Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.351
Filtrar
1.
Drug Des Devel Ther ; 18: 1165-1174, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38623566

RESUMEN

Purpose: Citric acid (CA) is a tricarboxylic acid with antioxidant and antimicrobial properties. Based on previous studies, the small compound with its three carboxylic groups can be considered a protein tyrosine phosphatase inhibitor. YopH, a protein tyrosine phosphatase, is an essential virulence factor in Yersinia bacteria. Materials and Methods: We performed enzymatic activity assays of YopH phosphatase after treatment with citric acid in comparison with the inhibitory compound trimesic acid, which has a similar structure. We also measured the cytotoxicity of these compounds in Jurkat T E6.1 and macrophage J774.2 cell lines. We performed molecular docking analysis of the binding of citric acid molecules to YopH phosphatase. Results: Citric acid and trimesic acid reversibly reduced the activity of YopH enzyme and decreased the viability of Jurkat and macrophage cell lines. Importantly, these two compounds showed greater inhibitory properties against bacterial YopH activity than against human CD45 phosphatase activity. Molecular docking simulations confirmed that citric acid could bind to YopH phosphatase. Conclusion: Citric acid, a known antioxidant, can be considered an inhibitor of bacterial phosphatases.


Asunto(s)
Antioxidantes , Proteínas Tirosina Fosfatasas , Ácidos Tricarboxílicos , Humanos , Simulación del Acoplamiento Molecular , Proteínas Tirosina Fosfatasas/química , Proteínas Tirosina Fosfatasas/metabolismo , Tirosina
2.
Int Microbiol ; 27(1): 37-47, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37365352

RESUMEN

To date, there are very limited reports on sequence analysis and structure-based molecular modeling of phosphatases produced by probiotic bacteria. Therefore, a novel protein tyrosine-like phosphatase was characterized from L. helveticus 2126 in this study. The purified bacterial phosphatase was subjected to mass spectrometric analysis, and the identity of constructed sequence was analyzed using peptide mass fingerprint. The 3-D structure of protein was elucidated using homology modeling, while its stability was assessed using Ramachandran plot, VERIFY 3D, and PROCHECK. The bacterium produced an extracellular phosphatase of zone diameter 15 ± 0.8 mm on screening medium within 24 h of incubation. This bacterial phosphatase was highly specific towards sodium phytate as it yielded the lowest Km value of 299.50 ± 4.95 µM compared to other phosphorylated substrates. The activity was effectively stimulated in the presence of zinc, magnesium, and manganese ions thereby showing its PTP-like behavior. The phosphatase showed a molecular mass of 43 kDa, and the corresponding M/Z ratio data yielded 46% query coverage to Bacillus subtilis (3QY7). This showed a 61.1% sequence similarity to Ligilactobacillus ruminis (WP_046923835.1). The final sequence construct based on these bacteria showed a conserved motif "HCHILPGIDD" in their active site. In addition, homology modeling showed a distorted Tim barrel structure with a trinuclear metal center. The final model after energy minimization showed 90.9% of the residues in the favorable region of Ramachandran's plot. This structural information can be used in genetic engineering for improving the overall stability and catalytic efficiency of probiotic bacterial phosphatases.


Asunto(s)
Lactobacillus helveticus , Proteínas Tirosina Fosfatasas , Proteínas Tirosina Fosfatasas/química , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo , Secuencia de Aminoácidos , Lactobacillus helveticus/genética , Dominio Catalítico , Fosforilación , Metales
3.
Sci Rep ; 13(1): 22015, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38086986

