Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 299(9): 105128, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37543361

RESUMEN

Gliomas are the most prevalent primary tumor of the central nervous system. Despite advances in imaging technologies, neurosurgical techniques, and radiotherapy, a cure for high-grade glioma remains elusive. Several groups have reported that protein tyrosine phosphatase receptor type Z (PTPRZ) is highly expressed in glioblastoma, and that targeting PTPRZ attenuates tumor growth in mice. PTPRZ is modified with diverse glycan, including the PTPRZ-unique human natural killer-1 capped O-mannosyl core M2 glycans. However, the regulation and function of these unique glycans are unclear. Using CRISPR genome-editing technology, we first demonstrated that disruption of the PTPRZ gene in human glioma LN-229 cells resulted in profoundly reduced tumor growth in xenografted mice, confirming the potential of PTPRZ as a therapeutic target for glioma. Furthermore, multiple glycan analyses revealed that PTPRZ derived from glioma patients and from xenografted glioma expressed abundant levels of human natural killer-1-capped O-Man glycans via extrinsic signals. Finally, since deficiency of O-Man core M2 branching enzyme N-acetylglucosaminyltransferase IX (GnT-IX) was reported to reduce PTPRZ protein levels, we disrupted the GnT-IX gene in LN-229 cells and found a significant reduction of glioma growth both in vitro and in the xenograft model. These results suggest that the PTPR glycosylation enzyme GnT-IX may represent a promising therapeutic target for glioma.


Asunto(s)
Glioma , N-Acetilglucosaminiltransferasas , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores , Animales , Humanos , Ratones , Encéfalo/enzimología , Encéfalo/fisiopatología , Glioma/fisiopatología , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Polisacáridos/metabolismo , Línea Celular Tumoral , Femenino , Ratones SCID , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/deficiencia , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismo , Técnicas de Silenciamiento del Gen
2.
J Biol Chem ; 295(4): 955-968, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31822561

RESUMEN

Perineuronal nets (PNNs) are conspicuous neuron-specific substructures within the extracellular matrix of the central nervous system that have generated an explosion of interest over the last decade. These reticulated structures appear to surround synapses on the cell bodies of a subset of the neurons in the central nervous system and play key roles in both developmental and adult-brain plasticity. Despite the interest in these structures and compelling demonstrations of their importance in regulating plasticity, their precise functional mechanisms remain elusive. The limited mechanistic understanding of PNNs is primarily because of an incomplete knowledge of their molecular composition and structure and a failure to identify PNN-specific targets. Thus, it has been challenging to precisely manipulate PNNs to rigorously investigate their function. Here, using mouse models and neuronal cultures, we demonstrate a role of receptor protein tyrosine phosphatase zeta (RPTPζ) in PNN structure. We found that in the absence of RPTPζ, the reticular structure of PNNs is lost and phenocopies the PNN structural abnormalities observed in tenascin-R knockout brains. Furthermore, we biochemically analyzed the contribution of RPTPζ to PNN formation and structure, which enabled us to generate a more detailed model for PNNs. We provide evidence for two distinct kinds of interactions of PNN components with the neuronal surface, one dependent on RPTPζ and the other requiring the glycosaminoglycan hyaluronan. We propose that these findings offer important insight into PNN structure and lay important groundwork for future strategies to specifically disrupt PNNs to precisely dissect their function.


Asunto(s)
Matriz Extracelular/metabolismo , Neuronas/metabolismo , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismo , Agrecanos/metabolismo , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Ácido Edético/farmacología , Matriz Extracelular/efectos de los fármacos , Heterocigoto , Ácido Hialurónico/farmacología , Proteínas Inmovilizadas/metabolismo , Ratones Noqueados , Modelos Biológicos , Neuronas/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/deficiencia , Tenascina/metabolismo
3.
J Neurosci ; 35(35): 12162-71, 2015 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-26338327

RESUMEN

Multiple sclerosis (MS) is a progressive neurological disorder associated with myelin destruction and neurodegeneration. Oligodendrocyte precursor cells (OPCs) present in demyelinated lesions gradually fail to differentiate properly, so remyelination becomes incomplete. Protein tyrosine phosphatase receptor type Z (PTPRZ), one of the most abundant protein tyrosine phosphatases expressed in OPCs, is known to suppress oligodendrocyte differentiation and maintain their precursor cell stage. In the present study, we examined the in vivo mechanisms for remyelination using a cuprizone-induced demyelination model. Ptprz-deficient and wild-type mice both exhibited severe demyelination and axonal damage in the corpus callosum after cuprizone feeding. The similar accumulation of OPCs was observed in the lesioned area in both mice; however, remyelination was significantly accelerated in Ptprz-deficient mice after the removal of cuprizone. After demyelination, the expression of pleiotrophin (PTN), an inhibitory ligand for PTPRZ, was transiently increased in mouse brains, particularly in the neurons involved, suggesting its role in promoting remyelination by inactivating PTPRZ activity. In support of this view, oligodendrocyte differentiation was augmented in a primary culture of oligodendrocyte-lineage cells from wild-type mice in response to PTN. In contrast, these cells from Ptprz-deficient mice showed higher oligodendrocyte differentiation without PTN and differentiation was not enhanced by its addition. We further demonstrated that PTN treatment increased the tyrosine phosphorylation of p190 RhoGAP, a PTPRZ substrate, using an established line of OPCs. Therefore, PTPRZ inactivation in OPCs by PTN, which is secreted from demyelinated axons, may be the mechanism responsible for oligodendrocyte differentiation during reparative remyelination in the CNS. SIGNIFICANCE STATEMENT: Multiple sclerosis (MS) is an inflammatory disease of the CNS that destroys myelin, the insulation that surrounds axons. Associated damages to oligodendrocytes (the cells that produce myelin) and nerve fibers produce neurological disability. Most patients with MS have an initial relapsing-remitting course for 5-15 years. Remyelination during the early stages of the disease process has been documented; however, the molecular mechanism underlying remyelination has not been understood. Protein tyrosine phosphatase receptor type Z (PTPRZ) is a receptor-like protein tyrosine phosphatase preferentially expressed in the CNS. This study shows that pleiotrophin, an inhibitory ligand for PTPRZ, is transiently expressed and released from demyelinated neurons to inactivate PTPRZ in oligodendrocyte precursor cells present in the lesioned part, thereby allowing their differentiation for remyelination.


Asunto(s)
Proteínas Portadoras/metabolismo , Diferenciación Celular/genética , Citocinas/metabolismo , Enfermedades Desmielinizantes/metabolismo , Oligodendroglía/fisiología , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/deficiencia , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Antígenos/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Cuerpo Calloso/patología , Cuprizona/toxicidad , Enfermedades Desmielinizantes/inducido químicamente , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína Básica de Mielina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Oligodendroglía/efectos de los fármacos , Proteoglicanos/metabolismo , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/genética , Células Madre , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética
4.
J Biol Chem ; 287(48): 40339-49, 2012 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-23060448

RESUMEN

BACKGROUND: The role of pleiotrophin and its receptors RPTPß/ζ and Syndecan-3 during tumor metastasis remains unknown. RESULTS: RPTPß/ζ knockdown initiates EMT, promotes pleiotrophin-mediated migration and attachment through Syndecan-3 and induces in vivo metastasis. CONCLUSION: RPTPß/ζ plays a suppressor-like role in prostate cancer metastasis. SIGNIFICANCE: Boosting RPTPß/ζ or attenuating Syndecan-3 signaling pathways may lead to more effective therapeutic strategies in treating prostate cancer metastasis. Pleiotrophin is a growth factor that induces carcinogenesis. Despite the fact that many published reports focused on the role of pleiotrophin and its receptors, receptor protein tyrosine phosphatase (RPTPß/ζ), and syndecan-3 during tumor development, no information is available regarding their function in tumor metastasis. To investigate the mechanism through which pleiotrophin regulates tumor metastasis, we used two different prostate carcinoma cell lines, DU145 and PC3, in which the expression of RPTPß/ζ or syndecan-3 was down-regulated by the RNAi technology. The loss of RPTPß/ζ expression initiated epithelial-to-mesenchymal transition (EMT) and increased the ability of the cells to migrate and invade. Importantly, the loss of RPTPß/ζ expression increased metastasis in nude mice in an experimental metastasis assay. We also demonstrate that RPTPß/ζ counterbalanced the pleiotrophin-mediated syndecan-3 pathway. While the inhibition of syndecan-3 expression inhibited the pleiotrophin-mediated cell migration and attachment through the Src and Fak pathway, the inhibition of RPTPß/ζ expression increased pleiotrophin-mediated migration and attachment through an interaction with Src and the subsequent activation of a signal transduction pathway involving Fak, Pten, and Erk1/2. Taken together, these results suggest that the loss of RPTPß/ζ may contribute to the metastasis of prostate cancer cells by inducing EMT and promoting pleiotrophin activity through the syndecan-3 pathway.


Asunto(s)
Metástasis de la Neoplasia , Neoplasias de la Próstata/enzimología , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/deficiencia , Animales , Línea Celular Tumoral , Movimiento Celular , Humanos , Masculino , Ratones , Ratones Noqueados , Ratones Desnudos , Fosforilación , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/genética , Transducción de Señal , Sindecano-3/genética , Sindecano-3/metabolismo , Regulación hacia Arriba
5.
Am J Pathol ; 181(5): 1518-23, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22940073

RESUMEN

Protein tyrosine phosphatase receptor type Z (Ptprz) is widely expressed in the mammalian central nervous system and has been suggested to regulate oligodendrocyte survival and differentiation. We investigated the role of Ptprz in oligodendrocyte remyelination after acute, toxin-induced demyelination in Ptprz null mice. We found neither obvious impairment in the recruitment of oligodendrocyte precursor cells, astrocytes, or reactive microglia/macrophage to lesions nor a failure for oligodendrocyte precursor cells to differentiate and remyelinate axons at the lesions. However, we observed an unexpected increase in the number of dystrophic axons by 3 days after demyelination, followed by prominent Wallerian degeneration by 21 days in the Ptprz-deficient mice. Moreover, quantitative gait analysis revealed a deficit of locomotor behavior in the mutant mice, suggesting increased vulnerability to axonal injury. We propose that Ptprz is necessary to maintain central nervous system axonal integrity in a demyelinating environment and may be an important target of axonal protection in inflammatory demyelinating diseases, such as multiple sclerosis and periventricular leukomalacia.


Asunto(s)
Axones/enzimología , Axones/patología , Sistema Nervioso Central/enzimología , Sistema Nervioso Central/patología , Enfermedades Desmielinizantes/enzimología , Enfermedades Desmielinizantes/patología , Animales , Apoptosis , Axones/ultraestructura , Diferenciación Celular , Sistema Nervioso Central/ultraestructura , Ratones , Oligodendroglía/enzimología , Oligodendroglía/patología , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/deficiencia , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismo , Médula Espinal/enzimología , Médula Espinal/patología , Médula Espinal/ultraestructura , Células Madre/enzimología , Células Madre/patología
6.
Proc Natl Acad Sci U S A ; 108(42): 17498-503, 2011 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-21969550

RESUMEN

The six members of the contactin (CNTN) family of neural cell adhesion molecules are involved in the formation and maintenance of the central nervous system (CNS) and have been linked to mental retardation and neuropsychiatric disorders such as autism. Five of the six CNTNs bind to the homologous receptor protein tyrosine phosphatases gamma (PTPRG) and zeta (PTPRZ), but the biological roles of these interactions remain unclear. We report here the cocrystal structure of the carbonic anhydrase-like domain of PTPRZ bound to tandem Ig repeats of CNTN1 and combine these structural data with binding assays to show that PTPRZ binds specifically to CNTN1 expressed at the surface of oligodendrocyte precursor cells. Furthermore, analyses of glial cell populations in wild-type and PTPRZ-deficient mice show that the binding of PTPRZ to CNTN1 expressed at the surface of oligodendrocyte precursor cells inhibits their proliferation and promotes their development into mature oligodendrocytes. Overall, these results implicate the PTPRZ/CNTN1 complex as a previously unknown modulator of oligodendrogenesis.


Asunto(s)
Contactina 1/química , Contactina 1/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Oligodendroglía/citología , Oligodendroglía/metabolismo , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/química , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismo , Animales , Sitios de Unión , Diferenciación Celular , Proliferación Celular , Contactina 1/genética , Cristalografía por Rayos X , Humanos , Ratones , Ratones Noqueados , Modelos Moleculares , Modelos Neurológicos , Complejos Multiproteicos , Neurogénesis/genética , Neurogénesis/fisiología , Estructura Terciaria de Proteína , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/deficiencia , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...