Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 478
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(10): e2310740121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38408233

RESUMEN

Autophagy is essential for the turnover of damaged organelles and long-lived proteins. It is responsible for many biological processes such as maintaining brain functions and aging. Impaired autophagy is often linked to neurodevelopmental and neurodegenerative diseases in humans. However, the role of autophagy in neuronal pruning during development remains poorly understood. Here, we report that autophagy regulates dendrite-specific pruning of ddaC sensory neurons in parallel to local caspase activation. Impaired autophagy causes the formation of ubiquitinated protein aggregates in ddaC neurons, dependent on the autophagic receptor Ref(2)P. Furthermore, the metabolic regulator AMP-activated protein kinase and the insulin-target of rapamycin pathway act upstream to regulate autophagy during dendrite pruning. Importantly, autophagy is required to activate the transcription factor CncC (Cap "n" collar isoform C), thereby promoting dendrite pruning. Conversely, CncC also indirectly affects autophagic activity via proteasomal degradation, as impaired CncC results in the inhibition of autophagy through sequestration of Atg8a into ubiquitinated protein aggregates. Thus, this study demonstrates the important role of autophagy in activating CncC prior to dendrite pruning, and further reveals an interplay between autophagy and CncC in neuronal pruning.


Asunto(s)
Proteínas de Drosophila , Drosophila , Compuestos de Amonio Cuaternario , Animales , Humanos , Autofagia/fisiología , Dendritas/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Plasticidad Neuronal , Proteínas Ubiquitinadas/metabolismo
2.
Nat Commun ; 15(1): 1266, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341401

RESUMEN

Ubiquitination, catalyzed usually by a three-enzyme cascade (E1, E2, E3), regulates various eukaryotic cellular processes. E3 ligases are the most critical components of this catalytic cascade, determining both substrate specificity and polyubiquitination linkage specificity. Here, we reveal the mechanism of a naturally occurring E3-independent ubiquitination reaction of a unique human E2 enzyme UBE2E1 by solving the structure of UBE2E1 in complex with substrate SETDB1-derived peptide. Guided by this peptide sequence-dependent ubiquitination mechanism, we developed an E3-free enzymatic strategy SUE1 (sequence-dependent ubiquitination using UBE2E1) to efficiently generate ubiquitinated proteins with customized ubiquitinated sites, ubiquitin chain linkages and lengths. Notably, this strategy can also be used to generate site-specific branched ubiquitin chains or even NEDD8-modified proteins. Our work not only deepens the understanding of how an E3-free substrate ubiquitination reaction occurs in human cells, but also provides a practical approach for obtaining ubiquitinated proteins to dissect the biochemical functions of ubiquitination.


Asunto(s)
Enzimas Ubiquitina-Conjugadoras , Ubiquitina-Proteína Ligasas , Humanos , Péptidos/metabolismo , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Ubiquitinadas/metabolismo , Ubiquitinación , Ingeniería de Proteínas
3.
Cell Mol Biol Lett ; 28(1): 85, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37872526

RESUMEN

BACKGROUND: Ubiquitin-proteasome-system-mediated clearance of misfolded proteins is essential for cells to maintain proteostasis and reduce the proteotoxicity caused by these aberrant proteins. When proteasome activity is inadequate, ubiquitinated proteins are sorted into perinuclear aggresomes, which is a significant defense mechanism employed by cells to combat insufficient proteasome activity, hence mitigating the proteotoxic crisis. It has been demonstrated that phosphorylation of SQSTM1 is crucial in regulating misfolded protein aggregation and autophagic degradation. Although SQSTM1 S403 phosphorylation is essential for the autophagic degradation of ubiquitinated proteins, its significance in proteasome inhibition-induced aggresome formation is yet unknown. Herein, we investigated the influence of SQSTM1 S403 phosphorylation on the aggresome production of ubiquitinated proteins during proteasome suppression. METHODS: We examined the phosphorylation levels of SQSTM1 S403 or T269/S272 in cells after treated with proteasome inhibitors or/and autophagy inhibitors, by western blot and immunofluorescence. We detected the accumulation and aggresome formation of ubiquitinated misfolded proteins in cells treated with proteasome inhibition by western blot and immunofluorescence. Furthermore, we used SQSTM1 phosphorylation-associated kinase inhibitors and mutant constructs to confirm the regulation of different SQSTM1 phosphorylation in aggresome formation. We examined the cell viability using CCK-8 assay. RESULTS: Herein, we ascertained that phosphorylation of SQSTM1 S403 did not enhance the autophagic degradation of ubiquitinated proteins during proteasome inhibition. Proteasome inhibition suppresses the phosphorylation of SQSTM1 S403, which facilitated the aggresome production of polyubiquitinated proteins. Interestingly, we found proteasome inhibition-induced SQSTM1 T269/S272 phosphorylation inhibits the S403 phosphorylation. Suppressing S403 phosphorylation rescues the defective aggresome formation and protects cells from cell death caused by unphosphorylated SQSTM1 (T269/S272). CONCLUSIONS: This study shows that inhibition of SQSTM1 S403 phosphorylation facilitates the aggresome formation of ubiquitinated proteins during proteasome dysfunction. SQSTM1 T269/S272 phosphorylation inhibits the S403 phosphorylation, boosting the aggresome formation of ubiquitinated protein and shielding cells from proteotoxic crisis.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Proteínas Ubiquitinadas , Fosforilación , Proteína Sequestosoma-1 , Proteínas Ubiquitinadas/metabolismo , Autofagia , Ubiquitina/metabolismo
4.
Mol Cell ; 83(19): 3485-3501.e11, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37802024

RESUMEN

p62 is a well-characterized autophagy receptor that recognizes and sequesters specific cargoes into autophagosomes for degradation. p62 promotes the assembly and removal of ubiquitinated proteins by forming p62-liquid droplets. However, it remains unclear how autophagosomes efficiently sequester p62 droplets. Herein, we report that p62 undergoes reversible S-acylation in multiple human-, rat-, and mouse-derived cell lines, catalyzed by zinc-finger Asp-His-His-Cys S-acyltransferase 19 (ZDHHC19) and deacylated by acyl protein thioesterase 1 (APT1). S-acylation of p62 enhances the affinity of p62 for microtubule-associated protein 1 light chain 3 (LC3)-positive membranes and promotes autophagic membrane localization of p62 droplets, thereby leading to the production of small LC3-positive p62 droplets and efficient autophagic degradation of p62-cargo complexes. Specifically, increasing p62 acylation by upregulating ZDHHC19 or by genetic knockout of APT1 accelerates p62 degradation and p62-mediated autophagic clearance of ubiquitinated proteins. Thus, the protein S-acylation-deacylation cycle regulates p62 droplet recruitment to the autophagic membrane and selective autophagic flux, thereby contributing to the control of selective autophagic clearance of ubiquitinated proteins.


Asunto(s)
Autofagosomas , Proteínas Ubiquitinadas , Ratones , Ratas , Humanos , Animales , Autofagosomas/metabolismo , Proteínas Ubiquitinadas/metabolismo , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Autofagia/genética , Acilación , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mamíferos/metabolismo
5.
Sci Rep ; 13(1): 11948, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37488165

RESUMEN

Examination of healthy and diseased human brain is essential to translational neuroscience. Protein-protein interactions play a pivotal role in physiological and pathological processes, but their detection is difficult, especially in aged and fixed human brain tissue. We used the in-situ proximity ligation assay (PLA) to broaden the range of molecular interactions assessable in-situ in the human neuropathology. We adapted fluorescent in-situ PLA to detect ubiquitin-modified proteins in human brains with Alzheimer's disease (AD), including approaches for the management of autofluorescence and quantification using a high-content image analysis system. We confirmed that phosphorylated microtubule-associated protein tau (Serine202, Threonine205) aggregates were modified by ubiquitin and that phospho-tau-ubiquitin complexes were increased in hippocampal and frontal cortex regions in AD compared to non-AD brains. Overall, we refined PLA for use in human neuropathology, which has revealed a profound change in the distribution of ubiquitin in AD brain and its association with characteristic tau pathologies.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Anciano , Enfermedad de Alzheimer/metabolismo , Proteínas tau/metabolismo , Corteza Cerebral/metabolismo , Ubiquitina/metabolismo , Encéfalo/metabolismo , Proteínas Ubiquitinadas/metabolismo
6.
Plant Mol Biol ; 112(6): 357-371, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37479835

RESUMEN

AtAIRP5 RING E3 ubiquitin ligase was recently identified as a positive regulator of the abscisic acid (ABA)-mediated drought stress response by stimulating the degradation of serine carboxypeptidase-like 1. Here, we identified GDSL-type esterase/lipase 22 (AtGELP22) and AtGELP23 as additional interacting partners of AtAIRP5. Yeast two-hybrid, pull-down, co-immunoprecipitation, and ubiquitination analyses verified that AtGELP22 and AtGELP23 are ubiquitinated target proteins of AtAIRP5. AtGELP22 and AtGELP23 were colocalized with AtAIRP5 to punctate-like structures in the cytosolic fraction, in which PYK10 and NAI2, two ER body marker proteins, are localized. T-DNA insertion atgelp22 and atgelp23 single knockout mutant plants showed phenotypes indistinguishable from those of wild-type plants under ABA treatment. In contrast, RNAi-mediated cosuppression of AtGELP22 and AtGELP23 resulted in hypersensitive ABA-mediated stomatal movements and higher tolerance to drought stress than that of the single mutant and wild-type plants. Taken together, our results suggest that the putative GDSL-type esterases/lipases AtGELP22 and AtGELP23 act as redundant negative regulators of the ABA-mediated drought stress response in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Interferencia de ARN , Proteínas Ubiquitinadas/genética , Proteínas Ubiquitinadas/metabolismo , Sequías , Proteínas de Arabidopsis/metabolismo , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
7.
Nature ; 618(7964): 402-410, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37225994

RESUMEN

Membrane-shaping proteins characterized by reticulon homology domains play an important part in the dynamic remodelling of the endoplasmic reticulum (ER). An example of such a protein is FAM134B, which can bind LC3 proteins and mediate the degradation of ER sheets through selective autophagy (ER-phagy)1. Mutations in FAM134B result in a neurodegenerative disorder in humans that mainly affects sensory and autonomic neurons2. Here we report that ARL6IP1, another ER-shaping protein that contains a reticulon homology domain and is associated with sensory loss3, interacts with FAM134B and participates in the formation of heteromeric multi-protein clusters required for ER-phagy. Moreover, ubiquitination of ARL6IP1 promotes this process. Accordingly, disruption of Arl6ip1 in mice causes an expansion of ER sheets in sensory neurons that degenerate over time. Primary cells obtained from Arl6ip1-deficient mice or from patients display incomplete budding of ER membranes and severe impairment of ER-phagy flux. Therefore, we propose that the clustering of ubiquitinated ER-shaping proteins facilitates the dynamic remodelling of the ER during ER-phagy and is important for neuronal maintenance.


Asunto(s)
Autofagia , Estrés del Retículo Endoplásmico , Retículo Endoplásmico , Proteínas Ubiquitinadas , Ubiquitinación , Animales , Humanos , Ratones , Autofagia/genética , Retículo Endoplásmico/metabolismo , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Ubiquitinadas/metabolismo , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/patología , Membranas Intracelulares/metabolismo
8.
J Toxicol Sci ; 48(6): 355-361, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37258240

RESUMEN

Methylmercury (MeHg), an environmental pollutant, disrupts and impairs cellular function. MeHg binds to various cellular proteins, causing dysfunction and misfolding, which are considered underlying causes of MeHg toxicity. The p62 protein, also termed SQSTM1, is a ubiquitin-binding protein that targets ubiquitinated substrates to undergo autophagy and plays a key role in ameliorating MeHg toxicity. p62 also delivers ubiquitinated substrates to proteasomes. However, the role of these degradation systems in mitigating MeHg toxicity remains unknown. Herein, we explored the impact of the proteasome inhibitor MG132 on MeHg toxicity and examined the toxicity of co-treatment with MG132 and MeHg in p62KO mouse embryonic fibroblasts (MEFs) by analyzing cell viability, immunoblotting, mRNA levels, immunofluorescence, and the mercury content. The proteasome inhibitor MG132 enhanced MeHg-induced cytotoxicity while reducing intracellular mercury levels in MEFs. Co-treatment with MG132 and MeHg markedly increased levels of p62 and ubiquitinated proteins. Furthermore, co-treatment with MG132 and MeHg reduced p62KO MEF viability compared to that of wild-type MEFs. Our findings suggest that the proteasome participates in mitigating MeHg cytotoxicity, while p62 may play an important role in transporting MeHg-induced ubiquitinated proteins to the proteasome, as well as in autophagy. Collectively, these results imply that p62, and proteasome, and autophagy are vital for cytoprotection against MeHg toxicity.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Animales , Ratones , Autofagia , Fibroblastos , Mercurio/metabolismo , Compuestos de Metilmercurio/metabolismo , Compuestos de Metilmercurio/toxicidad , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/metabolismo , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Proteínas Ubiquitinadas/metabolismo , Intoxicación por Mercurio/tratamiento farmacológico , Intoxicación por Mercurio/prevención & control
9.
Int J Biol Macromol ; 236: 123795, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36828089

RESUMEN

The decline in antioxidant defenses make it easily for human and animals to suffer from liver damage and diseases induced by oxidative stress, causing enormous losses to human health and livestock production. As one of the canonical protein post-translational modifications (PTMs), ubiquitination is widely involved in cell proliferation, apoptosis and damage/repair response, and is proven to be involved in the ability of mammals to resist oxidative stress. To explore whether α-lipoic acid (LA), a safe and efficient antioxidant, plays a role in regulating liver antioxidant status by PTMs, proteins in livers of pigs fed with LA were analyzed at the level of proteome and ubiquitylome. Based on proteome-wide enrichment of ubiquitination, a total of 7274 proteins were identified and 5326 were quantified, we also identified 1564 ubiquitination sites in 580 ubiquitinated proteins, among which there were 136 differentially ubiquitinated sites in 103 differentially ubiquitinated proteins upon LA. Further bioinformatics analysis showed that these differential proteins were mainly enriched in tryptophan metabolic pathway, and accompanied by significantly improvement of liver antioxidant capacity. We revealed the regulatory effect of LA on ubiquitination of kynurenine 3-monooxygenase (KMO) and other key proteins in tryptophan metabolism pathway of pig liver for the first time.


Asunto(s)
Ácido Tióctico , Humanos , Animales , Porcinos , Ácido Tióctico/farmacología , Ácido Tióctico/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Triptófano/metabolismo , Proteínas Ubiquitinadas/metabolismo , Proteínas Ubiquitinadas/farmacología , Proteoma/metabolismo , Hígado , Ubiquitinación , Mamíferos/metabolismo
10.
Anal Chim Acta ; 1246: 340877, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36764771

RESUMEN

Ubiquitination is a reversible post-translational modification that plays a pivotal role in numerous biological processes. Antibody-based approaches, as the most used methods for identifying ubiquitination sites, exist sequence recognition bias, high cost, and ubiquitin-like protein modification interference, limiting their widespread application. Here, we proposed an Antibody-Free approach for Ubiquitination Profiling, termed AFUP, by selectively clicking the ubiquitinated lysine to enrich and profile endogenous ubiquitinated peptides using mass spectrometry. Briefly, protein amines were blocked with formaldehyde, and then the ubiquitin molecules were hydrolyzed from the ubiquitinated proteins by non-specific deubiquitinases USP2 and USP21 to release the free ε-amine of lysine. Peptides containing free ε-amines were selectively enriched with streptavidin beads upon NHS-SS-biotin labeling. Finally, the enriched peptides were eluted by DTT and analyzed by LC-MS/MS, resulting in ubiquitination profiling. Preliminary experiment showed that 349 ± 7 ubiquitination sites were identified in 0.8 mg HeLa lysates with excellent reproducibility (CV = 2%) and high quantitative stability (Pearson, r ≥ 0.91) using our method. With the combination of AFUP and simple basic C18 pre-fractionation, approximately 4000 ubiquitination sites were identified in a single run of 293T cells. In addition, we showed that 209 ubiquitination sites were significantly regulated in UBE2O knockdown cells after normalized to protein abundance. In conclusion, our results demonstrated that AFUP is a robust alternative strategy for ubiquitomics research.


Asunto(s)
Lisina , Espectrometría de Masas en Tándem , Humanos , Lisina/metabolismo , Cromatografía Liquida , Reproducibilidad de los Resultados , Ubiquitinación , Ubiquitina , Proteínas Ubiquitinadas/análisis , Proteínas Ubiquitinadas/química , Proteínas Ubiquitinadas/metabolismo , Péptidos/química , Anticuerpos/metabolismo , Aminas , Ubiquitina Tiolesterasa/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo
11.
Methods Mol Biol ; 2581: 351-363, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36413330

RESUMEN

The proteasome is a key component for regulation of protein turnover across kingdoms. The proteasome has been shown to be involved in or affected by various stress conditions in multiple model organisms in plants. As such, studying proteasome homeostasis is crucial to understand its participation in different cellular conditions. However, the involvement of the proteasome in many cellular processes and its interplay with other degradation pathways hamper the interpretation of experiments based on a single approach. Thus, it is crucial to formulate a framework to investigate proteasome dynamics in different model organisms including plants. Here, we describe a pipeline to monitor proteasome homeostasis using four different methods including (i) luminescent-based proteasome activity measurement, (ii) immunoblot analysis of ubiquitinated proteins, (iii) evaluation of proteasome subunit protein levels, and (iv) monitoring of the proteasome stress regulon on mRNA levels using quantitative real-time PCR (polymerase chain reaction).


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Proteínas Ubiquitinadas , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Homeostasis , Monitoreo Fisiológico , Proteínas Ubiquitinadas/metabolismo
12.
J Pharmacol Exp Ther ; 385(1): 5-16, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36328485

RESUMEN

Ubiquitin-proteasome dysfunction contributes to obesity-related metabolic disorders, such as diabetes and fatty liver disease. However, the regulation of ubiquitin-proteasome activity by insulin remains to be elucidated. Here, we show that prolonged insulin stimulation activates proteasome function even though it reduces the ubiquitinated proteins in H4IIEC3 hepatocytes. Looking for a pathway by which insulin inhibits ubiquitination, we found that hepatic expression of ubiquitin-specific protease 14 (USP14) was upregulated in the liver of patients with insulin resistance. Indeed, the USP14-specific inhibitor IU1 canceled the insulin-mediated reduction of ubiquitinated proteins. Furthermore, insulin-induced endoplasmic reticulum (ER) stress, which was canceled by IU1, suggesting that USP14 activity is involved in insulin-induced ER stress. Co-stimulation with insulin and IU1 for 2 hours upregulated the nuclear translocation of the lipogenic transcription factor, sterol regulatory element binding protein-1c (SREBP-1c), upregulated the expression of the lipogenic gene, fatty acid synthase (Fasn), and repressed the gluconeogenic genes. In conclusion, insulin activates proteasome function even though it inhibits protein ubiquitination by activating USP14 in hepatocytes. USP14 activation by insulin inhibits mature SREBP-1c while upregulating ER stress and the expression of genes involved in gluconeogenesis. Further understanding mechanisms underlying the USP14 activation and its pleiotropic effects may lead to therapeutic development for obesity-associated metabolic disorders, such as diabetes and fatty liver disease. SIGNIFICANCE STATEMENT: This study shows that insulin stimulation inhibits ubiquitination by activating USP14, independent of its effect on proteasome activity in hepatocytes. USP14 also downregulates the nuclear translocation of the lipogenic transcription factor SREBP-1c and upregulates the expression of genes involved in gluconeogenesis. Since USP14 is upregulated in the liver of insulin-resistant patients, understanding mechanisms underlying the USP14 activation and its pleiotropic effects will help develop treatments for metabolic disorders such as diabetes and fatty liver.


Asunto(s)
Hepatocitos , Enfermedad del Hígado Graso no Alcohólico , Complejo de la Endopetidasa Proteasomal , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Humanos , Enzimas Desubicuitinizantes/genética , Enzimas Desubicuitinizantes/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Insulina/farmacología , Insulina/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/genética , Obesidad/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/farmacología , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo , Proteasas Ubiquitina-Específicas/farmacología , Proteínas Ubiquitinadas/genética , Proteínas Ubiquitinadas/metabolismo , Proteínas Ubiquitinadas/farmacología , Ubiquitinación , Ubiquitinas/genética , Ubiquitinas/metabolismo , Ubiquitinas/farmacología
13.
Curr Biol ; 32(24): R1357-R1371, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36538890

RESUMEN

Cellular homeostasis requires the swift and specific removal of damaged material. Selective autophagy represents a major pathway for the degradation of such cargo material. This is achieved by the sequestration of the cargo within double-membrane vesicles termed autophagosomes, which form de novo around the cargo and subsequently deliver their content to lysosomes for degradation. The importance of selective autophagy is exemplified by the various neurodegenerative diseases associated with defects in this pathway, including Parkinson's disease, amyotrophic lateral sclerosis, and frontotemporal dementia. It has become evident that cargo receptors are acting as Swiss army knives in selective autophagy by recognizing the cargo, orchestrating the recruitment of the machinery for autophagosome biogenesis, and closely aligning the membrane with the cargo. Furthermore, cargo receptors sequester ubiquitinated proteins into larger condensates upstream of autophagy induction. Here, we review recent insights into the mechanisms of action of cargo receptors in selective autophagy by focusing on the roles of sequestosome-like cargo receptors in the degradation of misfolded, ubiquitinated proteins and damaged mitochondria. We also highlight at which steps defects in their function result in the accumulation of harmful material and how this knowledge may guide the design of future therapies.


Asunto(s)
Macroautofagia , Proteínas Ubiquitinadas , Proteínas Ubiquitinadas/metabolismo , Autofagia , Autofagosomas/metabolismo , Proteínas Portadoras/metabolismo
14.
Int J Mol Sci ; 23(24)2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36555729

RESUMEN

Post-translational modifications (PTMs) are important molecular processes that regulate organismal responses to different stresses. Ubiquitination modification is not only involved in human health but also plays crucial roles in plant growth, development, and responses to environmental stresses. In this study, we investigated the ubiquitination proteome changes in the salt-tolerant sugar beet monomeric additional line M14 under salt stress treatments. Based on the expression of the key genes of the ubiquitination system and the ubiquitination-modified proteins before and after salt stress, 30 min of 200 mM NaCl treatment and 6 h of 400 mM NaCl treatment were selected as time points. Through label-free proteomics, 4711 and 3607 proteins were identified in plants treated with 200 mM NaCl and 400 mM NaCl, respectively. Among them, 611 and 380 proteins were ubiquitinated, with 1085 and 625 ubiquitination sites, in the two salt stress conditions, respectively. A quantitative analysis revealed that 70 ubiquitinated proteins increased and 47 ubiquitinated proteins decreased. At the total protein level, 42 were induced and 20 were repressed with 200 mM NaCl, while 28 were induced and 27 were repressed with 400 mM NaCl. Gene ontology, KEGG pathway, protein interaction, and PTM crosstalk analyses were performed using the differentially ubiquitinated proteins. The differentially ubiquitinated proteins were mainly involved in cellular transcription and translation processes, signal transduction, metabolic pathways, and the ubiquitin/26S proteasome pathway. The uncovered ubiquitinated proteins constitute an important resource of the plant stress ubiquitinome, and they provide a theoretical basis for the marker-based molecular breeding of crops for enhanced stress tolerance.


Asunto(s)
Beta vulgaris , Tolerancia a la Sal , Beta vulgaris/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteómica , Tolerancia a la Sal/genética , Cloruro de Sodio/farmacología , Cloruro de Sodio/metabolismo , Azúcares/metabolismo , Proteínas Ubiquitinadas/metabolismo , Ubiquitinación
15.
J Am Chem Soc ; 144(45): 20582-20589, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36318515

RESUMEN

We describe the development and optimization of a methodology to prepare peptides and proteins modified on the arginine residue with an adenosine-di-phosphate-ribosyl (ADPr) group. Our method comprises reacting an ornithine containing polypeptide on-resin with an α-linked anomeric isothiourea N-riboside, ensuing installment of a phosphomonoester at the 5'-hydroxyl of the ribosyl moiety followed by the conversion into the adenosine diphosphate. We use this method to obtain four regioisomers of ADP-ribosylated ubiquitin (UbADPr), each modified with an ADP-ribosyl residue on a different arginine position within the ubiquitin (Ub) protein (Arg42, Arg54, Arg72, and Arg74) as the first reported examples of fully synthetic arginine-linked ADPr-modified proteins. We show the chemically prepared Arg-linked UbADPr to be accepted and processed by Legionella enzymes and compare the entire suite of four Arg-linked UbADPr regioisomers in a variety of biochemical experiments, allowing us to profile the activity and selectivity of Legionella pneumophila ligase and hydrolase enzymes.


Asunto(s)
Adenosina Difosfato Ribosa , Arginina , Adenosina Difosfato Ribosa/química , Arginina/metabolismo , ADP-Ribosilación , Ubiquitina/química , Proteínas Ubiquitinadas/metabolismo , Péptidos/química
16.
Anal Biochem ; 658: 114935, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36206844

RESUMEN

Identification of ubiquitination sites is central to many biological experiments. Ubiquitination is a kind of post-translational protein modification (PTM). It is a key mechanism for increasing protein diversity and plays a vital role in regulating cell function. In recent years, many models have been developed to predict ubiquitination sites in humans, mice and yeast. However, few studies have predicted ubiquitination sites in Arabidopsis thaliana. In view of this, a deep network model named PrUb-EL is proposed to predict ubiquitination sites in Arabidopsis thaliana. Firstly, six features based on the protein sequence are extracted with amino acid index database (AAindex), dipeptide deviates from the expected mean (DDE), dipeptide composition (DPC), blocks substitution matrix (BLOSUM62), enhanced amino acid composition (EAAC) and binary encoding. Secondly, the synthetic minority over-sampling technique (SMOTE) is utilized to process the imbalanced data set. Then a new classifier named DG is presented, which includes Dense block, Residual block and Gated recurrent unit (GRU) block. Finally, each of six feature extraction methods is integrated into the DG model, and the ensemble learning strategy is used to gain the final prediction result. Experimental results show that PrUb-EL has good predictive ability with the accuracy (ACC) and area under the ROC curve (auROC) values of 91.00% and 97.70% using 5-fold cross-validation, respectively. Note that the values of ACC and auROC are 88.58% and 96.09% in the independent test, respectively. Compared with previous studies, our model has significantly improved performance thus it is an excellent method for identifying ubiquitination sites in Arabidopsis thaliana. The datasets and code used for the article are available at https://github.com/Tom-Wangy/PreUb-EL.git.


Asunto(s)
Arabidopsis , Aprendizaje Profundo , Ubiquitinación , Aminoácidos , Dipéptidos , Proteínas Ubiquitinadas/química , Proteínas Ubiquitinadas/metabolismo
17.
J Transl Med ; 20(1): 445, 2022 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-36184622

RESUMEN

BACKGROUND: According to the Global Cancer Statistics in 2020, the incidence and mortality of colorectal cancer (CRC) rank third and second among all tumors. The disturbance of ubiquitination plays an important role in the initiation and development of CRC, but the ubiquitinome of CRC cells and the survival-relevant ubiquitination are poorly understood. METHODS: The ubiquitinome of CRC patients (n = 6) was characterized using our own data sets of proteomic and ubiquitin-proteomic examinations. Then, the probable survival-relevant ubiquitination was searched based on the analyses of data sets from public databases. RESULTS: For the ubiquitinomic examination, we identified 1690 quantifiable sites and 870 quantifiable proteins. We found that the highly-ubiquitinated proteins (n ≥ 10) were specifically involved in the biological processes such as G-protein coupling, glycoprotein coupling, and antigen presentation. Also, we depicted five motif sequences frequently recognized by ubiquitin. Subsequently, we revealed that the ubiquitination content of 1172 proteins were up-regulated and 1700 proteins were down-regulated in CRC cells versus normal adjacent cells. We demonstrated that the differentially ubiquitinated proteins were relevant to the pathways including metabolism, immune regulation, and telomere maintenance. Then, integrated with the proteomic datasets from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) (n = 98), we revealed that the increased ubiquitination of FOCAD at Lys583 and Lys587 was potentially associated with patient survival. Finally, we depicted the mutation map of FOCAD and elucidated its potential functions on RNA localization and translation in CRC. CONCLUSIONS: The findings of this study described the ubiquitinome of CRC cells and identified abnormal ubiquitination(s) potentially affecting the patient survival, thereby offering new probable opportunities for clinical treatment.


Asunto(s)
Neoplasias Colorrectales , Proteínas Ubiquitinadas , Neoplasias Colorrectales/patología , Humanos , Proteómica , ARN/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Proteínas Ubiquitinadas/genética , Proteínas Ubiquitinadas/metabolismo , Ubiquitinación
18.
Genes (Basel) ; 13(10)2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36292671

RESUMEN

BACKGROUND: Gastric cancer remains the most prevalent and highly lethal disease worldwide. MAP4K4, a member of Ste20, plays an important role in various pathologies, including cancer. However, its role in gastric cancer is not yet fully elucidated. Therefore, this study aims to determine the tumor-promoting role of MAP4K4 in gastric cancer and whether it can be used as a new and reliable biomarker to predict the prognosis of gastric cancer. For this purpose, we divide the samples into high- and low-expression groups according to the expression level of MAP4K4. The association of MAP4K4 expression with prognosis is assessed using the Kaplan-Meier survival analysis. Furthermore, immune infiltration analysis using ESTIMATE is conducted to evaluate the tumor immune scores of the samples. RESULTS: The findings reveal a significantly higher expression of MAP4K4 in tumor samples than in adjacent samples. The high-expression group was significantly enriched in tumor-related pathways, such as the PI3K-Akt signaling pathway. In addition, immune infiltration analysis revealed a positive correlation between immune scores and MAP4K4 expression. We also observed that miRNAs, such as miR-192-3p (R = -0.317, p-value 3.111 × 10-9), miR-33b-5p (R= -0.238, p-value 1.166 × 10-5), and miR-582-3p (R = -0.214, p-value 8.430 × 10-5), had potential negative regulatory effects on MAP4K4. Moreover, we identified several transcription factors, ubiquitinated proteins, and interacting proteins that might regulate MAP4K4. The relationship between MAP4K4 and DNA methylation was also identified. Finally, we verified the high expression of MAP4K4 and its effect on promoting cancer. CONCLUSION: MAP4K4 might be closely related to gastric cancer's progression, invasion, and metastasis. Its high expression negatively impacts the prognosis of gastric cancer patients. This suggests MAP4K4 as an important prognostic factor for gastric cancer and could be regarded as a new potential prognostic detection and therapeutic target.


Asunto(s)
MicroARNs , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Biología Computacional , Regulación Neoplásica de la Expresión Génica , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Ubiquitinadas/genética , Proteínas Ubiquitinadas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Biomarcadores , Factores de Transcripción/genética , Proteínas Serina-Treonina Quinasas , Péptidos y Proteínas de Señalización Intracelular/genética
19.
Arch Biochem Biophys ; 730: 109416, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36179910

RESUMEN

Accelerated placental senescence is associated with preeclampsia (PE) and other pregnancy complications. It is characterized by an accelerated decline in placental function due to the accumulation of senescence patterns such as telomere shortening, mitochondrial dysfunction, oxidative damages, increased expression of phosphorylated (serine-139) histone γ-H2AX, a sensitive marker of double-stranded DNA breaks, accumulation of cross-linked ubiquitinated proteins and sirtuin inhibition. Among the lipid oxidation products generated by the peroxidation of polyunsaturated fatty acids, aldehydes such as acrolein, 4-hydroxy-2-nonenal, 4-oxo-2-nonenal, are present in the blood and placenta from PE-affected women and could contribute to PE pathogenesis and accelerated placental aging. In this review we summarize the current knowledge on premature placental senescence and the role of oxidative stress and lipid oxidation-derived aldehydes in this process, as well as their links with PE pathogenesis. The interest of developing (or not) new therapeutic strategies targeting lipid peroxidation is discussed, the objective being a better understanding of accelerated placental aging in PE pathophysiology, and the prevention of PE bad outcomes.


Asunto(s)
Preeclampsia , Sirtuinas , Femenino , Embarazo , Humanos , Preeclampsia/metabolismo , Placenta/metabolismo , Peroxidación de Lípido , Histonas/metabolismo , Acroleína , Proteínas Ubiquitinadas/metabolismo , Estrés Oxidativo , Aldehídos/metabolismo , Ácidos Grasos Insaturados/metabolismo , Sirtuinas/metabolismo , Serina/metabolismo
20.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36142231

RESUMEN

Proteolysis-targeting chimera (PROTAC) is a heterobifunctional molecule. Typically, PROTAC consists of two terminals which are the ligand of the protein of interest (POI) and the specific ligand of E3 ubiquitin ligase, respectively, via a suitable linker. PROTAC degradation of the target protein is performed through the ubiquitin-proteasome system (UPS). The general process is that PROTAC binds to the target protein and E3 ligase to form a ternary complex and label the target protein with ubiquitination. The ubiquitinated protein is recognized and degraded by the proteasome in the cell. At present, PROTAC, as a new type of drug, has been developed to degrade a variety of cancer target proteins and other disease target proteins, and has shown good curative effects on a variety of diseases. For example, PROTACs targeting AR, BR, BTK, Tau, IRAK4, and other proteins have shown unprecedented clinical efficacy in cancers, neurodegenerative diseases, inflammations, and other fields. Recently, PROTAC has entered a phase of rapid development, opening a new field for biomedical research and development. This paper reviews the various fields of targeted protein degradation by PROTAC in recent years and summarizes and prospects the hot targets and indications of PROTAC.


Asunto(s)
Neoplasias , Complejo de la Endopetidasa Proteasomal , Ubiquitina-Proteína Ligasas , Humanos , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Ligandos , Neoplasias/tratamiento farmacológico , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Ubiquitinadas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...