Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38396843

RESUMEN

The ORF6 protein of the SARS-CoV-2 virus plays a crucial role in blocking the innate immune response of the infected cells by inhibiting interferon pathways. Additionally, it binds to and immobilises the RAE1 protein on the cytoplasmic membranes, thereby blocking mRNA transport from the nucleus to the cytoplasm. In all these cases, the host cell proteins are tethered by the flexible C-terminus of ORF6. A possible strategy to inhibit the biological activity of ORF6 is to bind its C-terminus with suitable ligands. Our in silico experiments suggest that hIFNγ binds the ORF6 protein with high affinity, thus impairing its interactions with RAE1 and, consequently, its activity in viral invasion. The in vitro studies reported here reveal a shift of the localisation of RAE1 in ORF6 overexpressing cells upon treatment with hIFNγ from predominantly cytoplasmic to mainly nuclear, resulting in the restoration of the export of mRNA from the nucleus. We also explored the expression of GFP in transfected-with-ORF6 cells by means of fluorescence microscopy and qRT-PCR, finding that treatment with hIFNγ unblocks the mRNA trafficking and reinstates the GFP expression level. The ability of the cytokine to block ORF6 is also reflected in minimising its negative effects on DNA replication by reducing accumulated RNA-DNA hybrids. Our results, therefore, suggest hIFNγ as a promising inhibitor of the most toxic SARS-CoV-2 protein.


Asunto(s)
COVID-19 , Interferón gamma , SARS-CoV-2 , Humanos , Interferón gamma/farmacología , Interferones/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , SARS-CoV-2/metabolismo , Proteínas Virales/efectos de los fármacos , Proteínas Virales/metabolismo
2.
Biomed Pharmacother ; 146: 112581, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34965505

RESUMEN

Epimedium koreanum Nakai (EKN) is a popular plant in Korean and Chinese medicine for treating a variety of ailments. The aqueous extract of EKN has a significant inhibitory impact on influenza A virus (IAV) infection by directly blocking viral attachment and having a virucidal effect, according to this study. Using fluorescent microscopy and fluorescence-activated cell sorting (FACS) with a green fluorescent protein (GFP)-tagged Influenza A/PR/8/34 virus, we examined the effect of EKN on viral infection. By viral infection, EKN strongly suppresses GFP expression, and at a dosage of 100 µg/mL, EKN decreased GFP expression by up to 90% of the untreated infected control. Immunofluorescence and Western blot analyses against influenza viral proteins revealed that EKN decreased influenza viral protein expression in a dose-dependent manner. EKN inhibited the H1N1 influenza virus's hemagglutinin (HA) and neuraminidase (NA), preventing viral attachment to cells. Furthermore, EKN had a virucidal impact and inhibited the cytopathic effects of H1N1, H3N2 and influenza B virus infection. Finally, our findings show that EKN has the potential to be developed as a natural viral inhibitor against influenza virus infection.


Asunto(s)
Alphainfluenzavirus/efectos de los fármacos , Antivirales/farmacología , Epimedium , Extractos Vegetales/farmacología , Animales , Hemaglutininas/efectos de los fármacos , Humanos , Ratones , Neuraminidasa/efectos de los fármacos , Proteínas Virales/efectos de los fármacos , Acoplamiento Viral/efectos de los fármacos
3.
Curr Mol Med ; 22(1): 50-66, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33622224

RESUMEN

The proteins of coronavirus are classified as non-structural, structural, and accessory. There are 16 non-structural viral proteins besides their precursors (1a and 1ab polyproteins). The non-structural proteins are named nsp1 to nsp16, and they act as enzymes, coenzymes, and binding proteins to facilitate the replication, transcription, and translation of the virus. The structural proteins are bound to the RNA in the nucleocapsid (N- protein) or to the lipid bilayer membrane of the viral envelope. The lipid bilayer proteins include the membrane protein (M), an envelope protein (E), and spike protein (S). Besides their role as structural proteins, they are essential for the host cells' binding and invasion. The SARS-CoV-2 contains six accessory proteins which participate in the viral replication, assembly and virus-host interactions. The SARS-CoV-2 accessory proteins are orf3a, orf6, orf7a, orf7b, orf8, and orf10. The functions of the SARS-CoV-2 are not well known, while the functions of their corresponding proteins in SARS-CoV are either well known or poorly studied. Recently, the Oxford University and Astrazeneca, Pfizer and BioNTech have made SARS-CoV-2 vaccines by targeting the spike protein gene. The US Food and Drug Administration (FDA) and the health authorities of the United Kingdom have approved and started conducting vaccinations using the Pfizer and BioNTech mRNA vaccine. Also, The FDA of the USA has approved the use of two monoclonal antibodies produced by Regeneron pharmaceuticals to target the spike protein for treating COVID-19. The SARS-CoV-2 proteins can be used for the diagnosis, as drug targets and in vaccination trials for COVID-19. In future COVID-19 research, more efforts should be made to elaborate the functions and structure of the SARS-CoV- 2 proteins so as to use them as targets for COVID-19 drugs and vaccines. Special attention should be paid to extensive research on the SARS-CoV-2 nsp3, orf8, and orf10.


Asunto(s)
Antivirales/farmacología , Vacunas contra la COVID-19 , COVID-19/prevención & control , SARS-CoV-2/química , Proteínas Virales/efectos de los fármacos , Proteínas Virales/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/uso terapéutico , Antígenos Virales/inmunología , COVID-19/inmunología , Diseño de Fármacos , Humanos , Inmunoterapia , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Desarrollo de Vacunas , Proteínas no Estructurales Virales/efectos de los fármacos , Proteínas no Estructurales Virales/inmunología , Proteínas no Estructurales Virales/fisiología , Proteínas Virales/fisiología , Proteínas Reguladoras y Accesorias Virales/efectos de los fármacos , Proteínas Reguladoras y Accesorias Virales/inmunología , Proteínas Reguladoras y Accesorias Virales/fisiología , Proteínas Estructurales Virales/efectos de los fármacos , Proteínas Estructurales Virales/inmunología , Proteínas Estructurales Virales/fisiología , Vacunas de ARNm , Tratamiento Farmacológico de COVID-19
4.
Antiviral Res ; 196: 105209, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34801588

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent of Coronavirus Disease 2019 (COVID-19) pandemic. Despite intensive and global efforts to discover and develop novel antiviral therapies, only Remdesivir has been approved as a treatment for COVID-19. Therefore, effective antiviral therapeutics are still urgently needed to combat and halt the pandemic. Viral RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 demonstrates high potential as a reliable target for the development of antivirals. We previously developed a cell-based assay to assess the efficiency of compounds that target SARS-CoV-2 RdRp, as well as their tolerance to viral exoribonuclease-mediated proof-reading. In our previous study, we discovered that 2-((1H-indol-3-yl)thio)-N-phenyl-acetamides specifically targets the RdRp of both respiratory syncytial virus (RSV) and influenza A virus. Thus, we hypothesize that 2-((1H-indol-3-yl)thio)-N-phenyl-acetamides may also have the ability to inhibit SARS-CoV-2 replication by targeting its RdRp activity. In this research, we test a compound library containing 103 of 2-((1H-indol-3-yl)thio)-N-phenyl-acetamides against SARS-CoV-2 RdRp, using our cell-based assay. Among these compounds, the top five candidates strongly inhibit SARS-CoV-2 RdRp activity while exhibiting low cytotoxicity and resistance to viral exoribonuclease. Compound 6-72-2a is the most promising candidate with the lowest EC50 value of 1.41 µM and highest selectivity index (CC50/EC50) (above 70.92). Furthermore, our data suggests that 4-46b and 6-72-2a also inhibit the replication of HCoV-OC43 and HCoV-NL63 virus in a dose-dependent manner. Compounds 4-46b and 6-72-2a exhibit EC50 values of 1.13 µM and 0.94 µM, respectively, on HCoV-OC43 viral replication. However, higher concentrations of these compounds are needed to effectively block HCoV-NL63 replication. Together, our findings successfully identified 4-46b and 6-72-2a as promising inhibitors against SARS-CoV-2 RdRp.


Asunto(s)
Acetamidas/farmacología , Tratamiento Farmacológico de COVID-19 , ARN Polimerasa Dependiente del ARN , Antivirales/farmacología , Sistemas de Liberación de Medicamentos , Humanos , ARN Viral/biosíntesis , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , ARN Polimerasa Dependiente del ARN/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/efectos de los fármacos , Replicación Viral/efectos de los fármacos
5.
Cell Rep ; 37(4): 109882, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34653416

RESUMEN

Remdesivir (RDV), a nucleotide analog with broad-spectrum features, has exhibited effectiveness in COVID-19 treatment. However, the precise working mechanism of RDV when targeting the viral RNA-dependent RNA polymerase (RdRP) has not been fully elucidated. Here, we solve a 3.0-Å structure of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RdRP elongation complex (EC) and assess RDV intervention in polymerase elongation phase. Although RDV could induce an "i+3" delayed termination in meta-stable complexes, only pausing and subsequent elongation are observed in the EC. A comparative investigation using an enterovirus RdRP further confirms similar delayed intervention and demonstrates that steric hindrance of the RDV-characteristic 1'-cyano at the -4 position is responsible for the "i+3" intervention, although two representative Flaviviridae RdRPs do not exhibit similar behavior. A comparison of representative viral RdRP catalytic complex structures indicates that the product RNA backbone encounters highly conserved structural elements, highlighting the broad-spectrum intervention potential of 1'-modified nucleotide analogs in anti-RNA virus drug development.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/farmacología , ARN Polimerasa Dependiente del ARN/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Proteínas Virales/efectos de los fármacos , Adenosina Monofosfato/farmacología , Alanina/farmacología , Microscopía por Crioelectrón , Humanos , ARN Viral/química , ARN Viral/efectos de los fármacos , ARN Polimerasa Dependiente del ARN/química , SARS-CoV-2/química , Proteínas Virales/química , Replicación Viral/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
6.
Int J Mol Sci ; 22(8)2021 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-33920628

RESUMEN

Viral infections cause a host of fatal diseases and seriously affect every form of life from bacteria to humans. Although most viral infections can receive appropriate treatment thereby limiting damage to life and livelihood with modern medicine and early diagnosis, new types of viral infections are continuously emerging that need to be properly and timely treated. As time is the most important factor in the progress of many deadly viral diseases, early detection becomes of paramount importance for effective treatment. Aptamers are small oligonucleotide molecules made by the systematic evolution of ligands by exponential enrichment (SELEX). Aptamers are characterized by being able to specifically bind to a target, much like antibodies. However, unlike antibodies, aptamers are easily synthesized, modified, and are able to target a wider range of substances, including proteins and carbohydrates. With these advantages in mind, many studies on aptamer-based viral diagnosis and treatments are currently in progress. The use of aptamers for viral diagnosis requires a system that recognizes the binding of viral molecules to aptamers in samples of blood, serum, plasma, or in virus-infected cells. From a therapeutic perspective, aptamers target viral particles or host cell receptors to prevent the interaction between the virus and host cells or target intracellular viral proteins to interrupt the life cycle of the virus within infected cells. In this paper, we review recent attempts to use aptamers for the diagnosis and treatment of various viral infections.


Asunto(s)
Antivirales/uso terapéutico , Aptámeros de Nucleótidos/uso terapéutico , Virosis/diagnóstico , Virosis/tratamiento farmacológico , Animales , Virus ADN/efectos de los fármacos , Humanos , Virus ARN/efectos de los fármacos , Proteínas Virales/efectos de los fármacos , Virión/efectos de los fármacos
7.
IEEE/ACM Trans Comput Biol Bioinform ; 18(4): 1299-1304, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33687847

RESUMEN

The novel coronavirus (COVID-19) infections have adopted the shape of a global pandemic now, demanding an urgent vaccine design. The current work reports contriving an anti-coronavirus peptide scanner tool to discern anti-coronavirus targets in the embodiment of peptides. The proffered CoronaPep tool features the fast fingerprinting of the anti-coronavirus target serving supreme prominence in the current bioinformatics research. The anti-coronavirus target protein sequences reported from the current outbreak are scanned against the anti-coronavirus target data-sets via CORONAPEP which provides precision-based anti-coronavirus peptides. This tool is specifically for the coronavirus data, which can predict peptides from the whole genome, or a gene or protein's list. Besides it is relatively fast, accurate, userfriendly and can generate maximum output from the limited information. The availability of tools like CORONAPEP will immeasurably perquisite researchers in the discipline of oncology and structure-based drug design.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19/virología , SARS-CoV-2/química , SARS-CoV-2/efectos de los fármacos , Programas Informáticos , Proteínas Virales/química , Proteínas Virales/efectos de los fármacos , Antivirales/farmacología , COVID-19/prevención & control , Vacunas contra la COVID-19/química , Vacunas contra la COVID-19/genética , Biología Computacional , Bases de Datos de Proteínas/estadística & datos numéricos , Diseño de Fármacos , Genoma Viral , Interacciones Microbiota-Huesped/efectos de los fármacos , Humanos , Pandemias , Péptidos/química , Péptidos/efectos de los fármacos , Péptidos/genética , SARS-CoV-2/genética , Proteínas Virales/genética
8.
J Med Virol ; 93(3): 1792-1795, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32975843

RESUMEN

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic calls for effective and safe treatments. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing COVID-19 actively replicates in the throat, unlike SARS-CoV, and shows high pharyngeal viral shedding even in patients with mild symptoms of the disease. HCoV-229E is one of four coronaviruses causing the common cold. In this study, the efficacy of ColdZyme® (CZ-MD), a medical device mouth spray, was tested against SARS-CoV-2 and HCoV-229E in vitro. The CZ-MD provides a protective glycerol barrier containing cod trypsin as an ancillary component. Combined, these ingredients can inactivate common cold viruses in the throat and mouth. The CZ-MD is believed to act on the viral surface proteins that would perturb their entry pathway into cells. The efficacy and safety of the CZ-MD have been demonstrated in clinical trials on the common cold. METHOD OF STUDY: The ability of the CZ-MD to inactivate SARS-CoV-2 and HCoV-229E was tested using an in vitro virucidal suspension test (ASTM E1052). RESULTS: CZ-MD inactivated SARS-CoV-2 by 98.3% and HCoV-229E by 99.9%. CONCLUSION: CZ-MD mouth spray can inactivate the respiratory coronaviruses SARS-CoV-2 and HCoV-229E in vitro. Although the in vitro results presented cannot be directly translated into clinical efficacy, the study indicates that CZ-MD might offer a protective barrier against SARS-CoV-2 and a decreased risk of COVID-19 transmission.


Asunto(s)
Antivirales/farmacología , Coronavirus Humano 229E/efectos de los fármacos , Glicerol/farmacología , SARS-CoV-2/efectos de los fármacos , Tripsina/farmacología , Inactivación de Virus/efectos de los fármacos , COVID-19/prevención & control , COVID-19/transmisión , Resfriado Común/tratamiento farmacológico , Resfriado Común/prevención & control , Resfriado Común/transmisión , Desinfectantes/farmacología , Humanos , Proteínas Virales/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
9.
Drug Dev Res ; 82(3): 374-392, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33170521

RESUMEN

The outbreak of SARS-CoV-2 has become a threat to global health and has led to a global economic crisis. Although the researchers worldwide are putting tremendous effort toward gaining more insights into this zoonotic virus and developing vaccines and therapeutic drugs, no vaccine or drug is yet available to combat COVID-19 effectively. Drug discovery is often a laborious, time-consuming, and expensive task. In this time of crisis, employing computational methods could provide a feasible alternative approach that can potentially be used for drug discovery. Therefore, a library of several antiparasitic and anti-inflammatory drugs was virtually screened against SARS-CoV-2 proteases to identify potential inhibitors. The identified inhibitory drugs were further analyzed to confirm their activities against SARS-CoV-2. Our results could prove to be helpful in repurposing the drug discovery approach, which could substantially reduce the expenses, time, and resources required.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Descubrimiento de Drogas/tendencias , Reposicionamiento de Medicamentos/tendencias , Antiinflamatorios/uso terapéutico , Antiparasitarios/uso terapéutico , Antivirales/farmacología , Biología Computacional , Simulación por Computador , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas , Receptores Virales/química , Receptores Virales/efectos de los fármacos , Receptores Virales/genética , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Proteínas Virales/efectos de los fármacos
10.
Antiviral Res ; 184: 104954, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33080251

RESUMEN

Dengue virus (DENV) is an arthropod-borne virus that has developed into a prominent global health threat in recent decades. The main causative agent of dengue fever, the virus infects an estimated 390 million individuals across the globe each year. Despite the sharply increasing social and economic burden on global society caused by the disease, there is still a glaring lack of effective therapeutics against DENV. In this study, betulinic acid, a naturally occurring pentacyclic triterpenoid was established as an inhibitor of DENV infection in vitro. Time-course studies revealed that betulinic acid inhibits a post-entry stage of the DENV replication cycle and subsequent analyses also showed that the compound is able to inhibit viral RNA synthesis and protein production. Betulinic acid also demonstrated antiviral efficacy against other serotypes of DENV, as well as against other mosquito-borne RNA viruses such as Zika virus and Chikungunya virus, which are commonly found co-circulating together with DENV. As such, betulinic acid may serve as a valuable starting point for the development of antivirals to combat potential DENV outbreaks, particularly in tropical and subtropical regions which make up a large majority of documented infections.


Asunto(s)
Virus del Dengue/efectos de los fármacos , Dengue/tratamiento farmacológico , Triterpenos Pentacíclicos/farmacología , Animales , Antivirales/farmacología , Línea Celular , Supervivencia Celular , Virus Chikungunya/efectos de los fármacos , Chlorocebus aethiops , Virus del Dengue/fisiología , Relación Dosis-Respuesta a Droga , Células HEK293 , Células Hep G2 , Humanos , Concentración 50 Inhibidora , ARN Viral , Serogrupo , Factores de Tiempo , Células Vero , Proteínas Virales/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Virus Zika/efectos de los fármacos , Ácido Betulínico
11.
SAR QSAR Environ Res ; 31(11): 857-867, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33100032

RESUMEN

A novel coronavirus recently identified in Wuhan, China (2019-nCoV) has resulted in an increasing number of patients globally, and has become a highly lethal pathogenic member of the coronavirus family affecting humans. 2019-nCoV has established itself as one of the most threatening pandemics that human beings have faced, and therefore analysis and evaluation of all possible responses against infection is required. One such strategy includes utilizing the knowledge gained from the SARS and MERS outbreaks regarding existing antivirals. Indicating a potential for success, one of the drugs, remdesivir, under repurposing studies, has shown positive results in initial clinical studies. Therefore, in the current work, the authors have attempted to utilize the remdesivir-RdRp complex - RdRp (RNA-dependent RNA polymerase) being the putative target for remdesivir - to screen a library of the already reported RdRp inhibitor database. Further clustering on the basis of structural features and scoring refinement was performed to filter out false positive hits. Finally, molecular dynamics simulation was carried out to validate the identification of hits as RdRp inhibitors against novel coronavirus 2019-nCoV. The results yielded two putative hits which can inhibit RdRp with better potency than remdesivir, subject to further biological evaluation.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/farmacología , Simulación del Acoplamiento Molecular , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Adenosina Monofosfato/química , Adenosina Monofosfato/farmacología , Alanina/química , Alanina/farmacología , Antivirales/química , Betacoronavirus/efectos de los fármacos , Betacoronavirus/enzimología , COVID-19 , Infecciones por Coronavirus/tratamiento farmacológico , Pandemias , Neumonía Viral , Relación Estructura-Actividad Cuantitativa , SARS-CoV-2 , Proteínas Virales/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
12.
Comput Biol Med ; 124: 103936, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32738628

RESUMEN

Virtual screening of phytochemicals was performed through molecular docking, simulations, in silico ADMET and drug-likeness prediction to identify the potential hits that can inhibit the effects of SARS-CoV-2. Considering the published literature on medicinal importance, 154 phytochemicals with analogous structure from limonoids and triterpenoids were selected to search potential inhibitors for the five therapeutic protein targets of SARS-CoV-2, i.e., 3CLpro (main protease), PLpro (papain-like protease), SGp-RBD (spike glycoprotein-receptor binding domain), RdRp (RNA dependent RNA polymerase) and ACE2 (angiotensin-converting enzyme 2). The in silico computational results revealed that the phytochemicals such as glycyrrhizic acid, limonin, 7-deacetyl-7-benzoylgedunin, maslinic acid, corosolic acid, obacunone and ursolic acid were found to be effective against the target proteins of SARS-CoV-2. The protein-ligand interaction study revealed that these phytochemicals bind with the amino acid residues at the active site of the target proteins. Therefore, the core structure of these potential hits can be used for further lead optimization to design drugs for SARS-CoV-2. Also, the medicinal plants containing these phytochemicals like licorice, neem, tulsi, citrus and olives can be used to formulate suitable therapeutic approaches in traditional medicines.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/química , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Limoninas/farmacología , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología , Triterpenos/farmacología , Enzima Convertidora de Angiotensina 2 , Antivirales/química , Antivirales/farmacocinética , Sitios de Unión , COVID-19 , Biología Computacional , Simulación por Computador , ARN Polimerasa Dependiente de ARN de Coronavirus , Evaluación Preclínica de Medicamentos , Interacciones Microbiota-Huesped/efectos de los fármacos , Humanos , Limoninas/química , Limoninas/farmacocinética , Simulación del Acoplamiento Molecular , Pandemias , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/efectos de los fármacos , Fitoquímicos/química , Fitoquímicos/farmacocinética , Fitoquímicos/farmacología , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/efectos de los fármacos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/efectos de los fármacos , Triterpenos/química , Triterpenos/farmacocinética , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/efectos de los fármacos , Proteínas Virales/química , Proteínas Virales/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
14.
Viruses ; 12(7)2020 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-32605306

RESUMEN

Novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A virus (IAV), and norovirus (NV) are highly contagious pathogens that threaten human health. Here we focused on the antiviral potential of the medicinal herb, Saxifraga spinulosa (SS). Water-soluble extracts of SS were prepared, and their virus-inactivating activity was evaluated against the human virus pathogens SARS-CoV-2 and IAV; we also examined virucidal activity against feline calicivirus and murine norovirus, which are surrogates for human NV. Among our findings, we found that SS-derived gallocatechin gallate compounds were capable of inactivating all viruses tested. Interestingly, a pyrogallol-enriched fraction (Fr 1C) inactivated all viruses more rapidly and effectively than did any of the component compounds used alone. We found that 25 µg/mL of Fr 1C inactivated >99.6% of SARS-CoV-2 within 10 s (reduction of ≥2.33 log10 TCID50/mL). Fr 1C resulted in the disruption of viral genomes and proteins as determined by gel electrophoresis, electron microscopy, and reverse transcription-PCR. Taken together, our results reveal the potential of Fr 1C for development as a novel antiviral disinfectant.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Virus de la Influenza A/efectos de los fármacos , Norovirus/efectos de los fármacos , Extractos Vegetales/farmacología , Plantas Medicinales , Saxifragaceae , Betacoronavirus/ultraestructura , Calicivirus Felino/efectos de los fármacos , Electroforesis en Gel de Poliacrilamida , Genoma Viral/efectos de los fármacos , Pruebas de Hemaglutinación , Humanos , Microscopía Electrónica de Transmisión , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2 , Proteínas Virales/efectos de los fármacos
15.
Future Med Chem ; 12(17): 1565-1578, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32638628

RESUMEN

SARS-CoV-2 has been widely spread around the world and COVID-19 was declared a global pandemic by the WHO. Limited clinically effective antiviral drugs are available now. The development of anti-SARS-CoV-2 drugs has become an urgent work worldwide. At present, potential therapeutic targets and drugs for SARS-CoV-2 are continuously reported, and many repositioning drugs are undergoing extensive clinical research, including remdesivir and chloroquine. On the other hand, structures of many important viral target proteins and host target proteins, including that of RdRp and Mpro were constantly reported, which greatly promoted structure-based drug design. This paper summarizes the current research progress and challenges in the development of anti-SARS-CoV-2 drugs, and proposes novel short-term and long-term drug research strategies.


Asunto(s)
Infecciones por Coronavirus/tratamiento farmacológico , Reposicionamiento de Medicamentos , Neumonía Viral/tratamiento farmacológico , Antivirales/uso terapéutico , Betacoronavirus/química , Betacoronavirus/efectos de los fármacos , COVID-19 , Ensayos Clínicos como Asunto , Humanos , Pandemias , SARS-CoV-2 , Proteínas Virales/química , Proteínas Virales/efectos de los fármacos
16.
J Virol ; 94(17)2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32581105

RESUMEN

Human Cytomegalovirus (HCMV) is a ubiquitous pathogen that has coevolved with its host and, in doing so, is highly efficient in undermining antiviral responses that limit successful infections. As a result, HCMV infections are highly problematic in individuals with weakened or underdeveloped immune systems, including transplant recipients and newborns. Understanding how HCMV controls the microenvironment of an infected cell so as to favor productive replication is of critical importance. To this end, we took an unbiased proteomics approach to identify the highly reversible, stress-induced, posttranslational modification (PTM) protein S-nitrosylation on viral proteins to determine the biological impact on viral replication. We identified protein S-nitrosylation of 13 viral proteins during infection of highly permissive fibroblasts. One of these proteins, pp71, is critical for efficient viral replication, as it undermines host antiviral responses, including stimulator of interferon genes (STING) activation. By exploiting site-directed mutagenesis of the specific amino acids we identified in pp71 as protein S-nitrosylated, we found this pp71 PTM diminishes its ability to undermine antiviral responses induced by the STING pathway. Our results suggest a model in which protein S-nitrosylation may function as a host response to viral infection that limits viral spread.IMPORTANCE In order for a pathogen to establish a successful infection, it must undermine the host cell responses inhibitory to the pathogen. As such, herpesviruses encode multiple viral proteins that antagonize each host antiviral response, thereby allowing for efficient viral replication. Human Cytomegalovirus encodes several factors that limit host countermeasures to infection, including pp71. Herein, we identified a previously unreported posttranslational modification of pp71, protein S-nitrosylation. Using site-directed mutagenesis, we mutated the specific sites of this modification thereby blocking this pp71 posttranslational modification. In contexts where pp71 is not protein S-nitrosylated, host antiviral response was inhibited. The net result of this posttranslational modification is to render a viral protein with diminished abilities to block host responses to infection. This novel work supports a model in which protein S-nitrosylation may be an additional mechanism in which a cell inhibits a pathogen during the course of infection.


Asunto(s)
Antivirales/farmacología , Citomegalovirus/efectos de los fármacos , Proteína S/metabolismo , Proteínas Virales/metabolismo , Línea Celular , Fibroblastos/virología , Regulación Viral de la Expresión Génica , Humanos , Proteínas de la Membrana/genética , Mutagénesis Sitio-Dirigida , Proteínas Virales/efectos de los fármacos , Proteínas Virales/genética , Replicación Viral
17.
Mutat Res ; 821: 111709, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32497932

RESUMEN

We have previously reported that quinoline increased the mutation frequency of the cII gene in the liver of lambda/lacZ transgenic mice (Muta™Mouse), and G:C to C:G transversions were the molecular signature of quinoline-induced mutations. 4-Methylquinoline (4-MeQ) has the highest mutagenicity among quinoline and isomeric methylquinolines according to the Ames test using Salmonella typhimurium TA 100, in the presence of rat liver microsomal enzymes. In this report, we examined the effect of 4-MeQ on mutagenesis in the lambda cII gene in the liver of the Muta™Mouse, and we analyzed the sequences of the mutated genes. The mutation frequency of the liver cII gene was seven times higher in 4-MeQ-treated mice than in control mice. Sequence analysis revealed that 4-MeQ primarily induced G:C to C:G transversions (37 of 45). The specificities of 4-MeQ for target organ and mutation pattern were very consistent with those of quinoline. Thus, we showed that 4-MeQ was also genotoxic in the liver of the Muta™Mouse, and as with quinoline, the G:C to C:G transversion was the molecular signature of the 4-MeQ-induced mutations.


Asunto(s)
Citosina/química , Guanina/química , Operón Lac , Hígado/metabolismo , Mutación , Quinolinas/farmacología , Factores de Transcripción/genética , Proteínas Virales/genética , Animales , Secuencia de Bases , Hígado/efectos de los fármacos , Masculino , Ratones , Ratones Mutantes , Ratones Transgénicos , Mutagénesis , Factores de Transcripción/efectos de los fármacos , Proteínas Virales/efectos de los fármacos
18.
Sci Rep ; 10(1): 8929, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32488021

RESUMEN

Zika virus (ZIKV) of the flaviviridae family, is the cause of emerging infections characterized by fever, Guillain-Barré syndrome (GBS) in adults and microcephaly in newborns. There exists an urgent unmet clinical need for anti-ZIKV drugs for the treatment of infected individuals. In the current work, we aimed at the promising virus drug target, ZIKV NS3 protease and constructed a Pharmacophore Anchor (PA) model for the active site. The PA model reveals a total of 12 anchors (E, H, V) mapped across the active site subpockets. We further identified five of these anchors to be critical core anchors (CEH1, CH3, CH7, CV1, CV3) conserved across flaviviral proteases. The ZIKV protease PA model was then applied in anchor-enhanced virtual screening yielding 14 potential antiviral candidates, which were tested by in vitro assays. We discovered FDA drugs Asunaprevir and Simeprevir to have potent anti-ZIKV activities with EC50 values 4.7 µM and 0.4 µM, inhibiting the viral protease with IC50 values 6.0 µM and 2.6 µM respectively. Additionally, the PA model anchors aided in the exploration of inhibitor binding mechanisms. In conclusion, our PA model serves as a promising guide map for ZIKV protease targeted drug discovery and the identified 'previr' FDA drugs are promising for anti-ZIKV treatments.


Asunto(s)
Antivirales/farmacología , Descubrimiento de Drogas/métodos , Serina Endopeptidasas/efectos de los fármacos , Proteínas Virales/efectos de los fármacos , Virus Zika/efectos de los fármacos , Dominio Catalítico/efectos de los fármacos , Modelos Químicos , Simulación del Acoplamiento Molecular , Alineación de Secuencia , Virus Zika/enzimología , Virus Zika/genética
20.
Molecules ; 25(7)2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32260270

RESUMEN

Different parts of Nuphar lutea L. (yellow water lily) have been used to treat several inflammatory and pathogen-related diseases. It has shown that Nuphar lutea extracts (NUP) are active against various pathogens including bacteria, fungi, and leishmanial parasites. In an effort to detect novel therapeutic agents against negative-stranded RNA (- RNA) viruses, we have tested the effect of a partially-purified alkaloid mixture of Nuphar lutea leaves on the measles virus (MV). The MV vaccine's Edmonston strain was used to acutely or persistently infect cells. The levels of several MV proteins were detected by a Western blot and immunocytochemistry. Viral RNAs were quantitated by qRT-PCR. Virus infectivity was monitored by infecting African green monkey kidney VERO cells' monolayers. We showed that NUP protected cells from acute infection. Decreases in the MV P-, N-, and V-proteins were observed in persistently infected cells and the amount of infective virus released was reduced as compared to untreated cells. By examining viral RNAs, we suggest that NUP acts at the post-transcriptional level. We conclude, as a proof of concept, that NUP has anti-viral therapeutic activity against the MV. Future studies will determine the mechanism of action and the effect of NUP on other related viruses.


Asunto(s)
Alcaloides/farmacología , Antivirales/farmacología , Virus del Sarampión/crecimiento & desarrollo , Nuphar/química , Alcaloides/química , Animales , Antivirales/química , Chlorocebus aethiops , Regulación Viral de la Expresión Génica/efectos de los fármacos , Virus del Sarampión/efectos de los fármacos , Virus del Sarampión/genética , Extractos Vegetales/química , Prueba de Estudio Conceptual , ARN Viral/efectos de los fármacos , Células Vero , Proteínas Virales/efectos de los fármacos , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...