Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Plant Mol Biol ; 112(6): 357-371, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37479835

RESUMEN

AtAIRP5 RING E3 ubiquitin ligase was recently identified as a positive regulator of the abscisic acid (ABA)-mediated drought stress response by stimulating the degradation of serine carboxypeptidase-like 1. Here, we identified GDSL-type esterase/lipase 22 (AtGELP22) and AtGELP23 as additional interacting partners of AtAIRP5. Yeast two-hybrid, pull-down, co-immunoprecipitation, and ubiquitination analyses verified that AtGELP22 and AtGELP23 are ubiquitinated target proteins of AtAIRP5. AtGELP22 and AtGELP23 were colocalized with AtAIRP5 to punctate-like structures in the cytosolic fraction, in which PYK10 and NAI2, two ER body marker proteins, are localized. T-DNA insertion atgelp22 and atgelp23 single knockout mutant plants showed phenotypes indistinguishable from those of wild-type plants under ABA treatment. In contrast, RNAi-mediated cosuppression of AtGELP22 and AtGELP23 resulted in hypersensitive ABA-mediated stomatal movements and higher tolerance to drought stress than that of the single mutant and wild-type plants. Taken together, our results suggest that the putative GDSL-type esterases/lipases AtGELP22 and AtGELP23 act as redundant negative regulators of the ABA-mediated drought stress response in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Interferencia de ARN , Proteínas Ubiquitinadas/genética , Proteínas Ubiquitinadas/metabolismo , Sequías , Proteínas de Arabidopsis/metabolismo , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
2.
J Pharmacol Exp Ther ; 385(1): 5-16, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36328485

RESUMEN

Ubiquitin-proteasome dysfunction contributes to obesity-related metabolic disorders, such as diabetes and fatty liver disease. However, the regulation of ubiquitin-proteasome activity by insulin remains to be elucidated. Here, we show that prolonged insulin stimulation activates proteasome function even though it reduces the ubiquitinated proteins in H4IIEC3 hepatocytes. Looking for a pathway by which insulin inhibits ubiquitination, we found that hepatic expression of ubiquitin-specific protease 14 (USP14) was upregulated in the liver of patients with insulin resistance. Indeed, the USP14-specific inhibitor IU1 canceled the insulin-mediated reduction of ubiquitinated proteins. Furthermore, insulin-induced endoplasmic reticulum (ER) stress, which was canceled by IU1, suggesting that USP14 activity is involved in insulin-induced ER stress. Co-stimulation with insulin and IU1 for 2 hours upregulated the nuclear translocation of the lipogenic transcription factor, sterol regulatory element binding protein-1c (SREBP-1c), upregulated the expression of the lipogenic gene, fatty acid synthase (Fasn), and repressed the gluconeogenic genes. In conclusion, insulin activates proteasome function even though it inhibits protein ubiquitination by activating USP14 in hepatocytes. USP14 activation by insulin inhibits mature SREBP-1c while upregulating ER stress and the expression of genes involved in gluconeogenesis. Further understanding mechanisms underlying the USP14 activation and its pleiotropic effects may lead to therapeutic development for obesity-associated metabolic disorders, such as diabetes and fatty liver disease. SIGNIFICANCE STATEMENT: This study shows that insulin stimulation inhibits ubiquitination by activating USP14, independent of its effect on proteasome activity in hepatocytes. USP14 also downregulates the nuclear translocation of the lipogenic transcription factor SREBP-1c and upregulates the expression of genes involved in gluconeogenesis. Since USP14 is upregulated in the liver of insulin-resistant patients, understanding mechanisms underlying the USP14 activation and its pleiotropic effects will help develop treatments for metabolic disorders such as diabetes and fatty liver.


Asunto(s)
Hepatocitos , Enfermedad del Hígado Graso no Alcohólico , Complejo de la Endopetidasa Proteasomal , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Humanos , Enzimas Desubicuitinizantes/genética , Enzimas Desubicuitinizantes/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Insulina/farmacología , Insulina/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/genética , Obesidad/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/farmacología , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo , Proteasas Ubiquitina-Específicas/farmacología , Proteínas Ubiquitinadas/genética , Proteínas Ubiquitinadas/metabolismo , Proteínas Ubiquitinadas/farmacología , Ubiquitinación , Ubiquitinas/genética , Ubiquitinas/metabolismo , Ubiquitinas/farmacología
3.
Genes (Basel) ; 13(10)2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36292671

RESUMEN

BACKGROUND: Gastric cancer remains the most prevalent and highly lethal disease worldwide. MAP4K4, a member of Ste20, plays an important role in various pathologies, including cancer. However, its role in gastric cancer is not yet fully elucidated. Therefore, this study aims to determine the tumor-promoting role of MAP4K4 in gastric cancer and whether it can be used as a new and reliable biomarker to predict the prognosis of gastric cancer. For this purpose, we divide the samples into high- and low-expression groups according to the expression level of MAP4K4. The association of MAP4K4 expression with prognosis is assessed using the Kaplan-Meier survival analysis. Furthermore, immune infiltration analysis using ESTIMATE is conducted to evaluate the tumor immune scores of the samples. RESULTS: The findings reveal a significantly higher expression of MAP4K4 in tumor samples than in adjacent samples. The high-expression group was significantly enriched in tumor-related pathways, such as the PI3K-Akt signaling pathway. In addition, immune infiltration analysis revealed a positive correlation between immune scores and MAP4K4 expression. We also observed that miRNAs, such as miR-192-3p (R = -0.317, p-value 3.111 × 10-9), miR-33b-5p (R= -0.238, p-value 1.166 × 10-5), and miR-582-3p (R = -0.214, p-value 8.430 × 10-5), had potential negative regulatory effects on MAP4K4. Moreover, we identified several transcription factors, ubiquitinated proteins, and interacting proteins that might regulate MAP4K4. The relationship between MAP4K4 and DNA methylation was also identified. Finally, we verified the high expression of MAP4K4 and its effect on promoting cancer. CONCLUSION: MAP4K4 might be closely related to gastric cancer's progression, invasion, and metastasis. Its high expression negatively impacts the prognosis of gastric cancer patients. This suggests MAP4K4 as an important prognostic factor for gastric cancer and could be regarded as a new potential prognostic detection and therapeutic target.


Asunto(s)
MicroARNs , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Biología Computacional , Regulación Neoplásica de la Expresión Génica , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Ubiquitinadas/genética , Proteínas Ubiquitinadas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Biomarcadores , Factores de Transcripción/genética , Proteínas Serina-Treonina Quinasas , Péptidos y Proteínas de Señalización Intracelular/genética
4.
J Transl Med ; 20(1): 445, 2022 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-36184622

RESUMEN

BACKGROUND: According to the Global Cancer Statistics in 2020, the incidence and mortality of colorectal cancer (CRC) rank third and second among all tumors. The disturbance of ubiquitination plays an important role in the initiation and development of CRC, but the ubiquitinome of CRC cells and the survival-relevant ubiquitination are poorly understood. METHODS: The ubiquitinome of CRC patients (n = 6) was characterized using our own data sets of proteomic and ubiquitin-proteomic examinations. Then, the probable survival-relevant ubiquitination was searched based on the analyses of data sets from public databases. RESULTS: For the ubiquitinomic examination, we identified 1690 quantifiable sites and 870 quantifiable proteins. We found that the highly-ubiquitinated proteins (n ≥ 10) were specifically involved in the biological processes such as G-protein coupling, glycoprotein coupling, and antigen presentation. Also, we depicted five motif sequences frequently recognized by ubiquitin. Subsequently, we revealed that the ubiquitination content of 1172 proteins were up-regulated and 1700 proteins were down-regulated in CRC cells versus normal adjacent cells. We demonstrated that the differentially ubiquitinated proteins were relevant to the pathways including metabolism, immune regulation, and telomere maintenance. Then, integrated with the proteomic datasets from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) (n = 98), we revealed that the increased ubiquitination of FOCAD at Lys583 and Lys587 was potentially associated with patient survival. Finally, we depicted the mutation map of FOCAD and elucidated its potential functions on RNA localization and translation in CRC. CONCLUSIONS: The findings of this study described the ubiquitinome of CRC cells and identified abnormal ubiquitination(s) potentially affecting the patient survival, thereby offering new probable opportunities for clinical treatment.


Asunto(s)
Neoplasias Colorrectales , Proteínas Ubiquitinadas , Neoplasias Colorrectales/patología , Humanos , Proteómica , ARN/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Proteínas Ubiquitinadas/genética , Proteínas Ubiquitinadas/metabolismo , Ubiquitinación
5.
Cells ; 11(18)2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36139461

RESUMEN

Charcot-Marie-Tooth (CMT) disease is the most common inherited neurodegenerative disorder with selective degeneration of peripheral nerves. Despite advances in identifying CMT-causing genes, the underlying molecular mechanism, particularly of selective degeneration of peripheral neurons remains to be elucidated. Since peripheral neurons are sensitive to multiple stresses, we hypothesized that daily repeated stress might be an essential contributor to the selective degeneration of peripheral neurons induced by CMT-causing mutations. Here, we mainly focused on the biological effects of the dominant missense mutation (S135F) in the 27-kDa small heat-shock protein HSPB1 under repeated heat shock. HSPB1S135F presented hyperactive binding to both α-tubulin and acetylated α-tubulin during repeated heat shock when compared with the wild type. The aberrant interactions with tubulin prevented microtubule-based transport of heat shock-induced misfolded proteins for the formation of perinuclear aggresomes. Furthermore, the transport of autophagosomes along microtubules was also blocked. These results indicate that the autophagy pathway was disrupted, leading to an accumulation of ubiquitinated protein aggregates and a significant decrease in cell adaptation to repeated stress. Our findings provide novel insights into the molecular mechanisms of HSPB1S135F-induced selective degeneration of peripheral neurons and perspectives for targeting autophagy as a promising therapeutic strategy for CMT neuropathy.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Proteínas de Choque Térmico , Chaperonas Moleculares , Tubulina (Proteína) , Autofagia/genética , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico/genética , Humanos , Chaperonas Moleculares/genética , Mutación/genética , Tubulina (Proteína)/genética , Proteínas Ubiquitinadas/genética
6.
Viruses ; 14(8)2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-36016412

RESUMEN

Ubiquitination is a major post-translational modification (PTM) involved in almost all eukaryotic biological processes and plays an essential role in plant response to pathogen infection. However, to date, large-scale profiling of the changes in the ubiquitome in response to pathogens, especially viruses, in wheat has not been reported. This study aimed to identify the ubiquitinated proteins involved in Chinese wheat mosaic virus (CWMV) infection in wheat using a combination of affinity enrichment and high-resolution liquid chromatography-tandem mass spectroscopy. The potential biological functions of these ubiquitinated proteins were further analyzed using bioinformatics. A total of 2297 lysine ubiquitination sites in 1255 proteins were identified in wheat infected with CWMV, of which 350 lysine ubiquitination sites in 192 proteins were differentially expressed. These ubiquitinated proteins were related to metabolic processes, responses to stress and hormones, plant-pathogen interactions, and ribosome pathways, as assessed via Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. Furthermore, we found that the ubiquitination of Ta14-3-3 and TaHSP90, which are essential components of the innate immune system, was significantly enhanced during CWMV infection, which suggested that ubiquitination modification plays a vital role in the regulatory network of the host response to CWMV infection. In summary, our study puts forward a novel strategy for further probing the molecular mechanisms of CWMV infection. Our findings will inform future research to find better, innovative, and effective solutions to deal with CWMV infection in wheat, which is the most crucial and widely used cereal grain crop.


Asunto(s)
Triticum , Proteínas Ubiquitinadas , Lisina/metabolismo , Virus de Plantas , Proteínas Ubiquitinadas/genética , Proteínas Ubiquitinadas/metabolismo , Ubiquitinación
7.
Genome Biol ; 23(1): 154, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35821048

RESUMEN

BACKGROUND: Ubiquitination is essential for many cellular processes in eukaryotes, including 26S proteasome-dependent protein degradation, cell cycle progression, transcriptional regulation, and signal transduction. Although numerous ubiquitinated proteins have been empirically identified, their cognate ubiquitin E3 ligases remain largely unknown. RESULTS: Here, we generate a complete ubiquitin E3 ligase-encoding open reading frames (UbE3-ORFeome) library containing 98.94% of the 1515 E3 ligase genes in the rice (Oryza sativa L.) genome. In the test screens with four known ubiquitinated proteins, we identify both known and new E3s. The interaction and degradation between several E3s and their substrates are confirmed in vitro and in vivo. In addition, we identify the F-box E3 ligase OsFBK16 as a hub-interacting protein of the phenylalanine ammonia lyase family OsPAL1-OsPAL7. We demonstrate that OsFBK16 promotes the degradation of OsPAL1, OsPAL5, and OsPAL6. Remarkably, we find that overexpression of OsPAL1 or OsPAL6 as well as loss-of-function of OsFBK16 in rice displayed enhanced blast resistance, indicating that OsFBK16 degrades OsPALs to negatively regulate rice immunity. CONCLUSIONS: The rice UbE3-ORFeome is the first complete E3 ligase library in plants and represents a powerful proteomic resource for rapid identification of the cognate E3 ligases of ubiquitinated proteins and establishment of functional E3-substrate interactome in plants.


Asunto(s)
Oryza , Ubiquitina-Proteína Ligasas , Oryza/genética , Oryza/metabolismo , Proteómica , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Ubiquitinadas/genética , Proteínas Ubiquitinadas/metabolismo , Ubiquitinación , Ubiquitinas/genética , Ubiquitinas/metabolismo
8.
Neurochem Int ; 158: 105364, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35640762

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by selective loss of motor neurons in the brain and spinal cord. Recent studies have shown that mutations in SQSTM1 are linked to ALS. It has also been demonstrated that a systemic loss of SQSTM1 exacerbates disease phenotypes in an ALS mouse model. However, it is still unclear whether and how SQSTM1 in the central nervous system (CNS) specifically regulates ALS-associated disease phenotypes. To address this issue, we generated CNS-specific Sqstm1 deficient SOD1H46R transgenic mice, and conducted gross phenotype analyses as well as the immunohistochemical and biochemical examinations of spinal cord tissues using these mice. CNS-specific SQSTM1 deficiency accelerated the disease onset and shortened the lifespan of SOD1H46R mice. The CNS-specific SQSTM1 ablation also resulted in increased number of ubiquitin-positive aggregates, while their size rather became much smaller. Remarkably, ubiquitin-positive aggregates, which were usually present in extracellular space and/or neuropil in SOD1H46R mice, were preferentially localized to soma and neurites of spinal neurons in CNS-specific SQSTM1 deficient SOD1H46R mice. Next, to further clarify the function of SQSTM1 in neurons, we investigated the contribution of SQSTM1 to the accumulation of polyubiquitinated proteins in relation to the ubiquitin proteasome system (UPS) and the autophagy-endolysosomal system (APELS) in primary cultured motor neurons (PMNs). Loss of SQSTM1 in PMNs resulted in decreased accumulation of insoluble polyubiquitinated proteins, which was induced by simultaneous treatment with proteasome and lysosome inhibitors, suggesting a pivotal role of SQSTM1 in the formation of insoluble protein aggregates. However, SQSTM1 silencing had a limited impact on the susceptibility to proteasome and/or lysosome inhibitor-induced apoptosis in PMNs. Taken together, neuronal SQSTM1, whose functions are associated with both the UPS and APELS, might primarily regulate the distribution and accumulation of misfolded protein aggregates in the CNS, thereby protecting neurons from degeneration in mice.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Proteínas Ubiquitinadas , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Mutación , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Agregado de Proteínas , Proteína Sequestosoma-1/genética , Médula Espinal/metabolismo , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Ubiquitina/metabolismo , Proteínas Ubiquitinadas/genética , Proteínas Ubiquitinadas/metabolismo
9.
J Nutr Biochem ; 103: 108953, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35121023

RESUMEN

Previously it was shown that cisplatin causes muscle atrophy. Under this condition, cisplatin increased the expression of atorogenes, such as muscle ring finger 1 and atrogin-1 (also known as muscle atrophy F-box protein), in mouse skeletal muscle. It was reported recently that ubiquitin (Ub) and ubiquitinated protein levels in skeletal muscle were also up-regulated in cisplatin-induced muscle atrophy, and cisplatin-induced ubiquitinated proteins were degraded by the 26S proteasome pathway. Eicosapentaenoic acid (EPA) is effective against skeletal muscle atrophy in mice. However, it is unclear how EPA suppresses the Ub-proteasome pathway. In this study, the effect of EPA on cisplatin-induced muscle atrophy in mice was examined. Mice were intraperitoneally injected with cisplatin or vehicle control once daily for 4 d. EPA or its vehicle was orally administered 30 min before cisplatin administration. Cisplatin systemic administration induced decrease in muscle mass, myofiber diameter, and increase in Ub genes and ubiquitinated proteins in mouse skeletal muscle were recovered by co-treatment with EPA. However, weight loss and up-regulated atrogenes induced by cisplatin were not changed by co-treatment with EPA in skeletal muscle. In this study, EPA attenuated cisplatin-induced muscle atrophy via down-regulation of up-regulated Ub gene expression. Although further clinical studies are needed, EPA administration can be effective in the development of muscle atrophy in cisplatin-treated patients.


Asunto(s)
Cisplatino , Ácido Eicosapentaenoico , Animales , Cisplatino/efectos adversos , Ácido Eicosapentaenoico/metabolismo , Expresión Génica , Humanos , Ratones , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/inducido químicamente , Atrofia Muscular/prevención & control , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteínas Ligasas SKP Cullina F-box/farmacología , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Ubiquitinadas/genética , Proteínas Ubiquitinadas/metabolismo , Proteínas Ubiquitinadas/farmacología
10.
FASEB J ; 36(1): e22121, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34951719

RESUMEN

Protein aggregation and degradation via autophagy (aggrephagy) are major strategies adopted by cells to remove misfolded polypeptides when there is proteasome dysfunction. The functional protein complex consisting of heat shock protein 70 (Hsp70), cochaperone ubiquitin ligase carboxyl-terminal of Hsp70/Hsp90 interacting protein (CHIP), and co-chaperone Bcl-2-associated athanogene 3 (BAG3) has been associated with the activation of protein aggregation. However, data on the mechanisms of action of the complex in the protein degradation remains scant. Here, we report that upon proteasome stress, the M2 isoform of pyruvate kinase (PKM2) promotes the aggregation of ubiquitinated proteins and its knockout or knockdown aggravates the sensitivity of cells to proteasome inhibitors. Besides, following proteasome inhibition, PKM2 promotes the interaction of BAG3 with CHIP and HSP70. Interestingly, re-expression of loss-of-function mutants in PKM2-knockout cells showed that the regulatory function of PKM2 in this progress does not depend on the activity of glycolytic enzymes or protein kinases. Taken together, these findings demonstrate that PKM2 mediates the formation of the CHIP-HSP70-BAG3 protein complex and promotes the aggregation of ubiquitinated misfolded proteins, thus compensating for proteasome stress in cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Complejos Multiproteicos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Agregado de Proteínas , Piruvato Quinasa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Ubiquitinadas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis/genética , Células HEK293 , Proteínas HSP70 de Choque Térmico/genética , Células Hep G2 , Humanos , Complejos Multiproteicos/genética , Complejo de la Endopetidasa Proteasomal/genética , Piruvato Quinasa/genética , Ubiquitina-Proteína Ligasas/genética , Proteínas Ubiquitinadas/genética
11.
Mol Cell ; 82(3): 570-584.e8, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34951965

RESUMEN

The hexameric Cdc48 ATPase (p97 or VCP in mammals) cooperates with its cofactor Ufd1/Npl4 to extract polyubiquitinated proteins from membranes or macromolecular complexes for degradation by the proteasome. Here, we clarify how the Cdc48 complex unfolds its substrates and translocates polypeptides with branchpoints. The Cdc48 complex recognizes primarily polyubiquitin chains rather than the attached substrate. Cdc48 and Ufd1/Npl4 cooperatively bind the polyubiquitin chain, resulting in the unfolding of one ubiquitin molecule (initiator). Next, the ATPase pulls on the initiator ubiquitin and moves all ubiquitin molecules linked to its C terminus through the central pore of the hexameric double ring, causing transient ubiquitin unfolding. When the ATPase reaches the isopeptide bond of the substrate, it can translocate and unfold both N- and C-terminal segments. Ubiquitins linked to the branchpoint of the initiator dissociate from Ufd1/Npl4 and move outside the central pore, resulting in the release of unfolded, polyubiquitinated substrate from Cdc48.


Asunto(s)
Poliubiquitina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas Ubiquitinadas/metabolismo , Proteína que Contiene Valosina/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Transporte de Proteínas , Desplegamiento Proteico , Proteolisis , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Ubiquitinadas/genética , Ubiquitinación , Proteína que Contiene Valosina/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
12.
Nat Commun ; 12(1): 5212, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34471133

RESUMEN

The autophagic degradation of misfolded and ubiquitinated proteins is important for cellular homeostasis. In this process, which is governed by cargo receptors, ubiquitinated proteins are condensed into larger structures and subsequently become targets for the autophagy machinery. Here we employ in vitro reconstitution and cell biology to define the roles of the human cargo receptors p62/SQSTM1, NBR1 and TAX1BP1 in the selective autophagy of ubiquitinated substrates. We show that p62 is the major driver of ubiquitin condensate formation. NBR1 promotes condensate formation by equipping the p62-NBR1 heterooligomeric complex with a high-affinity UBA domain. Additionally, NBR1 recruits TAX1BP1 to the ubiquitin condensates formed by p62. While all three receptors interact with FIP200, TAX1BP1 is the main driver of FIP200 recruitment and thus the autophagic degradation of p62-ubiquitin condensates. In summary, our study defines the roles of all three receptors in the selective autophagy of ubiquitin condensates.


Asunto(s)
Autofagia/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Neoplasias/metabolismo , Ubiquitina/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Portadoras , Línea Celular , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de Neoplasias/genética , Dominios Proteicos , Proteínas de Unión al ARN/metabolismo , Proteína Sequestosoma-1/metabolismo , Proteínas Ubiquitinadas/genética , Proteínas Ubiquitinadas/metabolismo
13.
Cells ; 10(5)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34069831

RESUMEN

TRIM17 is a member of the TRIM family, a large class of RING-containing E3 ubiquitin-ligases. It is expressed at low levels in adult tissues, except in testis and in some brain regions. However, it can be highly induced in stress conditions which makes it a putative stress sensor required for the triggering of key cellular responses. As most TRIM members, TRIM17 can act as an E3 ubiquitin-ligase and promote the degradation by the proteasome of substrates such as the antiapoptotic protein MCL1. Intriguingly, TRIM17 can also prevent the ubiquitination of other proteins and stabilize them, by binding to other TRIM proteins and inhibiting their E3 ubiquitin-ligase activity. This duality of action confers several pivotal roles to TRIM17 in crucial cellular processes such as apoptosis, autophagy or cell division, but also in pathological conditions as diverse as Parkinson's disease or cancer. Here, in addition to recent data that endorse this duality, we review what is currently known from public databases and the literature about TRIM17 gene regulation and expression, TRIM17 protein structure and interactions, as well as its involvement in cell physiology and human disorders.


Asunto(s)
Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Ubiquitinadas/metabolismo , Ubiquitinación , Animales , Muerte Celular , Supervivencia Celular , Estabilidad de Enzimas , Humanos , Estabilidad Proteica , Proteolisis , Transducción de Señal , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/genética , Proteínas Ubiquitinadas/genética
14.
Biochem Pharmacol ; 188: 114558, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33844983

RESUMEN

Long non-coding RNAs (lncRNAs) are a class of RNA transcripts longer than 200 nucleotides and mostly cannot be translated into proteins. Next-generation transcriptome sequencing of various cell types has enabled the annotation of tens of thousands of lncRNAs in human genome. Varying levels of evidence supports the implications of lncRNAs in the onset and progression of cancers. Ubiquitin is an evolutionarily conserved protein and could post-translationally mark a number of proteins. The most important proteolytic role of ubiquitination is degradation of substrate proteins by the 26S proteasome. Compiling evidences demonstrated that lncRNAs are involved in the accurate execution of protein stability programs via the ubiquitin-proteasome system. In the current review, we systematically summarize the detailed mechanisms how lncRNAs modulate ubiquitination of target proteins, regulate cancerous signaling pathways and control tumorigenesis of gastrointestinal cancers. Although there are still considerable studies on unraveling the complicated interactions between lncRNAs and proteins, we believe that lncRNAs are promising but challenging molecules which may strongly facilitate precision cancer therapeutics in the future.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Gastrointestinales/metabolismo , ARN Largo no Codificante/metabolismo , Proteínas Ubiquitinadas/metabolismo , Ubiquitinación/fisiología , Animales , Biomarcadores de Tumor/genética , Carcinogénesis/genética , Carcinogénesis/metabolismo , Neoplasias Gastrointestinales/genética , Regulación Neoplásica de la Expresión Génica , Humanos , ARN Largo no Codificante/genética , Proteínas Ubiquitinadas/genética
15.
Toxicol Appl Pharmacol ; 403: 115165, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32738330

RESUMEN

We previously demonstrated that cisplatin administration in mice induces muscle atrophy and an increase in the expression of two muscle-specific ubiquitin E3 ligase genes, muscle ring finger protein 1 (MuRF1), and atrophy gene-1 (atrogin-1), in skeletal muscle. Ubiquitination serves as a degradation signal in both the ubiquitin-proteasome and selective autophagy pathways. In the present study, we investigated changes in the expression of ubiquitin and ubiquitinated proteins and their degradation pathways. Ubiquitin and ubiquitinated protein levels were increased by cisplatin compared with those in the vehicle and dietary restriction (DR) groups. To quantify the levels of ubiquitin and ubiquitinated proteins, we conducted a dot blot assay using an anti-ubiquitin antibody. The expression of ubiquitin was also significantly increased by cisplatin compared with that in the vehicle and DR groups. Since the ubiquitin proteins were upregulated by cisplatin, we measured the mRNA levels of the ubiquitin genes: Ubb, Ubc, Rps27a, and Uba52. All these four genes were increased by cisplatin administration compared with those in both the vehicle-treated and DR groups in quadriceps muscle tissue. The anti-ubiquitin antibody-sensitive bands increased when C2C12 myotubes were treated with cisplatin. Furthermore, MG-132 (26 s proteasome inhibitor), but not bafilomycin A1 (autophagy inhibitor), caused a further increase in expression. In conclusion, ubiquitin and ubiquitinated proteins are upregulated in cisplatin-induced muscle atrophy. Cisplatin-induced ubiquitinated proteins are degraded by the 26 s proteasome pathway.


Asunto(s)
Cisplatino/toxicidad , Regulación de la Expresión Génica/efectos de los fármacos , Atrofia Muscular/inducido químicamente , Proteínas Ubiquitinadas/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Animales , Antineoplásicos/toxicidad , Línea Celular , Regulación de la Expresión Génica/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Mioblastos/efectos de los fármacos , Proteínas Ubiquitinadas/genética
16.
Elife ; 82019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31663851

RESUMEN

The autosomal dominant neuronal ceroid lipofuscinoses (NCL) CLN4 is caused by mutations in the synaptic vesicle (SV) protein CSPα. We developed animal models of CLN4 by expressing CLN4 mutant human CSPα (hCSPα) in Drosophila neurons. Similar to patients, CLN4 mutations induced excessive oligomerization of hCSPα and premature lethality in a dose-dependent manner. Instead of being localized to SVs, most CLN4 mutant hCSPα accumulated abnormally, and co-localized with ubiquitinated proteins and the prelysosomal markers HRS and LAMP1. Ultrastructural examination revealed frequent abnormal membrane structures in axons and neuronal somata. The lethality, oligomerization and prelysosomal accumulation induced by CLN4 mutations was attenuated by reducing endogenous wild type (WT) dCSP levels and enhanced by increasing WT levels. Furthermore, reducing the gene dosage of Hsc70 also attenuated CLN4 phenotypes. Taken together, we suggest that CLN4 alleles resemble dominant hypermorphic gain of function mutations that drive excessive oligomerization and impair membrane trafficking.


Asunto(s)
Drosophila melanogaster/genética , Mutación con Ganancia de Función , Lipofuscinosis Ceroideas Neuronales/genética , Neuronas/metabolismo , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Drosophila melanogaster/metabolismo , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/metabolismo , Humanos , Proteína 1 de la Membrana Asociada a los Lisosomas/genética , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Lisosomas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microscopía Electrónica de Transmisión , Lipofuscinosis Ceroideas Neuronales/metabolismo , Neuronas/ultraestructura , Vesículas Sinápticas/metabolismo , Proteínas Ubiquitinadas/genética , Proteínas Ubiquitinadas/metabolismo
17.
Methods Enzymol ; 618: 73-104, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30850063

RESUMEN

In higher eukaryotes, DNA damage repair response pathways are orchestrated by several molecular signals including ubiquitination. In particular the repair of DNA interstrand crosslinks, toxic to transcription and replication processes, involve the activation of the Fanconi anemia repair pathway. At the heart of this pathway lies the monoubiquitination of FANCD2 and FANCI proteins, which triggers the recruitment of DNA repair factors. A major road block in our understanding of this fundamental repair pathway arises from the challenge with generating sufficient quantities of site-specifically monoubiquitinated FANCD2 and FANCI proteins to enable mechanistic and molecular studies. Current in vitro methods rely on the purification of a large (~0.8MDa), multiprotein E3 complex that can only partially monoubiquitinate a FANCD2-FANCI-DNA complex. In this chapter, we describe detailed protocols for the preparation of homogeneously and natively monoubiquitinated FANCD2 and FANCI proteins in isolation. The method relies on the use of a minimal E3 module and an engineered E2 variant that together drive site-specific ubiquitination of the isolated substrates, without the requirement of DNA cofactors. Using the enzymatic approach, we also demonstrate how added functionalities such as a fluorescently labeled ubiquitin can be conjugated on the FANCD2 and FANCI substrates, thus enabling multiple downstream applications.


Asunto(s)
Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Proteínas Ubiquitinadas/metabolismo , Cromatografía en Gel , Clonación Molecular/métodos , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Ubiquitinadas/genética , Ubiquitinación
18.
Sci Rep ; 9(1): 4286, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30862833

RESUMEN

Drought stress often affects the expression of genes and proteins in tea plants. However, the global profiling of ubiquitinated (Kub) proteins in tea plants remains unearthed. Here, we performed the ubiquitome in tea leaves under drought stress using antibody-based affinity enrichment coupled with LC-MS/MS analysis. In total, 1,409 lysine Kub sites in 781 proteins were identified, of which 14 sites in 12 proteins were up-regulated and 123 sites in 91 proteins down-regulated under drought stress. The identified Kub proteins were mainly located in the cytosol (31%), chloroplast (27%) and nuclear (19%). Moreover, 5 conserved motifs in EKub, EXXXKub, KubD, KubE and KubA were extracted. Several Kub sites in ubiquitin-mediated proteolysis-related proteins, including RGLG2, UBC36, UEV1D, RPN10 and PSMC2, might affect protein degradation and DNA repair. Plenty of Kub proteins related to catechins biosynthesis, including PAL, CHS, CHI and F3H, were positively correlated with each other due to their co-expression and co-localization. Furthermore, some Kub proteins involved in carbohydrate and amino acid metabolism, including FBPase, FBA and GAD1, might promote sucrose, fructose and GABA accumulation in tea leaves under drought stress. Our study preliminarily revealed the global profiling of Kub proteins in metabolic pathways and provided an important resource for further study on the functions of Kub proteins in tea plants.


Asunto(s)
Camellia sinensis/química , Sequías , Hojas de la Planta/química , Proteínas de Plantas/metabolismo , Proteínas Ubiquitinadas/metabolismo , Cromatografía Liquida , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Espectrometría de Masas en Tándem , Proteínas Ubiquitinadas/genética
19.
Comput Biol Med ; 100: 144-151, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30015011

RESUMEN

MOTIVATION: Posttranslational modification (PTM) is a biological mechanism involved in the enzymatic modification of proteins after translation by ribosomes. Two or more modifications occurring at one residue can be transformed into a multi-label system. Two or more simultaneous modifications on a residue is more common than single PTMs. Lysine residues in proteins can be subjected to a variety of PTMs, such as ubiquitination, acetylation, sumoylation, methylation, and succinylation. Identification of uncharacterized sequences in proteins is a highly significant and state-of-the-art issue. Notably, in order to provide a method of processing multi-label sequences of lysine residues, it is highly desirable to develop computational methods to predict lysine acetylation and sumoylation modifications. RESULTS: In this paper, we first launched an integrated approach, known as the five-step prediction method (FSPM), to solve the problem effectively by (1) using one-sided selection (OSS) to deal with imbalanced data, (2) extracting binary features from protein sequences, (3) incorporating binary relevance, classifier chains and multi-class transformation methods to simplify multi-label problems, (4) constructing different classifiers, and (5) implementing cross-validation and evaluating these classifiers. In 10-fold cross-validation, FSPM achieved an accuracy of 61.49% and an absolute-true rate of 60.17%. The results showed that FSPM is accurate and could be used as a powerful engine in multi-label systems. We also conducted a variety of statistical analyses of the predicted results to discuss the biological functions of lysine acetylation and sumoylation.


Asunto(s)
Bases de Datos de Proteínas , Análisis de Secuencia de Proteína , Programas Informáticos , Sumoilación/fisiología , Proteínas Ubiquitinadas , Acetilación , Lisina , Metilación , Proteínas Ubiquitinadas/química , Proteínas Ubiquitinadas/genética
20.
Proc Natl Acad Sci U S A ; 115(18): E4199-E4208, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29666234

RESUMEN

Although mechanisms for protein homeostasis in the cytosol have been studied extensively, those in the nucleus remain largely unknown. Here, we identified that a protein complex mediates export of polyubiquitinated proteins from the nucleus to the cytosol. UBIN, a ubiquitin-associated (UBA) domain-containing protein, shuttled between the nucleus and the cytosol in a CRM1-dependent manner, despite the lack of intrinsic nuclear export signal (NES). Instead, the UBIN binding protein polyubiquitinated substrate transporter (POST) harboring an NES shuttled UBIN through nuclear pores. UBIN bound to polyubiquitin chain through its UBA domain, and the UBIN-POST complex exported them from the nucleus to the cytosol. Ubiquitinated proteins accumulated in the cytosol in response to proteasome inhibition, whereas cotreatment with CRM1 inhibitor led to their accumulation in the nucleus. Our results suggest that ubiquitinated proteins are exported from the nucleus to the cytosol in the UBIN-POST complex-dependent manner for the maintenance of nuclear protein homeostasis.


Asunto(s)
Proteínas Portadoras/metabolismo , Núcleo Celular/metabolismo , Citosol/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Ubiquitinadas/metabolismo , Transporte Activo de Núcleo Celular/fisiología , Animales , Proteínas Portadoras/genética , Núcleo Celular/genética , Células HEK293 , Células HeLa , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Proteínas de la Membrana/genética , Ratones , Células 3T3 NIH , Proteínas Nucleares/genética , Proteínas Transportadoras de Solutos , Proteínas Ubiquitinadas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA