of counteracting phosphatases such as Cdc14 in budding yeast, results in ordered substrate dephosphorylation, allowing entry into a new cell cycle and replication licensing. In meiosis however, two cell divisions have to be executed without intermediate DNA replication, implying that global phosphorylation and dephosphorylation have to be adapted to the challenges of meiosis. Using a global time-resolved phosphoproteomics approach in budding yeast, we compared the phosphoproteome landscape between mitotic exit and the transition from meiosis I to meiosis II. We found that unlike exit from mitosis, Cdk phosphomotifs remain mostly stably phosphorylated at the end of meiosis I, whereas a majority of Cdk-unrelated motifs are reset by dephosphorylation. However, inducing an artificial drop of Cdk at metaphase of meiosis I leads to ordered substrate dephosphorylation, comparable to mitosis, indicating that phosphoregulation of substrates at the end of meiosis I is thus mainly qualitatively rather than quantitatively ordered.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo , Mitosis , Fosforilación , Meiosis
11.
Nat Commun ; 15(1): 1385, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360978

RESUMEN

The Eyes Absent proteins (EYA1-4) are a biochemically unique group of tyrosine phosphatases known to be tumour-promoting across a range of cancer types. To date, the targets of EYA phosphatase activity remain largely uncharacterised. Here, we identify Polo-like kinase 1 (PLK1) as an interactor and phosphatase substrate of EYA4 and EYA1, with pY445 on PLK1 being the primary target site. Dephosphorylation of pY445 in the G2 phase of the cell cycle is required for centrosome maturation, PLK1 localization to centrosomes, and polo-box domain (PBD) dependent interactions between PLK1 and PLK1-activation complexes. Molecular dynamics simulations support the rationale that pY445 confers a structural impairment to PBD-substrate interactions that is relieved by EYA-mediated dephosphorylation. Depletion of EYA4 or EYA1, or chemical inhibition of EYA phosphatase activity, dramatically reduces PLK1 activation, causing mitotic defects and cell death. Overall, we have characterized a phosphotyrosine signalling network governing PLK1 and mitosis.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Serina-Treonina Quinasas , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Tirosina/metabolismo , Mitosis , Centrosoma/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Células HeLa , Proteínas Nucleares/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Transactivadores/metabolismo
12.
Open Biol ; 14(2): 230278, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38378139

RESUMEN

Neuroparasitism concerns the hostile take-over of a host's nervous system by a foreign invader, in order to alter the behaviour of the host in favour of the parasite. One of the most remarkable cases of parasite-induced host behavioural manipulation comprises the changes baculoviruses induce in their caterpillar hosts. Baculoviruses may manipulate caterpillar behaviour in two ways: hyperactivity (increased movement in the horizontal plane) and/or tree-top disease (movement to elevated levels in the vertical plane). Those behavioural changes are followed by liquefaction and death of the caterpillar. In Autographa californica multiple nucleopolyhedrovirus (AcMNPV)-infected Spodoptera exigua caterpillars, an enzymatic active form of the virally encoded protein tyrosine phosphatase (PTP) is needed for the expression of hyperactivity from 3 days post infection (dpi). Using eGFP-expressing recombinant AcMNPV strains, we show that infection of the caterpillar's central nervous system (CNS) can be observed primarily from 3 dpi onwards. In addition, we demonstrate that the structural and enzymatic function of PTP does not play a role in infection of the CNS. Instead we show that the virus entered the CNS via the trachea, progressing caudally to frontally through the CNS and that the infection progressed from the outermost cell layers towards the inner cell layers of the CNS, in a PTP independent manner. These findings help to further understand parasitic manipulation and the mechanisms by which neuroparasites infect the host nervous system to manipulate host behaviour.


Asunto(s)
Baculoviridae , Sistema Nervioso Central , Nucleopoliedrovirus , Animales , Baculoviridae/genética , Baculoviridae/metabolismo , Spodoptera/metabolismo , Sistema Nervioso Central/metabolismo , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo
13.
Cell Death Differ ; 31(3): 280-291, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38383887

RESUMEN

Detection of cytosolic nucleic acids by pattern recognition receptors, including STING and RIG-I, leads to the activation of multiple signalling pathways that culminate in the production of type I interferons (IFNs) which are vital for host survival during virus infection. In addition to protective immune modulatory functions, type I IFNs are also associated with autoimmune diseases. Hence, it is important to elucidate the mechanisms that govern their expression. In this study, we identified a critical regulatory function of the DUSP4 phosphatase in innate immune signalling. We found that DUSP4 regulates the activation of TBK1 and ERK1/2 in a signalling complex containing DUSP4, TBK1, ERK1/2 and IRF3 to regulate the production of type I IFNs. Mice deficient in DUSP4 were more resistant to infections by both RNA and DNA viruses but more susceptible to malaria parasites. Therefore, our study establishes DUSP4 as a regulator of nucleic acid sensor signalling and sheds light on an important facet of the type I IFN regulatory system.


Asunto(s)
Interferón Tipo I , Proteínas de la Membrana , Proteínas Tirosina Fosfatasas , Receptores de Superficie Celular , Proteínas Roundabout , Virosis , Animales , Ratones , Inmunidad Innata , Interferón Tipo I/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Virosis/inmunología , Virosis/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Roundabout/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Receptores de Superficie Celular/metabolismo
14.
J Chem Inf Model ; 64(4): 1331-1346, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38346324

RESUMEN

Dynamics-driven allostery provides important insights into the working mechanics of proteins, especially enzymes. In this study, we employ this paradigm to answer a basic question: in enzyme superfamilies, where the catalytic mechanism, active sites, and protein fold are conserved, what accounts for the difference in the catalytic prowess of the individual members? We show that when subtle changes in sequence do not translate to changes in structure, they do translate to changes in dynamics. We use sequentially diverse PTP1B, TbPTP1, and YopH as representatives of the conserved protein tyrosine phosphatase (PTP) superfamily. Using amino acid network analysis of group behavior (community analysis) and influential node dominance on networks (eigenvector centrality), we explain the dynamic basis of the catalytic variations seen between the three proteins. Importantly, we explain how a dynamics-based blueprint makes PTP1B amenable to allosteric control and how the same is abstracted in TbPTP1 and YopH.


Asunto(s)
Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Proteínas Tirosina Fosfatasas , Dominio Catalítico , Proteínas Tirosina Fosfatasas/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 1/química
15.
Sci Adv ; 10(9): eadi7404, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38416831

RESUMEN

PTPN21 belongs to the four-point-one, ezrin, radixin, moesin (FERM) domain-containing protein tyrosine phosphatases (PTP) and plays important roles in cytoskeleton-associated cellular processes like cell adhesion, motility, and cargo transport. Because of the presence of a WPE loop instead of a WPD loop in the phosphatase domain, it is often considered to lack phosphatase activity. However, many of PTPN21's biological functions require its catalytic activity. To reconcile these findings, we have determined the structures of individual PTPN21 FERM, PTP domains, and a complex between FERM-PTP. Combined with biochemical analysis, we have found that PTPN21 PTP is weakly active and is autoinhibited by association with its FERM domain. Disruption of FERM-PTP interaction results in enhanced ERK activation. The oncogenic HPV18 E7 protein binds to PTP at the same location as PTPN21 FERM, indicating that it may act by displacing the FERM domain from PTP. Our results provide mechanistic insight into PTPN21 and benefit functional studies of PTPN21-mediated processes.


Asunto(s)
Dominios FERM , Proteínas Tirosina Fosfatasas , Estructura Terciaria de Proteína , Proteínas Tirosina Fosfatasas/metabolismo , Unión Proteica , Citoesqueleto/metabolismo
16.
ChemMedChem ; 19(7): e202300669, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38233347

RESUMEN

Protein tyrosine phosphatases (PTPs) are an important class of enzymes that regulate protein tyrosine phosphorylation levels of a large variety of proteins in cells. Anomalies in protein tyrosine phosphorylation have been associated with the development of numerous human diseases, leading to a heightened interest in PTPs as promising targets for drug development. However, therapeutic targeting of PTPs has faced skepticism about their druggability. Besides the conventional small molecule inhibitors, proteolysis-targeting chimera (PROTAC) technology offers an alternative approach to target PTPs. PROTAC molecules utilize the ubiquitin-proteasome system to degrade specific proteins and have unique advantages compared with inhibitors: 1) PROTACs are highly efficient and can work at much lower concentrations than that expected based on their biophysical binding affinity; 2) PROTACs may achieve higher selectivity for the targeted protein than that dictated by their binding affinity alone; and 3) PROTACs may engage any region of the target protein in addition to the functional site. This review focuses on the latest advancement in the development of targeted PTP degraders and deliberates on the obstacles and prospective paths of harnessing this technology for therapeutic targeting of the PTPs.


Asunto(s)
Inhibidores Enzimáticos , Proteínas Tirosina Fosfatasas , Humanos , Proteolisis , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Estudios Prospectivos , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas/metabolismo , Tirosina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
17.
Sci Adv ; 10(5): eadg7887, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38295166

RESUMEN

Protein tyrosine phosphatases (PTPs) play major roles in cancer and are emerging as therapeutic targets. Recent reports suggest low-molecular weight PTP (LMPTP)-encoded by the ACP1 gene-is overexpressed in prostate tumors. We found ACP1 up-regulated in human prostate tumors and ACP1 expression inversely correlated with overall survival. Using CRISPR-Cas9-generated LMPTP knockout C4-2B and MyC-CaP cells, we identified LMPTP as a critical promoter of prostate cancer (PCa) growth and bone metastasis. Through metabolomics, we found that LMPTP promotes PCa cell glutathione synthesis by dephosphorylating glutathione synthetase on inhibitory Tyr270. PCa cells lacking LMPTP showed reduced glutathione, enhanced activation of eukaryotic initiation factor 2-mediated stress response, and enhanced reactive oxygen species after exposure to taxane drugs. LMPTP inhibition slowed primary and bone metastatic prostate tumor growth in mice. These findings reveal a role for LMPTP as a critical promoter of PCa growth and metastasis and validate LMPTP inhibition as a therapeutic strategy for treating PCa through sensitization to oxidative stress.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Ratones , Animales , Peso Molecular , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Tirosina , Proteínas Tirosina Fosfatasas/metabolismo
18.
Bioorg Chem ; 144: 107121, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38237392

RESUMEN

Protein tyrosine phosphatases (PTPs) are the class of dephosphorylation enzymes that catalyze the removal of phosphate groups from tyrosine residues on proteins responsible for various cellular processes. Any disbalance in signal pathways mediated by PTPs leads to various disease conditions like diabetes, obesity, cancers, and autoimmune disorders. Amongst the PTP superfamily, PTP1B, SHP2, Cdc25, and LMW-PTP have been prioritized as druggable targets for developing medicinal agents. PTP1B is an intracellular PTP enzyme that downregulates insulin and leptin signaling pathways and is involved in insulin resistance and glucose homeostasis. SHP2 is involved in the RAS-MAPK pathway and T cell immunity. Cdk-cyclin complex activation occurs by Cdc25-PTPs involved in cell cycle regulation. LMW-PTPs are involved in PDGF/PDGFR, Eph/ephrin, and insulin signaling pathways, resulting in certain diseases like diabetes mellitus, obesity, and cancer. The signaling cascades of PTP1B, SHP2, Cdc25, and LMW-PTPs have been described to rationalize their medicinal importance in the pathophysiology of diabetes, obesity, and cancer. Their binding sites have been explored to overcome the hurdles in discovering target selective molecules with optimum potency. Recent developments in the synthetic molecules bearing heterocyclic moieties against these targets have been explored to gain insight into structural features. The elaborated SAR investigation revealed the effect of substituents on the potency and target selectivity, which can be implicated in the further discovery of newer medicinal agents targeting the druggable members of the PTP superfamily.


Asunto(s)
Diabetes Mellitus , Neoplasias , Humanos , Proteínas Tirosina Fosfatasas/metabolismo , Neoplasias/metabolismo , Insulina , Diabetes Mellitus/tratamiento farmacológico , Obesidad
19.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38279261

RESUMEN

Protein tyrosine phosphatases (PTPs) of the polymerase and histidinol phosphatase (PHP) superfamily with characteristic phosphatase activity dependent on divalent metal ions are found in many Gram-positive bacteria. Although members of this family are co-purified with metal ions, they still require the exogenous supply of metal ions for full activation. However, the specific roles these metal ions play during catalysis are yet to be well understood. Here, we report the metal ion requirement for phosphatase activities of S. aureus Cap8C and L. rhamnosus Wzb. AlphaFold-predicted structures of the two PTPs suggest that they are members of the PHP family. Like other PHP phosphatases, the two enzymes have a catalytic preference for Mn2+, Co2+ and Ni2+ ions. Cap8C and Wzb show an unusual thermophilic property with optimum activities over 75 °C. Consistent with this model, the activity-temperature profiles of the two enzymes are dependent on the divalent metal ion activating the enzyme.


Asunto(s)
Proteínas Tirosina Fosfatasas , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Bacterias/metabolismo , Metales/química , Iones
20.
Nat Commun ; 15(1): 881, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38286811

RESUMEN

Excessive host immune responses contribute to severe malaria with high mortality. Here, we show that PRL2 in innate immune cells is highly related to experimental malaria disease progression, especially the development of murine severe malaria. In the absence of PRL2 in myeloid cells, Plasmodium berghei infection results in augmented lung injury, leading to significantly increased mortality. Intravital imaging revealed greater neutrophilic inflammation and NET formation in the lungs of PRL2 myeloid conditional knockout mice. Depletion of neutrophils prior to the onset of severe disease protected mice from NETs associated lung injury, and eliminated the difference between WT and PRL2 CKO mice. PRL2 regulates neutrophil activation and NET accumulation via the Rac-ROS pathway, thus contributing to NETs associated ALI. Hydroxychloroquine, an inhibitor of PRL2 degradation alleviates NETs associated tissue damage in vivo. Our findings suggest that PRL2 serves as an indicator of progression to severe malaria and ALI. In addition, our study indicated the importance of PRL2 in NET formation and tissue injury. It might open a promising path for adjunctive treatment of NET-associated disease.


Asunto(s)
Lesión Pulmonar Aguda , Trampas Extracelulares , Proteínas Inmediatas-Precoces , Malaria , Proteínas Tirosina Fosfatasas , Animales , Ratones , Lesión Pulmonar Aguda/metabolismo , Trampas Extracelulares/metabolismo , Pulmón/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Inmediatas-Precoces/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA