Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 491
Filtrar
1.
J Comp Neurol ; 532(7): e25660, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39039998

RESUMEN

Lafora disease (LD) is a syndrome of progressive myoclonic epilepsy and cumulative neurocognitive deterioration caused by recessively inherited genetic lesions of EPM2A (laforin) or NHLRC1 (malin). Neuropsychiatric symptomatology in LD is thought to be directly downstream of neuronal and astrocytic polyglucosan aggregates, termed Lafora bodies (LBs), which faithfully accumulate in an age-dependent manner in all mouse models of LD. In this study, we applied home-cage monitoring to examine the extent of neurobehavioral deterioration in a model of malin-deficient LD as a means to identify robust preclinical endpoints that may guide the selection of novel genetic treatments. At 6 weeks, ∼6-7 months, and ∼12 months of age, malin-deficient mice ("KO") and wild-type (WT) littermates underwent a standardized home-cage behavioral assessment designed to non-obtrusively appraise features of rest/arousal, consumptive behaviors, risk aversion, and voluntary wheel-running. At all timepoints, and over a range of metrics that we report transparently, WT and KO mice were essentially indistinguishable. In contrast, within WT mice compared across the same timepoints, we identified age-related nocturnal hypoactivity, diminished sucrose preference, and reduced wheel-running. Neuropathological examinations in subsets of the same mice revealed expected age-dependent LB accumulation, gliosis, and microglial activation in cortical and subcortical brain regions. At 12 months of age, despite the burden of neocortical LBs, we did not identify spontaneous seizures during an electroencephalographic (EEG) survey, and KO and WT mice exhibited similar spectral EEG features. However, in an in vitro assay of neocortical function, paroxysmal bursts of network activity (UP states) in KO slices were more prolonged at 3 and 6 months of age, but similar to WT at 12 months. KO mice displayed a distinct response to pentylenetetrazole, with a greater incidence of clonic seizures and a more pronounced postictal suppression of movement, feeding, and drinking behavior. Together, these results highlight the clinicopathologic dissociation in a mouse model of LD, where the accrual of LBs may latently modify cortical circuit function and seizure threshold without clinically meaningful changes in home-cage behavior. Our findings allude to a delay between LB accumulation and neurobehavioral decline in LD: one that may provide a window for treatment, and whose precise duration may be difficult to ascertain within the typical lifespan of a laboratory mouse.


Asunto(s)
Conducta Animal , Enfermedad de Lafora , Ratones Noqueados , Ubiquitina-Proteína Ligasas , Animales , Enfermedad de Lafora/genética , Enfermedad de Lafora/patología , Ratones , Conducta Animal/fisiología , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ratones Endogámicos C57BL , Masculino , Modelos Animales de Enfermedad , Cuerpos de Inclusión/patología , Cuerpos de Inclusión/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/genética , Proteínas Tirosina Fosfatasas no Receptoras/deficiencia , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Encéfalo/metabolismo , Encéfalo/patología
2.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(3): 491-496, 2024 Mar 28.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38970524

RESUMEN

X-linked myotubular myopathy (XLMTM) is a rare congenital myopathy. In February 2021, a male neonate was admitted to the West China Second University Hospital, Sichuan University, with clinical manifestations of hypotonia, accompanied by distinctive facial features, and requiring continuous ventilatory support. He was born prematurely at 36+2 weeks gestation and developed respiratory distress postnatally, followed by difficulty in weaning from mechanical ventilation. Additional clinical features included hypotonia of the limbs, swallowing dysfunction, and specific facial characteristics (elongated limbs, narrow face, high-arched palate, wrist drop, empty scrotum, elongated fingers/toes). Genetic testing confirmed the diagnosis of XLMTM. Whole-exome sequencing analysis of the family revealed no mutations in the father, paternal grandfather, or paternal grandmother, while the mother had a heterozygous mutation. The pathogenic mutation was identified as MTM1 gene (OMIM: 300415), chromosome position chrX-150649714, with a nucleotide change of c.868-2A>C. The patient exhibited typical facial features. Genetic testing is crucial for accurate diagnosis of XLMTM in infants presenting with abnormal muscle tone and distinctive facial features.


Asunto(s)
Mutación , Miopatías Estructurales Congénitas , Proteínas Tirosina Fosfatasas no Receptoras , Humanos , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/diagnóstico , Masculino , Recién Nacido , Proteínas Tirosina Fosfatasas no Receptoras/genética , Secuenciación del Exoma , Pruebas Genéticas , Hipotonía Muscular/genética
3.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(7): 812-816, 2024 Jul 10.
Artículo en Chino | MEDLINE | ID: mdl-38946363

RESUMEN

OBJECTIVE: To explore the clinical and genetic characteristics of two newborns with Central nuclear myopathy (CNM). METHODS: Two newborns with CNM diagnosed clinically at Wuhan Children's Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology in April 2019 and November 2021 were selected as the study subjects, and their clinical data was collected. Both newborns and their parents were subjected chromosomal karyotyping analysis and whole exome sequencing (WES). Candidate variants were verified by Sanger sequencing. Pathogenicity of the candidate variants was evaluated based on the guidelines from the American College of Medical Genetics and Genomics (ACMG). RESULTS: Patient 1 was a male neonate and Patient 2 was a 20-day-old male infant. Both newborns had featured difficulty in breathing and swallowing. WES revealed that both had harbored hemizygous variants of the MTM1 gene, which were verified by Sanger sequencing. Patient 1 had harbored a c.1261A>G variant. Based on the ACMG guidelines, it was rated as pathogenic (PVS1+PM2_Supporting+PP3). Patient 2 harbored a c.342delT variant, which was also rated as pathogenic (PVS1+PM2_Supporting+PP3). CONCLUSION: The c.1261A>G and c.342delT variants of the MTM1 gene probably underlay the pathogenesis of CNM in the two patients.


Asunto(s)
Miopatías Estructurales Congénitas , Humanos , Masculino , Miopatías Estructurales Congénitas/genética , Recién Nacido , Mutación , Secuenciación del Exoma , Proteínas Tirosina Fosfatasas no Receptoras/genética , Pruebas Genéticas
4.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 7): 148-153, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38940939

RESUMEN

Protein tyrosine phosphatase non-receptor type 21 (PTPN21) is a cytosolic protein tyrosine phosphatase that regulates cell growth and invasion. Due to its oncogenic properties, PTPN21 has recently emerged as a potential therapeutic target for cancer. In this study, the three-dimensional structure of the PTPN21 FERM domain was determined at 2.1 Šresolution by X-ray crystallography. The crystal structure showed that this domain harbors canonical FERM folding and consists of three subdomains that are tightly packed via highly conserved intramolecular hydrophobic interactions. Consistent with this, the PTPN21 FERM domain shares high structural homology with several other FERM domains. Moreover, structural superimposition demonstrated two putative protein-binding sites of the PTPN21 FERM domain, which are presumed to be associated with interaction with its binding partner, kinesin family member 1C. Thus, these data suggest that the FERM domain of PTPN21 serves as a module that mediates protein-protein interaction, like other FERM domains.


Asunto(s)
Modelos Moleculares , Humanos , Cristalografía por Rayos X , Unión Proteica , Sitios de Unión , Secuencia de Aminoácidos , Dominios Proteicos , Proteínas Tirosina Fosfatasas no Receptoras/química , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/genética , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119739, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38710289

RESUMEN

The myotubularin family, encompassing myotubularin 1 (MTM1) and 14 myotubularin-related proteins (MTMRs), represents a conserved group of phosphatases featuring a protein tyrosine phosphatase domain. Nine members are characterized by an active phosphatase domain C(X)5R, dephosphorylating the D3 position of PtdIns(3)P and PtdIns(3,5)P2. Mutations in myotubularin genes result in human myopathies, and several neuropathies including X-linked myotubular myopathy and Charcot-Marie-Tooth type 4B. MTM1, MTMR6 and MTMR14 also contribute to Ca2+ signaling and Ca2+ homeostasis that play a key role in many MTM-dependent myopathies and neuropathies. Here we explore the evolving roles of MTM1/MTMRs, unveiling their influence on critical aspects of Ca2+ signaling pathways.


Asunto(s)
Señalización del Calcio , Calcio , Homeostasis , Proteínas Tirosina Fosfatasas no Receptoras , Humanos , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/genética , Calcio/metabolismo , Animales , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/metabolismo , Mutación
6.
Mol Ther ; 32(7): 2130-2149, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38796707

RESUMEN

Lafora disease is a rare and fatal form of progressive myoclonic epilepsy typically occurring early in adolescence. The disease results from mutations in the EPM2A gene, encoding laforin, or the EPM2B gene, encoding malin. Laforin and malin work together in a complex to control glycogen synthesis and prevent the toxicity produced by misfolded proteins via the ubiquitin-proteasome system. Disruptions in either protein cause alterations in this complex, leading to the formation of Lafora bodies containing abnormal, insoluble, and hyperphosphorylated forms of glycogen. We used the Epm2a-/- knockout mouse model of Lafora disease to apply gene therapy by administering intracerebroventricular injections of a recombinant adeno-associated virus carrying the human EPM2A gene. We evaluated the effects of this treatment through neuropathological studies, behavioral tests, video-electroencephalography, electrophysiological recordings, and proteomic/phosphoproteomic analysis. Gene therapy ameliorated neurological and histopathological alterations, reduced epileptic activity and neuronal hyperexcitability, and decreased the formation of Lafora bodies. Moreover, differential quantitative proteomics and phosphoproteomics revealed beneficial changes in various molecular pathways altered in Lafora disease. Our results represent proof of principle for gene therapy with the coding region of the human EPM2A gene as a treatment for EPM2A-related Lafora disease.


Asunto(s)
Dependovirus , Modelos Animales de Enfermedad , Terapia Genética , Enfermedad de Lafora , Ratones Noqueados , Proteínas Tirosina Fosfatasas no Receptoras , Enfermedad de Lafora/terapia , Enfermedad de Lafora/genética , Enfermedad de Lafora/metabolismo , Animales , Terapia Genética/métodos , Proteínas Tirosina Fosfatasas no Receptoras/genética , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Ratones , Dependovirus/genética , Humanos , Vectores Genéticos/genética , Vectores Genéticos/administración & dosificación , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Electroencefalografía , Proteómica/métodos
7.
Pharmacol Res ; 205: 107236, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38797358

RESUMEN

The rapid antidepressant effects of ketamine depend on the N-methyl-D-aspartate (NMDA) receptor containing 2B subunit (NR2B), whose function is influenced by its phosphorylated regulation and distribution within and outside synapses. It remains unclear if ketamine's rapid onset of antidepressant effects relies on the dynamic phosphorylated regulation of NR2B within and outside synapses. Here, we show that ketamine rapidlyalleviated depression-like behaviors and normalized abnormal expression of pTyr1472NR2B and striatal-enriched protein tyrosine phosphatase (STEP) 61 within and outside synapses in the medial prefrontal cortex (mPFC) induced by chronic unpredictable stress (CUS) and conditional knockdown of STEP 61, a key phosphatase of NR2B, within 1 hour after administration Together, our results delineate the rapid initiation of ketamine's antidepressant effects results from the restoration of NR2B phosphorylation homeostasis within and outside synapses. The dynamic regulation of phosphorylation of NR2B provides a new perspective for developing new antidepressant strategies.


Asunto(s)
Antidepresivos , Depresión , Ketamina , Ratones Endogámicos C57BL , Corteza Prefrontal , Receptores de N-Metil-D-Aspartato , Receptores de N-Metil-D-Aspartato/metabolismo , Ketamina/farmacología , Animales , Fosforilación/efectos de los fármacos , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Masculino , Corteza Prefrontal/metabolismo , Corteza Prefrontal/efectos de los fármacos , Depresión/tratamiento farmacológico , Depresión/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/genética , Tirosina/metabolismo , Ratones , Estrés Psicológico/metabolismo , Estrés Psicológico/tratamiento farmacológico , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Conducta Animal/efectos de los fármacos
8.
Proc Natl Acad Sci U S A ; 121(23): e2217971121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38805272

RESUMEN

Myogenesis is a multistep process that requires a spatiotemporal regulation of cell events resulting finally in myoblast fusion into multinucleated myotubes. Most major insights into the mechanisms underlying fusion seem to be conserved from insects to mammals and include the formation of podosome-like protrusions (PLPs) that exert a driving force toward the founder cell. However, the machinery that governs this process remains poorly understood. In this study, we demonstrate that MTM1 is the main enzyme responsible for the production of phosphatidylinositol 5-phosphate, which in turn fuels PI5P 4-kinase α to produce a minor and functional pool of phosphatidylinositol 4,5-bisphosphate that concentrates in PLPs containing the scaffolding protein Tks5, Dynamin-2, and the fusogenic protein Myomaker. Collectively, our data reveal a functional crosstalk between a PI-phosphatase and a PI-kinase in the regulation of PLP formation.


Asunto(s)
Fusión Celular , Mioblastos , Fosfatos de Fosfatidilinositol , Podosomas , Animales , Fosfatos de Fosfatidilinositol/metabolismo , Ratones , Mioblastos/metabolismo , Mioblastos/citología , Podosomas/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/genética , Desarrollo de Músculos/fisiología
9.
Hematology ; 29(1): 2356292, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38785187

RESUMEN

OBJECTIVES: This study aims to investigate the role of excessive Protein Tyrosine Phosphatase Non-Receptor Type 21 (PTPN21) in the proliferation of Acute Lymphoblastic Leukemia (ALL) cells with EGF stimulation. METHODS: PTPN21 was overexpressed in ALL cell lines by lentiviral transfection. Apoptosis was assayed by Annexin V/7-AAD staining. The proliferation and cell cycle of EGF-treated ALL cells were assessed by MTT and Ki-67/7-AAD staining respectively. The phosphorylation of Src tyrosine kinase and mediators of distinct MAPK pathways were assessed by Western blot. RESULTS: Overexpression of PTPN21 had minimal effect on the apoptosis of ALL cells, but significantly promoted the proliferation and cell cycle progression of ALL cells stimulated with EGF. The activity of Src tyrosine kinase and the MAPK pathways was elevated. Inhibition of MAPK pathways by specific inhibitors mitigated this pro-proliferative effect of excessive PTPN21 on EGF-stimulated ALL cells. CONCLUSION: PTPN21 may facilitate ALL progression by promoting cell proliferation via the Src/MAPK signaling pathways.


Asunto(s)
Proliferación Celular , Factor de Crecimiento Epidérmico , Sistema de Señalización de MAP Quinasas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Proteínas Tirosina Fosfatasas no Receptoras , Humanos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Factor de Crecimiento Epidérmico/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas Tirosina Fosfatasas no Receptoras/genética , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo
10.
J Biol Chem ; 300(5): 107271, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38588813

RESUMEN

Lafora disease (LD) is an autosomal recessive myoclonus epilepsy with onset in the teenage years leading to death within a decade of onset. LD is characterized by the overaccumulation of hyperphosphorylated, poorly branched, insoluble, glycogen-like polymers called Lafora bodies. The disease is caused by mutations in either EPM2A, encoding laforin, a dual specificity phosphatase that dephosphorylates glycogen, or EMP2B, encoding malin, an E3-ubiquitin ligase. While glycogen is a widely accepted laforin substrate, substrates for malin have been difficult to identify partly due to the lack of malin antibodies able to detect malin in vivo. Here we describe a mouse model in which the malin gene is modified at the C-terminus to contain the c-myc tag sequence, making an expression of malin-myc readily detectable. Mass spectrometry analyses of immunoprecipitates using c-myc tag antibodies demonstrate that malin interacts with laforin and several glycogen-metabolizing enzymes. To investigate the role of laforin in these interactions we analyzed two additional mouse models: malin-myc/laforin knockout and malin-myc/LaforinCS, where laforin was either absent or the catalytic Cys was genomically mutated to Ser, respectively. The interaction of malin with partner proteins requires laforin but is not dependent on its catalytic activity or the presence of glycogen. Overall, the results demonstrate that laforin and malin form a complex in vivo, which stabilizes malin and enhances interaction with partner proteins to facilitate normal glycogen metabolism. They also provide insights into the development of LD and the rescue of the disease by the catalytically inactive phosphatase.


Asunto(s)
Enfermedad de Lafora , Proteínas Tirosina Fosfatasas no Receptoras , Ubiquitina-Proteína Ligasas , Enfermedad de Lafora/metabolismo , Enfermedad de Lafora/genética , Enfermedad de Lafora/patología , Animales , Ratones , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/genética , Humanos , Fosfatasas de Especificidad Dual/metabolismo , Fosfatasas de Especificidad Dual/genética , Modelos Animales de Enfermedad , Glucógeno/metabolismo , Glucógeno/genética
11.
Cancer Lett ; 588: 216783, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38462034

RESUMEN

Inhibition of K-RAS effectors like B-RAF or MEK1/2 is accompanied by treatment resistance in cancer patients via re-activation of PI3K and Wnt signaling. We hypothesized that myotubularin-related-protein-7 (MTMR7), which inhibits PI3K and ERK1/2 signaling downstream of RAS, directly targets RAS and thereby prevents resistance. Using cell and structural biology combined with animal studies, we show that MTMR7 binds and inhibits RAS at cellular membranes. Overexpression of MTMR7 reduced RAS GTPase activities and protein levels, ERK1/2 phosphorylation, c-FOS transcription and cancer cell proliferation in vitro. We located the RAS-inhibitory activity of MTMR7 to its charged coiled coil (CC) region and demonstrate direct interaction with the gastrointestinal cancer-relevant K-RASG12V mutant, favouring its GDP-bound state. In mouse models of gastric and intestinal cancer, a cell-permeable MTMR7-CC mimicry peptide decreased tumour growth, Ki67 proliferation index and ERK1/2 nuclear positivity. Thus, MTMR7 mimicry peptide(s) could provide a novel strategy for targeting mutant K-RAS in cancers.


Asunto(s)
Neoplasias , Proteínas Tirosina Fosfatasas no Receptoras , Animales , Humanos , Ratones , Péptidos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/genética , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Transducción de Señal
12.
Epilepsy Res ; 200: 107317, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38341935

RESUMEN

Lafora disease is a rare and fatal form of progressive myoclonic epilepsy with onset during early adolescence. The disease is caused by mutations in EPM2A, encoding laforin, or EPM2B, encoding malin. Both proteins have functions that affect glycogen metabolism, including glycogen dephosphorylation by laforin and ubiquitination of enzymes involved in glycogen metabolism by malin. Lack of function of laforin or malin results in the accumulation of polyglucosan that forms Lafora bodies in the central nervous system and other tissues. Enzyme replacement therapy through intravenous administration of alglucosidase alfa (Myozyme®) has shown beneficial effects removing polyglucosan aggregates in Pompe disease. We evaluated the effectiveness of intracerebroventricular administration of alglucosidase alfa in the Epm2a-/- knock-out and Epm2aR240X knock-in mouse models of Lafora disease. Seven days after a single intracerebroventricular injection of alglucosidase alfa in 12-month-old Epm2a-/- and Epm2aR240X mice, the number of Lafora bodies was not reduced. Additionally, a prolonged infusion of alglucosidase alfa for 2 or 4 weeks in 6- and 9-month-old Epm2a-/- mice did not result in a reduction in the number of LBs or the amount of glycogen in the brain. These findings hold particular significance in guiding a rational approach to the utilization of novel therapies in Lafora disease.


Asunto(s)
Enfermedad de Lafora , alfa-Glucosidasas , Ratones , Animales , Enfermedad de Lafora/tratamiento farmacológico , Enfermedad de Lafora/genética , Ratones Noqueados , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Glucógeno/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/genética
13.
J Biosci ; 492024.
Artículo en Inglés | MEDLINE | ID: mdl-38287677

RESUMEN

Lafora disease (LD) is a life-threatening autosomal recessive and progressive neurodegenerative disorder that primarily affects adolescents, resulting in mortality within a decade of onset. The symptoms of LD include epileptic seizures, ataxia, dementia, and psychosis. The underlying pathology involves the presence of abnormal glycogen inclusions in neurons and other tissues, which may contribute to neurodegeneration. LD is caused by loss-of-function mutations in either the EPM2A gene or the NHLRC1 gene. These two genes, respectively, code for laforin phosphatase and malin ubiquitin ligase, and are thought to function, as a functional complex, in diverse cellular pathways. One of the major pathways affected in LD is glycogen metabolism; defects here lead to abnormally higher levels of glycogen and its hyperphosphorylation and aggregation, resulting in the formation of Lafora inclusion bodies. Currently, there is no effective therapy for LD. Studies, particularly from animal models, provide distinct insights into the fundamental mechanisms of diseases and potential avenues for therapeutic interventions. The purpose of this review is to present a comprehensive overview of our current knowledge regarding the disease, its genetics, the animal models that have been developed, and the therapeutic strategies that are being developed based on an understanding of the disease mechanism.


Asunto(s)
Enfermedad de Lafora , Animales , Enfermedad de Lafora/diagnóstico , Enfermedad de Lafora/genética , Enfermedad de Lafora/terapia , Proteínas Tirosina Fosfatasas no Receptoras/genética , Neuronas/metabolismo , Mutación , Glucógeno/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
14.
Int Immunopharmacol ; 129: 111589, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38295542

RESUMEN

The protozoan parasite Leishmania donovani resides within mammalian macrophages and alters its antigen-presenting functions to negatively regulate host-protective T cell responses. This negative regulation of human T cell responses in vitro is attributed to myotubularin-related protein-6 (MTMR6), an ion channel-associated phosphatase. As mouse and human MTMR6 share homology, we studied whether MTMR6 silencing by lentivirally expressed MTMR6shRNA (Lv-MTMR6shRNA) reduced Leishmania growth in macrophages and whether MTMR6 silencing in Leishmania-susceptible BALB/c mice reduced the infection and reinstated host-protective T cell functions. MTMR6 silencing reduced amastigote count and IL-10 production, increased IL-12 expression and, induced IFN-γ-secreting T cells with anti-leishmanial activity in macrophage-T cell co-cultures. Lv-MTMR6shRNA reduced the infection, accompanied by increased IFN-γ expression, in susceptible BALB/c mice. Delays in Lv-MTMR6shRNA treatment by 7 days post-infection significantly reduced the infection suggesting MTMR6 as a plausible therapeutic target. Priming of BALB/c mice with avirulent parasites and Lv-MTMR6shRNA reduced parasite burden in challenge infection. These results indicate that MTMR6 is the first receptor-regulated ion channel-associated phosphatase regulating anti-leishmanial immune responses.


Asunto(s)
Leishmania donovani , Leishmaniasis Visceral , Leishmaniasis , Ratones , Humanos , Animales , Proteínas Tirosina Fosfatasas no Receptoras/genética , Ratones Endogámicos BALB C , Canales Iónicos , Mamíferos
15.
Mol Biol Rep ; 50(12): 10073-10081, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37910386

RESUMEN

BACKGROUND: Highly upregulated in liver cancer (HULC) is one of the LncRNAs that was documented to enhance cancer progression, and its downregulation is associated with cell cycle arrest and apoptosis. Myotubularin-related protein 3 (MTMR3) is required for autophagy, and many studies consider MTMR3 to be a negative regulator of autophagy processes. However, nothing is understood about how they regulate breast cancer. MATERIAL AND METHODS: This case-control study included 245 patients (Group A: 85 early BC Group B: 40 metastatic BC cases, Group C: 40 fibroadenoma cases; and Group D: 80 age matched healthy control subjects. TaqMan Real-time PCR was used to analyse rs7158663 and rs12537. MTMR3 and HULC gene expression levels were measured using RT-PCR. RESULT: Breast cancer patients exhibited elevated serum MTMR3 and HULC compared to fibroadenomas and control cases. The MTMR3 rs12537 "T/T" genotype was highly expressed in cases of breast cancer (early and metastatic) compared to controls (risk genotype). On the other hand, the HULC rs7158663 genotypes were not statistically associated with breast cancer. However, when compared to the control, the C/C genotype of the HULC gene is higher in the case.MTMR3 gene expression was higher in the T/T genotype compared to both the C/C and C/T genotypes, while HULC gene expression was lower in the A/C genotype compared to both the A/A and C/C genotypes. Positive correlation between MTMR3 and HULC. MTMR3 and ALT, as well as HULC and alkaline phosphatase, both showed a statistically significant positive correlation. CONCLUSION: Our findings reveal that MTMR3 and HULC serum expression and their SNPs (HULC rs7763881, MTMR3 rs12537) are associated with a higher risk for the development of breast cancer in the Egyptian population.


Asunto(s)
Neoplasias de la Mama , Neoplasias Hepáticas , ARN Largo no Codificante , Femenino , Humanos , Neoplasias de la Mama/genética , Estudios de Casos y Controles , Egipto , Genotipo , Neoplasias Hepáticas/genética , Proteínas Tirosina Fosfatasas no Receptoras/genética , ARN Largo no Codificante/genética
16.
Med Sci (Paris) ; 39 Hors série n° 1: 32-36, 2023 Nov.
Artículo en Francés | MEDLINE | ID: mdl-37975768

RESUMEN

Myotubular myopathy is a rare disease of genetic origin characterized by significant muscle weakness leading to respiratory disorders and for which no treatment exists today. In this paper, we show that inhibition of the activity of the enzyme PI3KC2ß prevents the development of this myopathy in a mouse model of the disease, thus identifying a therapeutic target to treat myotubular myopathy in humans.


Title: Une cible thérapeutique prometteuse dans la myopathie myotubulaire. Abstract: La myopathie myotubulaire est une maladie rare d'origine génétique caractérisée par une importante faiblesse musculaire entraînant des troubles respiratoires et pour laquelle aucun traitement n'existe aujourd'hui. Dans cet article, nous montrons que l'inhibition de l'activité de l'enzyme PI3KC2ß prévient le développement de cette myopathie dans un modèle murin de la maladie, identifiant ainsi une cible thérapeutique pour traiter la myopathie myotubulaire chez l'homme.


Asunto(s)
Miopatías Estructurales Congénitas , Animales , Ratones , Modelos Animales de Enfermedad , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/terapia , Proteínas Tirosina Fosfatasas no Receptoras/genética
17.
Eur J Obstet Gynecol Reprod Biol ; 291: 34-38, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37813004

RESUMEN

Polyhydramnios can be caused by genetic defects at times. However, to establish an accurate diagnosis and provide a precise prenatal consultation in a given case is still a great challenge toward obstetricians. To uncover the genetic cause of polyhydramnios in the two consecutive pregnancies, we performed whole-exome sequencing of DNA for the second suffering fetuses, their parents, and targeted sanger sequencing of other members of this family. We discovered a hemizygous truncating variant in MTM1 gene, c.438_439 del (p. H146Q fs*10) in this Chinese family. In the light of the molecular discoveries, the fetus's clinical phenotype was considered to be a good fit for X-linked myotubular myopathy (XLMTM). There is no related research to the prenatal manifestations of MTM1-related XLMTM among Chinese population, and this is the first one to present. Though the etiology of polyhydramnios is complicated, WES may provide us with a creative avenue in prenatal diagnosis.


Asunto(s)
Miopatías Estructurales Congénitas , Polihidramnios , Embarazo , Femenino , Humanos , Secuenciación del Exoma , Polihidramnios/diagnóstico por imagen , Polihidramnios/genética , Proteínas Tirosina Fosfatasas no Receptoras/genética , Mutación , Miopatías Estructurales Congénitas/diagnóstico , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/patología
18.
Nutr Bull ; 48(4): 559-571, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37905391

RESUMEN

Childhood dyslipidaemia is associated with the occurrence of cardiovascular diseases in adulthood, so evaluating whether an individual has a genetic predisposition to this pathology is of great importance for early action of prevention and treatment. This study aimed to evaluate the association between the FTO (rs9939609), MC4R (rs17782313) and MTMR9 (rs2293855) polymorphisms, the obesity-related genetic risk score and atherogenic risk in Brazilian children. This is a cross-sectional study conducted in 544 children aged 4-9 years in the city of Viçosa, Minas Gerais state, Brazil. The single nucleotide polymorphisms rs9939609, rs17782313 and rs2293855, were identified by the system TaqMan SNP genotyping and the obesity-related genetic risk score was determined. The lipid profile (serum total cholesterol [TC], high density lipoprotein [HDL] cholesterol, low density lipoprotein [LDL] cholesterol, triglycerides) was analysed and the atherogenic indices (Castelli I and II indices), atherogenic coefficient (AC), lipoprotein combined index (LCI) and plasma atherogenic index (PAI) were calculated. A semi-structured questionnaire was applied, obtaining data on the sociodemographic, economic and lifestyle characteristics of the children. Weight and height measurements were performed in all children, and body composition was evaluated by Dual-Energy X-ray Absorptiometry (DXA). 55.5% of the sample had dyslipidaemia, while 28.5% of the sample had at least one polymorphism and 2.2% had three polymorphisms. Children with the AG/AA genotypes in the rs2293855 polymorphism had lower HDL cholesterol levels and higher TC/HDL cholesterol, LDL/HDL cholesterol ratios and AC. Those with one or more polymorphisms (rs9939609, rs17782313 and rs2293855) in the genetic risk score had lower HDL cholesterol levels and higher TC/HDL cholesterol ratios, AC, LCI and PAI. In conclusion, the risk allele of the rs2293855 polymorphism and a higher obesity-related genetic risk score were positively associated with higher atherogenic risk in Brazilian children.


Asunto(s)
Dislipidemias , Obesidad , Niño , Humanos , HDL-Colesterol , Genotipo , Estudios Transversales , Índice de Masa Corporal , Polimorfismo de Nucleótido Simple/genética , Colesterol , Lipoproteínas HDL/genética , Dislipidemias/epidemiología , Proteínas Tirosina Fosfatasas no Receptoras/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética
19.
Am J Hum Genet ; 110(10): 1648-1660, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37673065

RESUMEN

X-linked myotubular myopathy (XLMTM) is a severe congenital disease characterized by profound muscle weakness, respiratory failure, and early death. No approved therapy for XLMTM is currently available. Adeno-associated virus (AAV)-mediated gene replacement therapy has shown promise as an investigational therapeutic strategy. We aimed to characterize the transcriptomic changes in muscle biopsies of individuals with XLMTM who received resamirigene bilparvovec (AT132; rAAV8-Des-hMTM1) in the ASPIRO clinical trial and to identify potential biomarkers that correlate with therapeutic outcome. We leveraged RNA-sequencing data from the muscle biopsies of 15 study participants and applied differential expression analysis, gene co-expression analysis, and machine learning to characterize the transcriptomic changes at baseline (pre-dose) and at 24 and 48 weeks after resamirigene bilparvovec dosing. As expected, MTM1 expression levels were significantly increased after dosing (p < 0.0001). Differential expression analysis identified upregulated genes after dosing that were enriched in several pathways, including lipid metabolism and inflammatory response pathways, and downregulated genes were enriched in cell-cell adhesion and muscle development pathways. Genes involved in inflammatory and immune pathways were differentially expressed between participants exhibiting ventilator support reduction of either greater or less than 6 h/day after gene therapy compared to pre-dosing. Co-expression analysis identified similarly regulated genes, which were grouped into modules. Finally, the machine learning model identified five genes, including MTM1, as potential RNA biomarkers to monitor the progress of AAV gene replacement therapy. These findings further extend our understanding of AAV-mediated gene therapy in individuals with XLMTM at the transcriptomic level.


Asunto(s)
Miopatías Estructurales Congénitas , Transcriptoma , Humanos , Biomarcadores/metabolismo , Perfilación de la Expresión Génica , Terapia Genética , Músculo Esquelético/metabolismo , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/terapia , Miopatías Estructurales Congénitas/patología , Proteínas Tirosina Fosfatasas no Receptoras/genética , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , ARN/metabolismo , Transcriptoma/genética
20.
Methods Mol Biol ; 2706: 167-175, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37558948

RESUMEN

Striatal-enriched protein tyrosine phosphatase (STEP) is a brain-specific enzyme that regulates the signaling molecules that control synaptic plasticity and neuronal function. Dysregulation of STEP is linked to the pathophysiology of Alzheimer's disease and other neuropsychiatric disorders. Experimental results from neurological deficit disease models suggest that the modulation of STEP could be beneficial in a number of these disorders. This prompted our work to identify small-molecule modulators of STEP to provide the foundation of a drug discovery program. As a component of our testing funnel to identify small-molecule STEP inhibitors, we have developed a cellular target engagement assay that can identify compounds that interact with STEP46. We provide a comprehensive protocol to enable the use of this miniaturized assay, and we demonstrate its utility to benchmark the binding of newly discovered compounds.


Asunto(s)
Enfermedad de Alzheimer , Proteínas Tirosina Fosfatasas no Receptoras , Humanos , Proteínas Tirosina Fosfatasas no Receptoras/genética , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Neuronas/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...