Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 714: 149947, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38657442

RESUMEN

Here, we characterized the p.Arg583His (R583H) Kv7.1 mutation, identified in two unrelated families suffered from LQT syndrome. This mutation is located in the HС-HD linker of the cytoplasmic portion of the Kv7.1 channel. This linker, together with HD helix are responsible for binding the A-kinase anchoring protein 9 (AKAP9), Yotiao. We studied the electrophysiological characteristics of the mutated channel expressed in CHO-K1 along with KCNE1 subunit and Yotiao protein, using the whole-cell patch-clamp technique. We found that R583H mutation, even at the heterozygous state, impedes IKs activation. Molecular modeling showed that HС and HD helixes of the C-terminal part of Kv7.1 channel are swapped along the C-terminus length of the channel and that R583 position is exposed to the outer surface of HC-HD tandem coiled-coil. Interestingly, the adenylate cyclase activator, forskolin had a smaller effect on the mutant channel comparing with the WT protein, suggesting that R583H mutation may disrupt the interaction of the channel with the adaptor protein Yotiao and, therefore, may impair phosphorylation of the KCNQ1 channel.


Asunto(s)
Proteínas de Anclaje a la Quinasa A , Cricetulus , Proteínas del Citoesqueleto , Canal de Potasio KCNQ1 , Canales de Potasio con Entrada de Voltaje , Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ1/metabolismo , Canal de Potasio KCNQ1/química , Humanos , Células CHO , Animales , Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/química , Mutación , Femenino , Modelos Moleculares , Masculino , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo , Unión Proteica
2.
FEBS Lett ; 598(4): 457-476, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38140814

RESUMEN

Cilia are microtubule-based sensory organelles present in a number of eukaryotic cells. Mutations in the genes encoding ciliary proteins cause ciliopathies in humans. A-kinase anchoring proteins (AKAPs) tether ciliary signaling proteins such as protein kinase A (PKA). The dimerization and docking domain (D/D) on the RIIα subunit of PKA interacts with AKAPs. Here, we show that AKAP240 from the central-pair microtubules of Chlamydomonas reinhardtii cilia uses two C-terminal amphipathic helices to bind to its partner FAP174, an RIIα-like protein with a D/D domain at the N-terminus. Co-immunoprecipitation using anti-FAP174 antibody with an enriched central-pair microtubule fraction isolated seven interactors whose mass spectrometry analysis revealed proteins from the C2a (FAP65, FAP70, and FAP147) and C1b (CPC1, HSP70A, and FAP42) microtubule projections and FAP75, a protein whose sub-ciliary localization is unknown. Using RII D/D and FAP174 as baits, we identified two additional AKAPs (CPC1 and FAP297) in the central-pair microtubules.


Asunto(s)
Proteínas de Anclaje a la Quinasa A , Chlamydomonas reinhardtii , Humanos , Proteínas de Anclaje a la Quinasa A/química , Proteínas de Anclaje a la Quinasa A/metabolismo , Cilios/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Secuencia de Aminoácidos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Microtúbulos/metabolismo
3.
J Mol Biol ; 434(16): 167682, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35697294

RESUMEN

Disordered scaffold proteins provide multivalent landing pads that, via a series of embedded Short Linear Motifs (SLiMs), bring together the components of a complex to orchestrate precise spatial and temporal regulation of cellular processes. One such protein is AKAP5 (previously AKAP79), which contains SLiMs that anchor PKA and Calcineurin, and recruit substrate (the TRPV1 receptor). Calcineurin is anchored to AKAP5 by a well-characterised PxIxIT SLiM. Here we show, using a combination of biochemical and biophysical approaches, that the Calcineurin PxIxIT-binding groove also recognises several hitherto unknown lower-affinity SLiMs in addition to the PxIxIT motif. We demonstrate that the assembly is in reality a complex system with conserved SLiMs spanning a wide affinity range. The capture is analogous to that seen for many DNA-binding proteins that have a weak non-specific affinity for DNA outside the canonical binding site, but different in that it involves (i) two proteins, and (ii) hydrophobic rather than electrostatic interactions. It is also compatible with the requirement for both stable anchoring of the enzyme and responsive downstream signalling. We conclude that the AKAP5 C-terminus is enriched in lower-affinity/mini-SLiMs that, together with the canonical SLiM, maintain a structurally disordered but tightly regulated signalosome.