RESUMEN

Protein phosphorylation is an integral part of many cellular processes, not only in eukaryotes but also in bacteria. The discovery of both prokaryotic protein kinases and phosphatases has created interest in generating antibacterial therapeutics that target these enzymes. NMA1982 is a putative phosphatase from Neisseria meningitidis, the causative agent of meningitis and meningococcal septicemia. The overall fold of NMA1982 closely resembles that of protein tyrosine phosphatases (PTPs). However, the hallmark C(X)5R PTP signature motif, containing the catalytic cysteine and invariant arginine, is shorter by one amino acid in NMA1982. This has cast doubt about the catalytic mechanism of NMA1982 and its assignment to the PTP superfamily. Here, we demonstrate that NMA1982 indeed employs a catalytic mechanism that is specific to PTPs. Mutagenesis experiments, transition state inhibition, pH-dependence activity, and oxidative inactivation experiments all support that NMA1982 is a genuine PTP. Importantly, we show that NMA1982 is secreted by N. meningitidis, suggesting that this protein is a potential virulence factor. Future studies will need to address whether NMA1982 is indeed essential for N. meningitidis survival and virulence. Based on its unique active site conformation, NMA1982 may become a suitable target for developing selective antibacterial drugs.


Asunto(s)
Neisseria meningitidis , Factores de Virulencia , Factores de Virulencia/genética , Neisseria meningitidis/genética , Neisseria meningitidis/metabolismo , Proteínas Tirosina Fosfatasas/química , Dominio Catalítico , Antibacterianos
4.
J Phys Chem B ; 127(39): 8305-8316, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37729547

RESUMEN

Protein tyrosine phosphatases (PTPs) are emerging drug targets for many diseases, including cancer, autoimmunity, and neurological disorders. A high degree of structural similarity between their catalytic domains, however, has hindered the development of selective pharmacological agents. Our previous research uncovered two unfunctionalized terpenoid inhibitors that selectively inhibit PTP1B over T-cell PTP (TCPTP), two PTPs with high sequence conservation. Here, we use molecular modeling, with supporting experimental validation, to study the molecular basis of this unusual selectivity. Molecular dynamics (MD) simulations suggest that PTP1B and TCPTP share a h-bond network that connects the active site to a distal allosteric pocket; this network stabilizes the closed conformation of the catalytically essential WPD loop, which it links to the L-11 loop and neighboring α3 and α7 helices on the other side of the catalytic domain. Terpenoid binding to either of two proximal C-terminal sites─an α site and a ß site─can disrupt the allosteric network; however, binding to the α site forms a stable complex only in PTP1B. In TCPTP, two charged residues disfavor binding at the α site in favor of binding at the ß site, which is conserved between the two proteins. Our findings thus indicate that minor amino acid differences at the poorly conserved α site enable selective binding, a property that might be enhanced with chemical elaboration, and illustrate more broadly how minor differences in the conservation of neighboring─yet functionally similar─allosteric sites can affect the selectivity of inhibitory scaffolds (e.g., fragments).


Asunto(s)
Simulación de Dinámica Molecular , Linfocitos T , Linfocitos T/metabolismo , Dominio Catalítico , Sitio Alostérico , Estructura Secundaria de Proteína , Proteínas Tirosina Fosfatasas/química , Inhibidores Enzimáticos/química
5.
Chembiochem ; 24(10): e202200706, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-36893077

RESUMEN

Protein tyrosine phosphatases (PTPs) are an important class of enzymes that modulate essential cellular processes through protein dephosphorylation and are dysregulated in various disease states. There is demand for new compounds that target the active sites of these enzymes, for use as chemical tools to dissect their biological roles or as leads for the development of new therapeutics. In this study, we explore an array of electrophiles and fragment scaffolds to investigate the required chemical parameters for covalent inhibition of tyrosine phosphatases. Our analysis juxtaposes the intrinsic electrophilicity of these compounds with their potency against several classical PTPs, revealing chemotypes that inhibit tyrosine phosphatases while minimizing excessive, potentially non-specific reactivity. We also assess sequence divergence at key residues in PTPs to explain their differential susceptibility to covalent inhibition. We anticipate that our study will inspire new strategies to develop covalent probes and inhibitors for tyrosine phosphatases.


Asunto(s)
Proteínas Tirosina Fosfatasas , Tirosina , Dominio Catalítico , Proteínas Tirosina Fosfatasas/química , Proteínas Tirosina Fosfatasas/metabolismo
6.
Proteins ; 91(6): 831-846, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36645312

RESUMEN

The AMP-activated protein kinase (AMPK) is known to be activated by the protein tyrosine phosphatase non-receptor type 12 (PTP-PEST) under hypoxic conditions. This activation is mediated by tyrosine dephosphorylation of the AMPKα subunit. However, the identity of the phosphotyrosine residues that PTP-PEST dephosphorylates remains unknown. In this study, we first predicted the structure of the complex of the AMPKα2 subunit and PTP-PEST catalytic domain using bioinformatics tools and further confirmed the stability of the complex using molecular dynamics simulations. Evaluation of the protein-protein interfaces indicated that residue Tyr232 is the most likely dephosphorylation site on AMPKα2. In addition, we explored the effect of phosphorylation of PTP-PEST residue Tyr64 on the stability of the complex. Phosphorylation of the highly conserved Tyr64, an interface residue, enhances the stability of the complex via the rearrangement of a network of electrostatic interactions in conjunction with conformational changes in the catalytic WPD loop. We generated a phosphomimetic (PTP-PEST-Y64D) mutant and used co-immunoprecipitation to study the effect of PTP-PEST phosphorylation on AMPKα2 binding. The mutant exhibited an increased affinity for AMPKα2 and corroborated the in-silico predictions. Together, our findings present a plausible structural basis of AMPK regulation by PTP-PEST and show how phosphorylation of PTP-PEST affects its interaction with AMPKα2.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Proteína Tirosina Fosfatasa no Receptora Tipo 12 , Proteína Tirosina Fosfatasa no Receptora Tipo 12/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Tirosina Fosfatasas/química , Fosforilación , Dominio Catalítico
7.
J Biomol Struct Dyn ; 41(5): 1879-1894, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35021965

RESUMEN

Some members of Yersinia (Y), a genus of bacteria in the family Yersiniaceae, are pathogenic in humans, causing a range of health problems, from gastrointestinal syndromes to the plague. The Y protein tyrosine phosphatase (PTP) YopH is a crucial virulence determinant, considering the vital roles of PTPs in the intracellular signal transduction pathways and cell cycle control. The structural understanding of YopH as a cellular target in pathogenic conditions caused by Y infection is a prerequisite for designing potent and selective YopH inhibitors. Thus, by using molecular docking simulations, the open and closed conformations of the so-called 'WPD loop' (352-Gly-Asn-Trp-Pro-Asp-Gln-Thr-Ala-Val-Ser-361), located nearby the active site (403-Cys-Arg-Ala-Gly-Val-Gly-Arg-Thr-410) in YopH structure, are shown to be relevant for recognition by carboxylic acid derivatives, and the closed conformation is a more preferable receptor in terms of the quantitative correlation with experimental data. In both cases, aurintricarboxylic acid (ATA) has the greatest affinity to YopH. Consequently, a quantum mechanics/molecular mechanics (QM/MM) molecular model is derived to see into the extent of the ATA-induced open-closed conformational change. Active site residues and the WPD loop, as well as ATA are treated using SCC-DFTB-D (QM level), while the rest of the complex is treated using AMBER force field (MM level). The active/inactive functional behavior of YopH is explored by observing the interaction mode of ATA with the wild-type (wt)/Cys403Ser receptor and evaluating the competitive inhibition parameters. Implications of the present study for experimental research are discussed. Communicated by Ramaswamy H. Sarma.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa , Ácidos Carboxílicos , Proteínas Tirosina Fosfatasas , Yersinia , Proteínas de la Membrana Bacteriana Externa/química , Ácidos Carboxílicos/química , Dominio Catalítico , Simulación del Acoplamiento Molecular , Proteínas Tirosina Fosfatasas/química , Yersinia/metabolismo
8.
Front Public Health ; 10: 965631, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36106167

RESUMEN

Pseudophosphatases are a class of phosphatases that mutate at the catalytically active site. They play important parts in many life processes and disorders, e.g., cell apoptosis, stress reaction, tumorigenesis, axon differentiation, Charcot-Marie-Tooth, and metabolic dysfunction. The present review considers the structures and action types of pseudophosphatases in four families, protein tyrosine phosphatases (PTPs), myotube protein phosphatases (MTMs), phosphatases and tensin homologues (PTENs) and dual specificity phosphatases (DUSPs), as well as their mechanisms in signaling and disease. We aimed to provide reference material for the research and treatment of related diseases.


Asunto(s)
Proteínas Tirosina Fosfatasas , Transducción de Señal , Humanos , Proteínas Tirosina Fosfatasas/química , Proteínas Tirosina Fosfatasas/metabolismo
9.
Acta Crystallogr F Struct Biol Commun ; 78(Pt 7): 265-269, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35787553

RESUMEN

Receptor-type protein tyrosine phosphatases (RPTPs) receive extracellular stimuli and transfer them into cells. They regulate cell growth, differentiation and death via specific signals. They have also been implicated in cancer, diabetes and neurological diseases. RPTPH, a member of the type 3 RPTP (R3-PTP) family, is an important regulator of colorectal cancer and hepatic carcinoma. Despite its importance in drug development, the structure of RPTPH has not yet been resolved. Here, the crystal structure of the catalytic domain of RPTPH was determined at 1.56 Šresolution. Despite similarities to other R3-PTPs in its overall structure, RPTPH exhibited differences in its loop regions and side-chain conformations. Compared with other R3-PTPs, RPTPH has unique side chains near its active site that may confer specificity for inhibitor binding. Therefore, detailed information on the structure of RPTPH provides clues for the development of specific inhibitors.


Asunto(s)
Proteínas Tirosina Fosfatasas , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Proteínas Tirosina Fosfatasas/química , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/química
10.
J Mol Biol ; 434(17): 167540, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35339563

RESUMEN

Understanding allostery in the Mycobacterium tuberculosis low molecular weight protein tyrosine phosphatase (MptpA) is a subject of great interest since MptpA is one of two protein tyrosine phosphatases (PTPs) from the pathogenic organism Mycobacterium tuberculosis expressed during host cell infection. Here, we combine computational modeling with solution NMR spectroscopy and we find that Q75 is an allosteric site. Removal of the polar side chain of Q75 by mutation to leucine results in a cascade of events that reposition the acid loop over the active site and relocates the catalytic aspartic acid (D126) at an optimal position for proton donation to the leaving aryl group of the substrate and for subsequent hydrolysis of the thiophosphoryl intermediate. The computational analysis is consistent with kinetic data, and NMR spectroscopy, showing that the Q75L mutant exhibits enhanced reaction kinetics with similar substrate binding affinity. We anticipate that our findings will motivate further studies on the possibility that MptpA remains passivated during the chronic state of infection and increases its activity as part of the pathogenic life cycle of M. tuberculosis possibly via allosteric means.


Asunto(s)
Proteínas Bacterianas , Mycobacterium tuberculosis , Proteínas Tirosina Fosfatasas , Regulación Alostérica , Proteínas Bacterianas/química , Dominio Catalítico , Cinética , Mycobacterium tuberculosis/enzimología , Proteínas Tirosina Fosfatasas/química
11.
Biochim Biophys Acta Proteins Proteom ; 1870(3): 140754, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34995802

RESUMEN

Protein tyrosine phosphatases (PTPs) are key virulence factors in pathogenic bacteria, consequently, they have become important targets for new approaches against these pathogens, especially in the fight against antibiotic resistance. Among these targets of interest YopH (Yersinia outer protein H) from virulent species of Yersinia is an example. PTPs can be reversibly inhibited by nitric oxide (NO) since the oxidative modification of cysteine residues may influence the protein structure and catalytic activity. We therefore investigated the effects of NO on the structure and enzymatic activity of Yersinia enterocolitica YopH in vitro. Through phosphatase activity assays, we observe that in the presence of NO YopH activity was inhibited by 50%, and that this oxidative modification is partially reversible in the presence of DTT. Furthermore, YopH S-nitrosylation was clearly confirmed by a biotin switch assay, high resolution mass spectrometry (MS) and X-ray crystallography approaches. The crystal structure confirmed the S-nitrosylation of the catalytic cysteine residue, Cys403, while the MS data provide evidence that Cys221 and Cys234 might also be modified by NO. Interestingly, circular dichroism spectroscopy shows that the S-nitrosylation affects secondary structure of wild type YopH, though to a lesser extent on the catalytic cysteine to serine YopH mutant. The data obtained demonstrate that S-nitrosylation inhibits the catalytic activity of YopH, with effects beyond the catalytic cysteine. These findings are helpful for designing effective YopH inhibitors and potential therapeutic strategies to fight this pathogen or others that use similar mechanisms to interfere in the signal transduction pathways of their hosts.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Cisteína/química , Óxido Nítrico/química , Proteínas Tirosina Fosfatasas/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Biotina/metabolismo , Catálisis , Cristalografía por Rayos X/métodos , Cisteína/metabolismo , Humanos , Espectrometría de Masas/métodos , Estructura Molecular , Óxido Nítrico/metabolismo , Oxidación-Reducción , Proteínas Tirosina Fosfatasas/metabolismo , Transducción de Señal , Yersinia enterocolitica/metabolismo
12.
Endocrinology ; 163(1)2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34647995

RESUMEN

Seminal plasma contains a high concentration of extracellular vesicles (EVs). The heterogeneity of small EVs or the presence of nonvesicular extracellular matter (NV) pose major obstacles in understanding the composition and function of seminal EVs. In this study, we employed high-resolution density gradient fractionation to accurately characterize the composition and function of seminal EVs and NV. We found that the seminal EVs could be divided into 3 different subtypes-namely, high-density EV (EV-H), medium-density EV (EV-M), and low-density EV (EV-L)-after purification using iodixanol, while NV was successfully isolated. EVs and NV display different features in size, shape, and expression of some classic exosome markers. Both EV-H and NV could markedly promote sperm motility and capacitation compared with EV-M and EV-L, whereas only the NV fraction induced sperm acrosome reaction. Proteomic analysis results showed that EV-H, EV-M, EV-L, and NV had different protein components and were involved in different physiological functions. Further study showed that EV-M might reduce the production of sperm intrinsic reactive oxygen species through glutathione S-transferase mu 2. This study provides novel insights into important aspects of seminal EVs constituents and sounder footing to explore their functional properties in male fertility.


Asunto(s)
Vesículas Extracelulares/metabolismo , Proteómica/métodos , Semen/metabolismo , Motilidad Espermática , Reacción Acrosómica , Biomarcadores/metabolismo , Biotinilación , Biología Computacional , Exosomas/metabolismo , Glutatión/metabolismo , Glutatión Transferasa/metabolismo , Humanos , Masculino , Fosforilación , Proteínas Tirosina Fosfatasas/química , Proteoma , Especies Reactivas de Oxígeno , Espermatozoides/metabolismo , Espermatozoides/fisiología , Ácidos Triyodobenzoicos/farmacología
13.
Med Res Rev ; 42(3): 1064-1110, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34791703

RESUMEN

Protein tyrosine phosphatases (PTPs) superfamily catalyzes tyrosine de-phosphorylation which affects a myriad of cellular processes. Imbalance in signal pathways mediated by PTPs has been associated with development of many human diseases including cancer, metabolic, and immunological diseases. Several compelling evidence suggest that many members of PTP family are novel therapeutic targets. However, the clinical development of conventional PTP-based active-site inhibitors originally was hampered by the poor selectivity and pharmacokinetic properties. In this regard, PTPs has been widely dismissed as "undruggable." Nonetheless, allosteric modulation has become increasingly an influential and alternative approach that can be exploited for drug development against PTPs. Unlike active-site inhibitors, allosteric inhibitors exhibit a remarkable target-selectivity, drug-likeness, potency, and in vivo activity. Intriguingly, there has been a high interest in novel allosteric PTPs inhibitors within the last years. In this review, we focus on the recent advances of allosteric inhibitors that have been explored in drug discovery and have shown an excellent result in the development of PTPs-based therapeutics. A special emphasis is placed on the structure-activity relationship and molecular mechanistic studies illustrating applications in chemical biology and medicinal chemistry.


Asunto(s)
Inhibidores Enzimáticos , Proteínas Tirosina Fosfatasas , Descubrimiento de Drogas , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Proteínas Tirosina Fosfatasas/química , Proteínas Tirosina Fosfatasas/metabolismo , Transducción de Señal , Relación Estructura-Actividad
14.
Protein Sci ; 31(2): 422-431, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34761455

RESUMEN

Human eyes absent (EYA) proteins possess Tyr phosphatase activity, which is critical for numerous cancer and metastasis promoting activities, making it an attractive target for cancer therapy. In this work, we demonstrate that the inhibitor-bound form of EYA2 does not favour binding to Mg2+ , which is indispensable for the Tyr phosphatase activity. We further describe characterization and optimization of this class of allosteric inhibitors. A series of analogues were synthesized to improve potency of the inhibitors and to elucidate structure-activity relationships. Two co-crystal structures confirm the binding modes of this class of inhibitors. Our medicinal chemical, structural, biochemical, and biophysical studies provide insight into the molecular interactions of EYA2 with these allosteric inhibitors. The compounds derived from this study are useful for exploring the function of the Tyr phosphatase activity of EYA2 in normal and cancerous cells and serve as reference compounds for screening or developing allosteric phosphatase inhibitors. Finally, the co-crystal structures reported in this study will aid in structure-based drug discovery against EYA2.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Proteínas Nucleares , Proteínas Tirosina Fosfatasas , Inhibidores Enzimáticos/química , Humanos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/química , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/química , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas/química , Relación Estructura-Actividad
15.
Int J Mol Sci ; 22(22)2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34830087

RESUMEN

The kinase interaction motif protein tyrosine phosphatases (KIM-PTPs), HePTP, PTPSL and STEP, are involved in the negative regulation of mitogen-activated protein kinase (MAPK) signalling pathways and are important therapeutic targets for a number of diseases. We have used VSpipe, a virtual screening pipeline, to identify a ligand cluster distribution that is unique to this subfamily of PTPs. Several clusters map onto KIM-PTP specific sequence motifs in contrast to the cluster distribution obtained for PTP1B, a classic PTP that mapped to general PTP motifs. Importantly, the ligand clusters coincide with previously reported functional and substrate binding sites in KIM-PTPs. Assessment of the KIM-PTP specific clusters, using ligand efficiency index (LEI) plots generated by the VSpipe, ascertained that the binders in these clusters reside in a more drug-like chemical-biological space than those at the active site. LEI analysis showed differences between clusters across all KIM-PTPs, highlighting a distinct and specific profile for each phosphatase. The most druggable cluster sites are unexplored allosteric functional sites unique to each target. Exploiting these sites may facilitate the delivery of inhibitors with improved drug-like properties, with selectivity amongst the KIM-PTPs and over other classical PTPs.


Asunto(s)
Sistemas de Liberación de Medicamentos , Descubrimiento de Drogas , Inhibidores Enzimáticos/química , Sistema de Señalización de MAP Quinasas , Proteínas Tirosina Fosfatasas , Sitio Alostérico , Humanos , Ligandos , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas/química
16.
Biochem Soc Trans ; 49(4): 1723-1734, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34431504

RESUMEN

Protein tyrosine phosphatases (PTPs) counteract the enzymatic activity of protein tyrosine kinases to modulate levels of both normal and disease-associated protein tyrosine phosphorylation. Aberrant activity of PTPs has been linked to the progression of many disease states, yet no PTP inhibitors are currently clinically available. PTPs are without a doubt a difficult drug target. Despite this, many selective, potent, and bioavailable PTP inhibitors have been described, suggesting PTPs should once again be looked at as viable therapeutic targets. Herein, we summarize recently discovered PTP inhibitors and their use in the functional interrogation of PTPs in disease states. In addition, an overview of the therapeutic targeting of PTPs is described using SHP2 as a representative target.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Proteínas Tirosina Fosfatasas/metabolismo , Animales , Humanos , Peso Molecular , Mycobacterium tuberculosis/enzimología , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas/química , Bibliotecas de Moléculas Pequeñas/farmacología
17.
Cell Signal ; 84: 110009, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33848580

RESUMEN

The age of genomics has given us a wealth of information and the tools to study whole genomes. This, in turn, has facilitated genome-wide studies among organisms that were relatively less studied in the pre-genomic era or are non-model organisms. This paves the way to the discovery of interesting evolutionary patterns, which are brought to light by genome-wide surveys of protein superfamilies. Phosphorylation is a post-translational modification that is utilised across all clades of life, and acts as an important signalling switch, regulating several cellular processes. Tyrosine phosphatases, which are found predominantly in eukaryotes, act on phosphorylated tyrosine residues and sometimes on other substrates. Extending on our previous effort to look for tyrosine phosphatases in the human genome, we have looked for sequences of the cysteine-based tyrosine phosphatase superfamily in thirty mammalian genomes from all across Mammalia and validated the sequences with the presence of the signature catalytic motif. Domain architecture annotation, followed by in-depth analysis, revealed interesting taxon-specific patterns such as subtle differences between the protein families in marsupials and early mammals versus placental mammals. Finally, we discuss an interesting case of loss of the tyrosine phosphatase domain from a gene product in the course of eutherian evolution.


Asunto(s)
Evolución Molecular , Placenta , Animales , Femenino , Genoma Humano , Humanos , Mamíferos/genética , Embarazo , Proteínas Tirosina Fosfatasas/química , Proteínas Tirosina Fosfatasas/genética , Tirosina
18.
Life Sci ; 264: 118621, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33164832

RESUMEN

AIMS: Protein tyrosine phosphatase (PTP-CPS4B) is a signaling enzyme that is essential for a wide range of cellular processes, like metabolism, proliferation, survival and motility. Studies suggest that PTPs are vital for the production of Wzy-dependent capsule in bacteria, making it a valuable target for the discovery of pneumonia associated anti-virulence antibacterial agents. Present study aims at identifying the potential drug candidates to be exploited in inhibiting the growth of Streptococcus pneumonia targeting PTP-CPS4B. MATERIALS AND METHODS: The present study exploits the molecular docking potential coupled with molecular dynamic simulation as well as free energy calculations to identify potential inhibitors of PTP-CPS4B. Libraries of known and unknown compounds were docked into the active site of PTP-CPS4B using MOE. The compounds with best binding affinity and orientation were subjected to MD simulations and free energy calculations. FINDINGS: Top three compounds based on their binding energy and well composed interaction pattern obtained from molecular docking study were subjected to MD simulations and were compared to reported antibiotic drugs. MD Simulation studies have shown that the presence of an inhibitor inside the active site reduces protein flexibility as evident from RMSD, RMSF and Principal component analyses. MD simulations identified a transition from extended to bended motional shift in loop α6 of the PTP-CPS4B in ligand bound state. This flexibility was reported in the RMSF analysis and verified by the visual investigation of the loop α6 at different time intervals during the simulation. Free energy of binding affinity (computed using MMPBSA &MMGBSA approach) and the interaction patterns obtained from MD trajectory indicate that compound ZN1 (-31.50 Kcal/mol), ZN2 (-33.14 Kcal/mol) and ZN3 (-26.60 Kcal/mol) are potential drug candidates against PTP-CPS4B. Residue wise decomposition study helped in identifying the role of individual amino acid towards the overall inhibition behavior of the compounds. PCA analysis has led to the conclusion that the behavior of PTP-CPS4B inhibitors causes conformational dynamics that can be used to describe the protein inhibition mechanism. SIGNIFICANCE: The outcome reveals that this study provide enough evidences for the consideration of ZN1, ZN2, ZN3 as potential PTP-CPS4B inhibitors and further in vitro and in vivo studies may prove their therapeutic potential.


Asunto(s)
Antibacterianos/química , Proteínas Bacterianas/química , Proteínas Tirosina Fosfatasas/química , Streptococcus pneumoniae/efectos de los fármacos , Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Dominio Catalítico , Diseño de Fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Enlace de Hidrógeno , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Termodinámica
19.
Biochimie ; 180: 43-53, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33122104

RESUMEN

Entamoeba histolytica is an intestinal protozoan parasite of humans and is endemic in developing countries. E. histolytica has two low molecular weight protein tyrosine phosphatase (LMW-PTP) genes, EhLMW-PTP1 and EhLMW-PTP2, which are expressed in cultured trophozoites, clinical isolates, and cysts. The amino acid sequences of proteins EhLMW-PTP1 and EhLMW-PTP2 showed only one amino acid difference between them at position A85V, respectively. Both genes are expressed in cultured trophozoites, mainly EhLMW-PTP2, and in trophozoites recovered from amoebic liver abscess, the expression of EhLMW-PTP1 is downregulated. We cloned the two genes and purified the corresponding recombinant (rEhLMW-PTPs) proteins. Antibodies anti-rEhLMW-PTP2 showed that during red blood cells uptake by E. histolytica, the EhLMW-PTPs were found in the phagocytic cups based on analysis of fluorescence signals. On the other hand, rEhLMW-PTPs showed an optimum phosphatase activity at pH 6.0 with p-nitrophenyl phosphate as the substrate. They dephosphorylate phosphotyrosine and 3-O-methylfluorescein phosphate, but not phosphoserine or phosphothreonine, and the enzymatic activity is inhibited by orthovanadate. rEhLMW-PTP1 and rEhLMW-PTP2 exhibited optimum temperatures of activities at 60 °C and 58 °C, respectively, with high thermal stability at 50 °C. Also, the rEhLMW-PTPs showed high specific activities and specific km value with pNPP or OMFP as the substrates at the physiological temperature (37 °C).


Asunto(s)
Entamoeba histolytica/enzimología , Absceso Hepático Amebiano/enzimología , Proteínas Tirosina Fosfatasas/química , Proteínas Tirosina Fosfatasas/metabolismo , Secuencia de Aminoácidos , Animales , Quelantes/farmacología , Cricetinae , Entamoeba histolytica/genética , Inhibidores Enzimáticos/farmacología , Estabilidad de Enzimas , Eritrocitos/parasitología , Femenino , Humanos , Concentración de Iones de Hidrógeno , Absceso Hepático Amebiano/genética , Ratones Endogámicos BALB C , Peso Molecular , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/efectos de los fármacos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Temperatura , Trofozoítos/citología , Trofozoítos/enzimología , Trofozoítos/genética
20.
Mol Cells ; 43(12): 1035-1045, 2020 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-33372666

RESUMEN

The Drosophila genome contains four low molecular weightprotein tyrosine phosphatase (LMW-PTP) members: Primo-1, Primo-2, CG14297, and CG31469. The lack of intensive biochemical analysis has limited our understanding of these proteins. Primo-1 and CG31469 were previously classified as pseudophosphatases, but CG31469 was also suggested to be a putative protein arginine phosphatase. Herein, we present the crystal structures of CG31469 and Primo-1, which are the first Drosophila LMW-PTP structures. Structural analysis showed that the two proteins adopt the typical LMW-PTP fold and have a canonically arranged P-loop. Intriguingly, while Primo-1 is presumed to be a canonical LMW-PTP, CG31469 is unique as it contains a threonine residue at the fifth position of the P-loop motif instead of highly conserved isoleucine and a characteristically narrow active site pocket, which should facilitate the accommodation of phosphoarginine. Subsequent biochemical analysis revealed that Primo-1 and CG31469 are enzymatically active on phosphotyrosine and phosphoarginine, respectively, refuting their classification as pseudophosphatases. Collectively, we provide structural and biochemical data on two Drosophila proteins: Primo-1, the canonical LMW-PTP protein, and CG31469, the first investigated eukaryotic protein arginine phosphatase. We named CG31469 as DARP, which stands for Drosophila ARginine Phosphatase.


Asunto(s)
Proteínas de Drosophila/química , Drosophila melanogaster/enzimología , Proteínas Tirosina Fosfatasas/química , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Proteínas de Drosophila/metabolismo , Peso Molecular , Proteínas Tirosina Fosfatasas/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...