Asunto(s)
Proteínas de Anclaje a la Quinasa A , Calcineurina , Proteínas Intrínsecamente Desordenadas , Monoéster Fosfórico Hidrolasas , Proteínas de Anclaje a la Quinasa A/química , Calcineurina/química , Humanos , Proteínas Intrínsecamente Desordenadas/química , Monoéster Fosfórico Hidrolasas/química , Unión Proteica , Transducción de Señal
4.
Methods Mol Biol ; 2483: 297-317, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35286684

RESUMEN

Generation of the prototypic second messenger cAMP instigates numerous signaling events. A major intracellular target of cAMP is Protein kinase A (PKA), a Ser/Thr protein kinase. Where and when this enzyme is activated inside the cell has profound implications on the functional impact of PKA. It is now well established that PKA signaling is focused locally into subcellular signaling "islands" or "signalosomes." The A-Kinase Anchoring Proteins (AKAPs) play a critical role in this process by dictating spatial and temporal aspects of PKA action. Genetically encoded biosensors, small molecule and peptide-based disruptors of PKA signaling are valuable tools for rigorous investigation of local PKA action at the biochemical level. This chapter focuses on approaches to evaluate PKA signaling islands, including a simple assay for monitoring the interaction of an AKAP with a tunable PKA holoenzyme. The latter approach evaluates the composition of PKA holoenzymes, in which regulatory subunits and catalytic subunits can be visualized in the presence of test compounds and small-molecule inhibitors.


Asunto(s)
Proteínas de Anclaje a la Quinasa A , Proteínas Quinasas Dependientes de AMP Cíclico , Proteínas de Anclaje a la Quinasa A/química , Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Péptidos/química , Sistemas de Mensajero Secundario , Transducción de Señal
5.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33941685

RESUMEN

To avoid conflicting and deleterious outcomes, eukaryotic cells often confine second messengers to spatially restricted subcompartments. The smallest signaling unit is the Ca2+ nanodomain, which forms when Ca2+ channels open. Ca2+ nanodomains arising from store-operated Orai1 Ca2+ channels stimulate the protein phosphatase calcineurin to activate the transcription factor nuclear factor of activated T cells (NFAT). Here, we show that NFAT1 tethered directly to the scaffolding protein AKAP79 (A-kinase anchoring protein 79) is activated by local Ca2+ entry, providing a mechanism to selectively recruit a transcription factor. We identify the region on the N terminus of Orai1 that interacts with AKAP79 and demonstrate that this site is essential for physiological excitation-transcription coupling. NMR structural analysis of the AKAP binding domain reveals a compact shape with several proline-driven turns. Orai2 and Orai3, isoforms of Orai1, lack this region and therefore are less able to engage AKAP79 and activate NFAT. A shorter, naturally occurring Orai1 protein that arises from alternative translation initiation also lacks the AKAP79-interaction site and fails to activate NFAT1. Interfering with Orai1-AKAP79 interaction suppresses cytokine production, leaving other Ca2+ channel functions intact. Our results reveal the mechanistic basis for how a subtype of a widely expressed Ca2+ channel is able to activate a vital transcription pathway and identify an approach for generation of immunosuppressant drugs.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Canales de Calcio/metabolismo , Calcio/metabolismo , Factores de Transcripción NFATC/metabolismo , Proteína ORAI1/metabolismo , Transducción de Señal , Proteínas de Anclaje a la Quinasa A/química , Proteínas de Anclaje a la Quinasa A/genética , Calcineurina/metabolismo , Señalización del Calcio/fisiología , Citocinas/metabolismo , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Células MCF-7 , Factores de Transcripción NFATC/genética , Proteína ORAI1/genética , Factores de Transcripción , Transcriptoma
6.
Nat Cell Biol ; 22(8): 960-972, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32719551

RESUMEN

It remains unknown if biophysical or material properties of biomolecular condensates regulate cancer. Here we show that AKAP95, a nuclear protein that regulates transcription and RNA splicing, plays an important role in tumorigenesis by supporting cancer cell growth and suppressing oncogene-induced senescence. AKAP95 forms phase-separated and liquid-like condensates in vitro and in nucleus. Mutations of key residues to different amino acids perturb AKAP95 condensation in opposite directions. Importantly, the activity of AKAP95 in splice regulation is abolished by disruption of condensation, significantly impaired by hardening of condensates, and regained by substituting its condensation-mediating region with other condensation-mediating regions from irrelevant proteins. Moreover, the abilities of AKAP95 in regulating gene expression and supporting tumorigenesis require AKAP95 to form condensates with proper liquidity and dynamicity. These results link phase separation to tumorigenesis and uncover an important role of appropriate biophysical properties of protein condensates in gene regulation and cancer.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/fisiología , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Proteínas Nucleares/fisiología , Empalme del ARN , Proteínas de Anclaje a la Quinasa A/química , Animales , Carcinogénesis/metabolismo , Transformación Celular Neoplásica/metabolismo , Células Cultivadas , Senescencia Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones , Proteínas Nucleares/química , Transición de Fase , Empalme del ARN/fisiología , Relación Estructura-Actividad
7.
J Mol Cell Cardiol ; 138: 99-109, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31783032

RESUMEN

A-kinase anchoring proteins (AKAPs) play crucial roles in regulating compartmentalized multi-protein signaling networks related to PKA-mediated phosphorylation. The mitochondrial AKAP - AKAP1 proteins are enriched in heart and play cardiac protective roles. This review aims to thoroughly summarize AKAP1 variants from their sequence features to the structure-function relationships between AKAP1 and its binding partners, as well as the molecular mechanisms of AKAP1 in cardiac hypertrophy, hypoxia-induced myocardial infarction and endothelial cells dysfunction, suggesting AKAP1 as a candidate for cardiovascular therapy.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Enfermedades Cardiovasculares/metabolismo , Proteínas de Anclaje a la Quinasa A/química , Secuencia de Aminoácidos , Animales , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/patología , Células Endoteliales/metabolismo , Humanos , Mitocondrias/metabolismo
8.
Mol Biol Cell ; 30(14): 1743-1756, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31091162

RESUMEN

In neurons, regulation of activity-dependent transcription by the nuclear factor of activated T-cells (NFAT) depends upon Ca2+ influx through voltage-gated L-type calcium channels (LTCC) and NFAT translocation to the nucleus following its dephosphorylation by the Ca2+-dependent phosphatase calcineurin (CaN). CaN is recruited to the channel by A-kinase anchoring protein (AKAP) 79/150, which binds to the LTCC C-terminus via a modified leucine-zipper (LZ) interaction. Here we sought to gain new insights into how LTCCs and signaling to NFAT are regulated by this LZ interaction. RNA interference-mediated knockdown of endogenous AKAP150 and replacement with human AKAP79 lacking its C-terminal LZ domain resulted in loss of depolarization-stimulated NFAT signaling in rat hippocampal neurons. However, the LZ mutation had little impact on the AKAP-LTCC interaction or LTCC function, as measured by Förster resonance energy transfer, Ca2+ imaging, and electrophysiological recordings. AKAP79 and NFAT coimmunoprecipitated when coexpressed in heterologous cells, and the LZ mutation disrupted this association. Critically, measurements of NFAT mobility in neurons employing fluorescence recovery after photobleaching and fluorescence correlation spectroscopy provided further evidence for an AKAP79 LZ interaction with NFAT. These findings suggest that the AKAP79/150 LZ motif functions to recruit NFAT to the LTCC signaling complex to promote its activation by AKAP-anchored calcineurin.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Canales de Calcio Tipo L/metabolismo , Núcleo Celular/metabolismo , Factores de Transcripción NFATC/metabolismo , Neuronas/metabolismo , Transducción de Señal , Proteínas de Anclaje a la Quinasa A/química , Secuencias de Aminoácidos , Animales , Calcineurina/metabolismo , Señalización del Calcio , Línea Celular , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Espinas Dendríticas/metabolismo , Hipocampo/citología , Modelos Biológicos , Unión Proteica , Transporte de Proteínas , Ratas Sprague-Dawley , Transcripción Genética
9.
J Mol Cell Cardiol ; 118: 13-25, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29522762

RESUMEN

Class IIa histone deacetylases (HDACs) are transcriptional repressors whose nuclear export in the cardiac myocyte is associated with the induction of pathological gene expression and cardiac remodeling. Class IIa HDACs are regulated by multiple, functionally opposing post-translational modifications, including phosphorylation by protein kinase D (PKD) that promotes nuclear export and phosphorylation by protein kinase A (PKA) that promotes nuclear import. We have previously shown that the scaffold protein muscle A-kinase anchoring protein ß (mAKAPß) orchestrates signaling in the cardiac myocyte required for pathological cardiac remodeling, including serving as a scaffold for both PKD and PKA. We now show that mAKAPß is a scaffold for HDAC5 in cardiac myocytes, forming signalosomes containing HDAC5, PKD, and PKA. Inhibition of mAKAPß expression attenuated the phosphorylation of HDAC5 by PKD and PKA in response to α- and ß-adrenergic receptor stimulation, respectively. Importantly, disruption of mAKAPß-HDAC5 anchoring prevented the induction of HDAC5 nuclear export by α-adrenergic receptor signaling and PKD phosphorylation. In addition, disruption of mAKAPß-PKA anchoring prevented the inhibition by ß-adrenergic receptor stimulation of α-adrenergic-induced HDAC5 nuclear export. Together, these data establish that mAKAPß signalosomes serve to bidirectionally regulate the nuclear-cytoplasmic localization of class IIa HDACs. Thus, the mAKAPß scaffold serves as a node in the myocyte regulatory network controlling both the repression and activation of pathological gene expression in health and disease, respectively.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Histona Desacetilasas/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas de Anclaje a la Quinasa A/química , Transporte Activo de Núcleo Celular/efectos de los fármacos , Adrenérgicos/farmacología , Animales , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Células HEK293 , Humanos , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Dominios Proteicos , Ratas , Transducción de Señal
10.
Am J Physiol Heart Circ Physiol ; 315(1): H109-H121, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29600899

RESUMEN

One of the crucial cardiac signaling pathways is cAMP-mediated PKA signal transduction, which is regulated by a family of scaffolding proteins, i.e., A-kinase anchoring proteins (AKAPs). Muscle-specific AKAP (mAKAP) partly regulates cardiac cAMP/PKA signaling by binding to PKA and phosphodiesterase 4D3 (PDE4D3), among other proteins, and plays a central role in modulating cardiac remodeling. Moreover, genetics plays an incomparable role in modifying the risk of cardiovascular diseases (CVDs). Single-nucleotide polymorphisms (SNPs) in various proteins have especially been shown to predispose individuals to CVDs. Hence, we hypothesized that human mAKAP polymorphisms found in humans with CVDs alter the cAMP/PKA pathway, influencing the susceptibility of individuals to CVDs. Our computational analyses revealed two mAKAP SNPs found in cardiac disease-related patients with the highest predicted deleterious effects, Ser 1653 Arg (S1653R) and Glu 2124 Gly (E2124G). Coimmunoprecipitation data in human embryonic kidney-293T cells showed that the S1653R SNP, present in the PDE4D3-binding domain of mAKAP, changed the binding of PDE4D3 to mAKAP and that the E2124G SNP, flanking the 3'-PKA binding domain, changed the binding of PKA before and after stimulation with isoproterenol. These SNPs significantly altered intracellular cAMP levels, global PKA activity, and cytosolic PDE activity compared with the wild type before and after isoproterenol stimulation. PKA-mediated phosphorylation of pathological markers was found to be upregulated after cell stimulation in both mutants. In conclusion, human mAKAP polymorphisms may influence the propensity of developing CVDs by affecting cAMP/PKA signaling, supporting the clinical significance of PKA-mAKAP-PDE4D3 interactions. NEW & NOTEWORTHY We found that single-nucleotide polymorphisms in muscle-specific A-kinase anchoring protein found in human patients with cardiovascular diseases significantly affect the cAMP/PKA signaling pathway. Our results showed, for the first time, that human muscle-specific A-kinase anchoring protein polymorphisms might alter the susceptibility of individuals to develop cardiovascular diseases with known underlying molecular mechanisms.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/genética , Enfermedades Cardiovasculares/genética , Polimorfismo de Nucleótido Simple , Transducción de Señal , Proteínas de Anclaje a la Quinasa A/química , Proteínas de Anclaje a la Quinasa A/metabolismo , Sitios de Unión , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Células HEK293 , Humanos , Unión Proteica
11.
FEBS J ; 285(5): 947-964, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29288530

RESUMEN

The main function of the A kinase-anchoring proteins (AKAPs) is to target the cyclic AMP-dependent protein kinase A (PKA) to its cellular substrates through the interaction with its regulatory subunits. Besides anchoring of PKA, AKAP8 participates in regulating the histone H3 lysine 4 (H3K4) histone methyltransferase (HMT) complexes. It is also involved in DNA replication, apoptosis, transcriptional silencing of rRNA genes, alternative splicing, and chromatin condensation during mitosis. In this study, we focused on the interaction between AKAP8 and the core subunit of all known H3K4 HMT complexes-DPY30 protein. Here, we demonstrate that the PKA-binding domain of AKAP8 and the C-terminal domain of DPY30, also called Dpy-30 motif, are crucial for the interaction between these proteins. We show that a single amino acid substitution in DPY30 L69D affects its dimerization and completely abolishes its interaction with AKAP8 and another DPY30-binding partner brefeldin A-inhibited guanine nucleotide-exchange protein 1 (BIG1), which is also AKAP domain-containing protein. We further demonstrate that AKAP8 interacts with DPY30 and the RII alpha regulatory subunit of PKA both in the interphase and in mitotic cells, and we show evidences that AKAP8L, a homologue of AKAP8, interacts with core subunits of the H3K4 HMT complexes, which suggests its role as a potential regulator of these complexes. The results presented here reinforce the analogy between AKAP8-RII alpha and AKAP8-DPY30 interactions, postulated before, and improve our understanding of the complexity of the cellular functions of the AKAP8 protein.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Anclaje a la Quinasa A/química , Ciclo Celular , Nucléolo Celular/metabolismo , Subunidad RIIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/metabolismo , Dimerización , Genes Reporteros , Factores de Intercambio de Guanina Nucleótido/metabolismo , Células HeLa , Código de Histonas , Histona Metiltransferasas/metabolismo , Humanos , Metilación , Modelos Moleculares , Proteínas Nucleares/química , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Factores de Transcripción
12.
J Biol Chem ; 292(50): 20410-20411, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29247130

RESUMEN

The scaffolding protein AKAP350A is known to localize to the centrosome and the Golgi, but the molecular details of its function at the centrosome remain elusive. Using structure-function analyses, protein interaction assays, and super-resolution microscopy, Kolobova et al. now identify AKAP350A's specific location and protein partners at the centrosome. The authors further define an autoregulatory mechanism that likely controls AKAP350A's ability to nucleate microtubule growth.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Centrosoma/metabolismo , Proteínas del Citoesqueleto/metabolismo , Centro Organizador de los Microtúbulos/metabolismo , Modelos Moleculares , Proteínas de Anclaje a la Quinasa A/química , Animales , Proteínas de Ciclo Celular , Centrosoma/química , Proteínas del Citoesqueleto/química , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Centro Organizador de los Microtúbulos/química , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Transporte de Proteínas
13.
Nat Commun ; 8(1): 1681, 2017 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-29162807

RESUMEN

AKAP79/150 is essential for coordinating second messenger-responsive enzymes in processes including synaptic long-term depression. Ca2+ directly regulates AKAP79 through its effector calmodulin (CaM), but the molecular basis of this regulation was previously unknown. Here, we report that CaM recognizes a '1-4-7-8' pattern of hydrophobic amino acids starting at Trp79 in AKAP79. Cross-linking coupled to mass spectrometry assisted mapping of the interaction site. Removal of the CaM-binding sequence in AKAP79 prevents formation of a Ca2+-sensitive interface between AKAP79 and calcineurin, and increases resting cellular PKA phosphorylation. We determined a crystal structure of CaM bound to a peptide encompassing its binding site in AKAP79. CaM adopts a highly compact conformation in which its open Ca2+-activated C-lobe and closed N-lobe cooperate to recognize a mixed α/310 helix in AKAP79. The structure guided a bioinformatic screen to identify potential sites in other proteins that may employ similar motifs for interaction with CaM.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/química , Proteínas de Anclaje a la Quinasa A/metabolismo , Calmodulina/química , Calmodulina/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Secuencia de Aminoácidos , Sitios de Unión/genética , Calcineurina/metabolismo , Calcio/metabolismo , Calmodulina/genética , Biología Computacional , Reactivos de Enlaces Cruzados , Cristalografía por Rayos X , Humanos , Espectrometría de Masas , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
Elife ; 62017 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-28967377

RESUMEN

Scaffolding the calcium/calmodulin-dependent phosphatase 2B (PP2B, calcineurin) focuses and insulates termination of local second messenger responses. Conformational flexibility in regions of intrinsic disorder within A-kinase anchoring protein 79 (AKAP79) delineates PP2B access to phosphoproteins. Structural analysis by negative-stain electron microscopy (EM) reveals an ensemble of dormant AKAP79-PP2B configurations varying in particle length from 160 to 240 Å. A short-linear interaction motif between residues 337-343 of AKAP79 is the sole PP2B-anchoring determinant sustaining these diverse topologies. Activation with Ca2+/calmodulin engages additional interactive surfaces and condenses these conformational variants into a uniform population with mean length 178 ± 17 Å. This includes a Leu-Lys-Ile-Pro sequence (residues 125-128 of AKAP79) that occupies a binding pocket on PP2B utilized by the immunosuppressive drug cyclosporin. Live-cell imaging with fluorescent activity-sensors infers that this region fine-tunes calcium responsiveness and drug sensitivity of the anchored phosphatase.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/química , Proteínas de Anclaje a la Quinasa A/metabolismo , Calcineurina/química , Calcineurina/metabolismo , Calcio/metabolismo , Calmodulina/metabolismo , Humanos , Microscopía Electrónica , Unión Proteica , Conformación Proteica , Mapas de Interacción de Proteínas
15.
J Biol Chem ; 292(50): 20394-20409, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29054927

RESUMEN

Microtubules in animal cells assemble (nucleate) from both the centrosome and the cis-Golgi cisternae. A-kinase anchor protein 350 kDa (AKAP350A, also called AKAP450/CG-NAP/AKAP9) is a large scaffolding protein located at both the centrosome and Golgi apparatus. Previous findings have suggested that AKAP350 is important for microtubule dynamics at both locations, but how this scaffolding protein assembles microtubule nucleation machinery is unclear. Here, we found that overexpression of the C-terminal third of AKAP350A, enhanced GFP-AKAP350A(2691-3907), induces the formation of multiple microtubule-nucleation centers (MTNCs). Nevertheless, these induced MTNCs lacked "true" centriole proteins, such as Cep135. Mapping analysis with AKAP350A truncations demonstrated that AKAP350A contains discrete regions responsible for promoting or inhibiting the formation of multiple MTNCs. Moreover, GFP-AKAP350A(2691-3907) recruited several pericentriolar proteins to MTNCs, including γ-tubulin, pericentrin, Cep68, Cep170, and Cdk5RAP2. Proteomic analysis indicated that Cdk5RAP2 and Cep170 both interact with the microtubule nucleation-promoting region of AKAP350A, whereas Cep68 interacts with the distal C-terminal AKAP350A region. Yeast two-hybrid assays established a direct interaction of Cep170 with AKAP350A. Super-resolution and deconvolution microscopy analyses were performed to define the association of AKAP350A with centrosomes, and these studies disclosed that AKAP350A spans the bridge between centrioles, co-localizing with rootletin and Cep68 in the linker region. siRNA-mediated depletion of AKAP350A caused displacement of both Cep68 and Cep170 from the centrosome. These results suggest that AKAP350A acts as a scaffold for factors involved in microtubule nucleation at the centrosome and coordinates the assembly of protein complexes associating with the intercentriolar bridge.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Centrosoma/metabolismo , Proteínas del Citoesqueleto/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Centro Organizador de los Microtúbulos/metabolismo , Modelos Moleculares , Proteínas del Tejido Nervioso/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Anclaje a la Quinasa A/antagonistas & inhibidores , Proteínas de Anclaje a la Quinasa A/química , Proteínas de Anclaje a la Quinasa A/genética , Biomarcadores/metabolismo , Proteínas de Ciclo Celular , Línea Celular , Centrosoma/ultraestructura , Proteínas del Citoesqueleto/antagonistas & inhibidores , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Humanos , Imagenología Tridimensional , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Electrónica de Transmisión , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Centro Organizador de los Microtúbulos/ultraestructura , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Fosfoproteínas/química , Fosfoproteínas/genética , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Multimerización de Proteína , Proteómica/métodos , Interferencia de ARN , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Técnicas del Sistema de Dos Híbridos
16.
Sci Rep ; 7(1): 1842, 2017 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-28500286

RESUMEN

Mechanical pain serves as a base clinical symptom for many of the world's most debilitating syndromes. Ion channels expressed by peripheral sensory neurons largely contribute to mechanical hypersensitivity. Transient Receptor Potential A 1 (TRPA1) is a ligand-gated ion channel that contributes to inflammatory mechanical hypersensitivity, yet little is known as to the post-translational mechanism behind its somatosensitization. Here, we utilize biochemical, electrophysiological, and behavioral measures to demonstrate that metabotropic glutamate receptor-induced sensitization of TRPA1 nociceptors stimulates targeted modification of the receptor. Type 1 mGluR5 activation increases TRPA1 receptor agonist sensitivity in an AKA-dependent manner. As a scaffolding protein for Protein Kinases A and C (PKA and PKC, respectively), AKAP facilitates phosphorylation and sensitization of TRPA1 in ex vivo sensory neuronal preparations. Furthermore, hyperalgesic priming of mechanical hypersensitivity requires both TRPA1 and AKAP. Collectively, these results identify a novel AKAP-mediated biochemical mechanism that increases TRPA1 sensitivity in peripheral sensory neurons, and likely contributes to persistent mechanical hypersensitivity.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Canal Catiónico TRPA1/metabolismo , Proteínas de Anclaje a la Quinasa A/química , Proteínas de Anclaje a la Quinasa A/genética , Animales , Células CHO , Calcio/metabolismo , Cromatografía Liquida , Cricetulus , Masculino , Ratones , Ratones Noqueados , Imagen Molecular , Fosforilación , Ratas , Receptores de Glutamato Metabotrópico/química , Canal Catiónico TRPA1/química , Canal Catiónico TRPA1/genética , Espectrometría de Masas en Tándem
17.
Comput Biol Chem ; 67: 84-91, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28063348

RESUMEN

The rational design of small molecules that mimic key residues at the interface of interacting proteins can be a successful approach to target certain biological signaling cascades causing pathophysiological outcome. The A-Kinase Anchoring Protein, i.e. AKAP-Lbc, catalyses nucleotide exchange on RhoA and is involved in cardiac repolarization. The oncogenic AKAP-Lbc induces the RhoA GTPase hyperactivity and aberrantly amplifies the signaling pathway leading to hypertrophic cardiomyocytes. We took advantage of the AKAP-Lbc-RhoA complex crystal structure to design in silico small molecules predicted to inhibit the associated pathological signaling cascade. We adopted the strategies of pharmacophore building, virtual screening and molecular docking to identify the small molecules capable to target AKAP-Lbc and RhoA interactions. The pharmacophore model based virtual screening unveils two lead compounds from the TIMBAL database of small molecules modulating the targeted protein-protein interactions. The molecular docking analysis revealed the lead compounds' potentialities to establish the essential chemical interactions with the key interactive residues of the complex. These features provided a road map for designing additional potent chemical derivatives and fragments of the original lead compounds to perturb the AKAP-Lbc and RhoA interactions. Experimental validations may elucidate the therapeutic potential of these lead chemical scaffolds to deal with aberrant AKAP-Lbc signaling based cardiac hypertrophy.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Inhibidores Enzimáticos/química , Antígenos de Histocompatibilidad Menor/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Proteínas de Anclaje a la Quinasa A/antagonistas & inhibidores , Proteínas de Anclaje a la Quinasa A/química , Diseño de Fármacos , Humanos , Antígenos de Histocompatibilidad Menor/química , Simulación del Acoplamiento Molecular , Complejos Multiproteicos/antagonistas & inhibidores , Complejos Multiproteicos/química , Unión Proteica/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/química , Proteína de Unión al GTP rhoA/antagonistas & inhibidores , Proteína de Unión al GTP rhoA/química
18.
Acta Crystallogr F Struct Biol Commun ; 72(Pt 8): 591-7, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27487922

RESUMEN

A-kinase anchoring proteins (AKAPs) are a family of proteins that provide spatiotemporal resolution of protein kinase A (PKA) phosphorylation. In the myocardium, PKA and AKAP18γ/δ are found in complex with sarcoendoplasmic reticulum Ca(2+)-ATPase 2 (SERCA2) and phospholamban (PLB). This macromolecular complex provides a means by which anchored PKA can dynamically regulate cytoplasmic Ca(2+) release and re-uptake. For this reason, AKAP18γ/δ presents an interesting drug target with therapeutic potential in cardiovascular disease. The crystal structure of the central domain of human AKAP18γ has been determined at the atomic resolution of 1.25 Å. This first structure of human AKAP18γ is trapped in a novel conformation by a malonate molecule bridging the important R-loop with the 2H phosphoesterase motif. Although the physiological substrate of AKAP18γ is currently unknown, a potential proton wire deep in the central binding crevice has been indentified, leading to bulk solvent below the R-loop. Malonate complexed with AKAP18γ at atomic resolution provides an excellent starting point for structure-guided drug design.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/química , Malonatos/química , Proteínas de la Membrana/química , Plásmidos/química , Proteínas Recombinantes de Fusión/química , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Endopeptidasas/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Humanos , Malonatos/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Plásmidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Homología Estructural de Proteína
19.
Biochim Biophys Acta ; 1862(9): 1732-41, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27302466

RESUMEN

Spinocerebellar ataxia 8 (SCA8) pathogenesis is a resultant of gain-of-function machinery that primarily results at the RNA level. It has been reported that expanded non-coding CTG trinucleotide repeat in the ATXN8OS transcripts leads to SCA8 coupled neurodegeneration. Targeted depletion of pathogenic SCA8 transcripts is a viable therapeutic approach. In this report we have focused on the suppression of toxic RNA gain-of-function associated with SCA8. We report suppression of SCA8 associated neurodegeneration by KH RNA binding domain of Spoonbill. KH domain suppresses pathogenic SCA8 associated phenotype in adult flies. Ectopic expression of KH domain leads to massive reduction in the number and size of SCA8 RNA foci. We show that Spoonbill interacts with toxic SCA8 transcripts via its KH domain and promotes its depletion. Till date, no attempts have been made for therapeutic intervention of SCA8 pathogenesis. Further characterization of Spoonbill KH domain may aid us in designing peptide based therapeutics for SCA8 associated neurodegeneration.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/química , Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Degeneraciones Espinocerebelosas/genética , Animales , Animales Modificados Genéticamente , Genes de Insecto , Humanos , Actividad Motora , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/prevención & control , Fenotipo , Dominios Proteicos , ARN no Traducido/genética , ARN no Traducido/metabolismo , Expansión de Repetición de Trinucleótido , Alas de Animales/anomalías
20.
PLoS Pathog ; 12(5): e1005621, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27137912

RESUMEN

The oncoproteins of the small DNA tumor viruses interact with a plethora of cellular regulators to commandeer control of the infected cell. During infection, adenovirus E1A deregulates cAMP signalling and repurposes it for activation of viral gene expression. We show that E1A structurally and functionally mimics a cellular A-kinase anchoring protein (AKAP). E1A interacts with and relocalizes protein kinase A (PKA) to the nucleus, likely to virus replication centres, via an interaction with the regulatory subunits of PKA. Binding to PKA requires the N-terminus of E1A, which bears striking similarity to the amphipathic α-helical domain present in cellular AKAPs. E1A also targets the same docking-dimerization domain of PKA normally bound by cellular AKAPs. In addition, the AKAP like motif within E1A could restore PKA interaction to a cellular AKAP in which its normal interaction motif was deleted. During infection, E1A successfully competes with endogenous cellular AKAPs for PKA interaction. E1A's role as a viral AKAP contributes to viral transcription, protein expression and progeny production. These data establish HAdV E1A as the first known viral AKAP. This represents a unique example of viral subversion of a crucial cellular regulatory pathway via structural mimicry of the PKA interaction domain of cellular AKAPs.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas E1A de Adenovirus/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Imitación Molecular , Proteínas de Anclaje a la Quinasa A/química , Adenoviridae/química , Adenoviridae/metabolismo , Proteínas E1A de Adenovirus/química , Secuencia de Aminoácidos , Línea Celular , Inmunoprecipitación de Cromatina , Proteínas Quinasas Dependientes de AMP Cíclico/química , Técnica del Anticuerpo Fluorescente , Técnicas de Silenciamiento del Gen , Humanos , Procesamiento de Imagen Asistido por Computador , Inmunoprecipitación , Simulación del Acoplamiento Molecular , Unión Proteica , Estructura Secundaria de Proteína , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA