Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Planta ; 256(3): 55, 2022 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-35932433

RESUMEN

MAIN CONCLUSION: Guard cell- or mesophyll cell-localized phytochromes do not have a predominant direct light sensory role in red- or blue-light-mediated stomatal opening or far-red-light-mediated stomatal closure of Arabidopsis. The role of phytochromes in blue- and red-light-mediated stomatal opening, and far-red-light- mediated decrease in opening, is still under debate. It is not clear whether reduced stomatal opening in a phytochrome B (phyB) mutant line, is due to phytochrome acting as a direct photosensor or an indirect growth effect. The exact tissue localization of the phytochrome photoreceptor important for stomatal opening is also not known. We studied differences in stomatal opening in an Arabidopsis phyB mutant, and lines showing mesophyll cell-specific or guard cell-specific inactivation of phytochromes. Stomatal conductance (gs) of intact leaves was measured under red, blue, and blue + far-red light. Lines exhibiting guard cell-specific inactivation of phytochrome did not show a change in gs under blue or red light compared to Col-0. phyB consistently exhibited a reduction in gs under both blue and red light. Addition of far-red light did not have a significant impact on the blue- or red-light-mediated stomatal response. Treatment of leaves with DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea), a photosynthetic electron transport (PET) inhibitor, eliminated the response to red light in all lines, indicating that stomatal opening under red light is controlled by PET, and not directly by phytochrome. Similar to previous studies, leaves of the phyB mutant line had fewer stomata. Overall, phytochrome does not appear have a predominant direct sensory role in stomatal opening under red or blue light. However, phytochromes likely have an indirect effect on the degree of stomatal opening under light through effects on leaf growth and stomatal development.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Células del Mesófilo/química , Fitocromo/fisiología , Arabidopsis/citología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/efectos de la radiación , Diurona/farmacología , Transporte de Electrón/fisiología , Herbicidas/farmacología , Luz , Fotosíntesis/fisiología , Fitocromo/genética , Fitocromo B/genética , Fitocromo B/fisiología , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Estomas de Plantas/fisiología , Estomas de Plantas/efectos de la radiación
2.
PLoS One ; 16(12): e0261281, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34898651

RESUMEN

Smart greenhouse farming has emerged as one of the solutions to global food security, where farming productivity can be managed and improved in an automated manner. While it is known that plant development is highly dependent on the quantity and quality of light exposure, the specific impact of the different light properties is yet to be fully understood. In this study, using the model plant Arabidopsis, we systematically investigate how six different light properties (i.e., photoperiod, light offset, intensity, phase of dawn, duration of twilight and period) would affect plant development i.e., flowering time and hypocotyl (seedling stem) elongation using an established mathematical model of the plant circadian system relating light input to flowering time and hypocotyl elongation outputs for smart greenhouse application. We vary each of the light properties individually and then collectively to understand their effect on plant development. Our analyses show in comparison to the nominal value, the photoperiod of 18 hours, period of 24 hours, no light offset, phase of dawn of 0 hour, duration of twilight of 0.05 hour and a reduced light intensity of 1% are able to improve by at least 30% in days to flower (from 32.52 days to 20.61 days) and hypocotyl length (from 1.90 mm to 1.19mm) with the added benefit of reducing energy consumption by at least 15% (from 4.27 MWh/year to 3.62 MWh/year). These findings could provide beneficial solutions to the smart greenhouse farming industries in terms of achieving enhanced productivity while consuming less energy.


Asunto(s)
Agricultura/métodos , Iluminación/métodos , Desarrollo de la Planta/fisiología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/efectos de la radiación , Automatización/métodos , Relojes Circadianos/genética , Ritmo Circadiano/genética , Flores/metabolismo , Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Luz , Plantones/metabolismo
3.
PLoS Comput Biol ; 17(7): e1009168, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34310591

RESUMEN

In Arabidopsis thaliana, the Light-Oxygen-Voltage (LOV) domain containing protein ZEITLUPE (ZTL) integrates light quality, intensity, and duration into regulation of the circadian clock. Recent structural and biochemical studies of ZTL indicate that the protein diverges from other members of the LOV superfamily in its allosteric mechanism, and that the divergent allosteric mechanism hinges upon conservation of two signaling residues G46 and V48 that alter dynamic motions of a Gln residue implicated in signal transduction in all LOV proteins. Here, we delineate the allosteric mechanism of ZTL via an integrated computational approach that employs atomistic simulations of wild type and allosteric variants of ZTL in the functional dark and light states, together with Markov state and supervised machine learning classification models. This approach has unveiled key factors of the ZTL allosteric mechanisms, and identified specific interactions and residues implicated in functional allosteric changes. The final results reveal atomic level insights into allosteric mechanisms of ZTL function that operate via a non-trivial combination of population-shift and dynamics-driven allosteric pathways.


Asunto(s)
Proteínas de Arabidopsis , Relojes Circadianos/fisiología , Péptidos y Proteínas de Señalización del Ritmo Circadiano , Regulación Alostérica , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/efectos de la radiación , Péptidos y Proteínas de Señalización del Ritmo Circadiano/química , Péptidos y Proteínas de Señalización del Ritmo Circadiano/metabolismo , Péptidos y Proteínas de Señalización del Ritmo Circadiano/efectos de la radiación , Biología Computacional , Aprendizaje Automático , Simulación de Dinámica Molecular
4.
Plant Physiol ; 186(2): 1220-1239, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-33693822

RESUMEN

Plants are plastic organisms that optimize growth in response to a changing environment. This adaptive capability is regulated by external cues, including light, which provides vital information about the habitat. Phytochrome photoreceptors detect far-red light, indicative of nearby vegetation, and elicit the adaptive shade-avoidance syndrome (SAS), which is critical for plant survival. Plants exhibiting SAS are typically more elongated, with distinctive, small, narrow leaf blades. By applying SAS-inducing end-of-day far-red (EoD FR) treatments at different times during Arabidopsis (Arabidopsis thaliana) leaf 3 development, we have shown that SAS restricts leaf blade size through two distinct cellular strategies. Early SAS induction limits cell division, while later exposure limits cell expansion. This flexible strategy enables phytochromes to maintain control of leaf size through the proliferative and expansion phases of leaf growth. mRNAseq time course data, accessible through a community resource, coupled to a bioinformatics pipeline, identified pathways that underlie these dramatic changes in leaf growth. Phytochrome regulates a suite of major development pathways that control cell division, expansion, and cell fate. Further, phytochromes control cell proliferation through synchronous regulation of the cell cycle, DNA replication, DNA repair, and cytokinesis, and play an important role in sustaining ribosome biogenesis and translation throughout leaf development.


Asunto(s)
Proteínas de Arabidopsis/efectos de la radiación , Arabidopsis/fisiología , Fitocromo/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , División Celular , Luz , Fotorreceptores de Plantas/metabolismo , Fotorreceptores de Plantas/efectos de la radiación , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación
5.
Phys Chem Chem Phys ; 23(2): 1666-1674, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33415326

RESUMEN

Infrared (IR) spectroscopy is an undoubtedly valuable tool for analyzing vibrations, conformational changes, and chemical reactions of biological macromolecules. Currently, there is a lack of theoretical methods to create a model successfully and efficiently simulate and interpret the origin of the spectral signatures, which are often complex to analyze. Here, we develop a new method for IR vibrational spectroscopy based on analytic second derivatives of electrostatic embedding QM/MM energy, the computation of electric dipole moments with respect to nuclear perturbations and the localization of normal modes. In addition to the IR spectrum, the method can provide the origin of each peak from clearly identified molecular motions of constituent fragments. As a proof of concept, we analyze the IR spectra of flavin adenine dinucleotides in water and in Arabidopsis thaliana cryptochrome proteins for four redox forms, in addition to the difference IR spectra before and after illumination with blue light. We show that the main peaks in the difference spectrum are due to N-H hydrogen out-of-plane motions and hydrogen bendings.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/química , Criptocromos/química , Proteínas de Arabidopsis/efectos de la radiación , Criptocromos/efectos de la radiación , Flavina-Adenina Dinucleótido/química , Luz , Oxidación-Reducción , Prueba de Estudio Conceptual , Teoría Cuántica , Espectrofotometría Infrarroja
6.
Commun Biol ; 4(1): 28, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33398020

RESUMEN

Cryptochromes (CRYs) are evolutionarily conserved photoreceptors that mediate various light-induced responses in bacteria, plants, and animals. Plant cryptochromes govern a variety of critical growth and developmental processes including seed germination, flowering time and entrainment of the circadian clock. CRY's photocycle involves reduction of their flavin adenine dinucleotide (FAD)-bound chromophore, which is completely oxidized in the dark and semi to fully reduced in the light signaling-active state. Despite the progress in characterizing cryptochromes, important aspects of their photochemistry, regulation, and light-induced structural changes remain to be addressed. In this study, we determine the crystal structure of the photosensory domain of Arabidopsis CRY2 in a tetrameric active state. Systematic structure-based analyses of photo-activated and inactive plant CRYs elucidate distinct structural elements and critical residues that dynamically partake in photo-induced oligomerization. Our study offers an updated model of CRYs photoactivation mechanism as well as the mode of its regulation by interacting proteins.


Asunto(s)
Proteínas de Arabidopsis/efectos de la radiación , Criptocromos/efectos de la radiación , Secuencia de Aminoácidos , Arabidopsis , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Criptocromos/química , Criptocromos/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Estructura Cuaternaria de Proteína
7.
J Integr Plant Biol ; 62(9): 1270-1292, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32237196

RESUMEN

Light plays an important role in plants' growth and development throughout their life cycle. Plants alter their morphological features in response to light cues of varying intensity and quality. Dedicated photoreceptors help plants to perceive light signals of different wavelengths. Activated photoreceptors stimulate the downstream signaling cascades that lead to extensive gene expression changes responsible for physiological and developmental responses. Proteins such as ELONGATED HYPOCOTYL5 (HY5) and CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) act as important factors which modulate light-regulated gene expression, especially during seedling development. These factors function as central regulatory intermediates not only in red, far-red, and blue light pathways but also in the UV-B signaling pathway. UV-B radiation makes up only a minor fraction of sunlight, yet it imparts many positive and negative effects on plant growth. Studies on UV-B perception, signaling, and response in plants has considerably surged in recent times. Plants have developed different strategies to use UV-B as a developmental cue as well as to withstand high doses of UV-B radiation. Plants' responses to UV-B are an integration of its cross-talks with both environmental factors and phytohormones. This review outlines the current developments in light signaling with a major focus on UV-B-mediated plant growth regulation.


Asunto(s)
Proteínas de Arabidopsis/efectos de la radiación , Arabidopsis/efectos de la radiación , Luz , Ubiquitina-Proteína Ligasas/efectos de la radiación , Rayos Ultravioleta , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
8.
Nat Commun ; 11(1): 1542, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32210238

RESUMEN

Natural photosynthesis can be divided between the chlorophyll-containing plants, algae and cyanobacteria that make up the oxygenic phototrophs and a diversity of bacteriochlorophyll-containing bacteria that make up the anoxygenic phototrophs. Photosynthetic light harvesting and reaction centre proteins from both kingdoms have been exploited for solar energy conversion, solar fuel synthesis and sensing technologies, but the energy harvesting abilities of these devices are limited by each protein's individual palette of pigments. In this work we demonstrate a range of genetically-encoded, self-assembling photosystems in which recombinant plant light harvesting complexes are covalently locked with reaction centres from a purple photosynthetic bacterium, producing macromolecular chimeras that display mechanisms of polychromatic solar energy harvesting and conversion. Our findings illustrate the power of a synthetic biology approach in which bottom-up construction of photosystems using naturally diverse but mechanistically complementary components can be achieved in a predictable fashion through the encoding of adaptable, plug-and-play covalent interfaces.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas Bacterianas/química , Bacterioclorofilas/química , Complejos de Proteína Captadores de Luz/química , Energía Solar , Biología Sintética/métodos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/efectos de la radiación , Proteínas Bacterianas/genética , Proteínas Bacterianas/efectos de la radiación , Bacterioclorofilas/genética , Bacterioclorofilas/efectos de la radiación , Carotenoides/química , Carotenoides/efectos de la radiación , Complejos de Proteína Captadores de Luz/genética , Complejos de Proteína Captadores de Luz/efectos de la radiación , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/efectos de la radiación , Rhodobacter sphaeroides/química , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/efectos de la radiación , Luz Solar
9.
Cell ; 180(3): 440-453.e18, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-32032516

RESUMEN

Recognition of microbe-associated molecular patterns (MAMPs) is crucial for the plant's immune response. How this sophisticated perception system can be usefully deployed in roots, continuously exposed to microbes, remains a mystery. By analyzing MAMP receptor expression and response at cellular resolution in Arabidopsis, we observed that differentiated outer cell layers show low expression of pattern-recognition receptors (PRRs) and lack MAMP responsiveness. Yet, these cells can be gated to become responsive by neighbor cell damage. Laser ablation of small cell clusters strongly upregulates PRR expression in their vicinity, and elevated receptor expression is sufficient to induce responsiveness in non-responsive cells. Finally, localized damage also leads to immune responses to otherwise non-immunogenic, beneficial bacteria. Damage-gating is overridden by receptor overexpression, which antagonizes colonization. Our findings that cellular damage can "switch on" local immune responses helps to conceptualize how MAMP perception can be used despite the presence of microbial patterns in the soil.


Asunto(s)
Arabidopsis/inmunología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Raíces de Plantas/inmunología , Receptores de Reconocimiento de Patrones/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/microbiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/efectos de la radiación , Ascorbato Peroxidasas/metabolismo , Ascorbato Peroxidasas/efectos de la radiación , Flagelina/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Terapia por Láser/métodos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/efectos de la radiación , Microscopía Confocal , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Raíces de Plantas/efectos de la radiación , Proteínas Quinasas/metabolismo , Proteínas Quinasas/efectos de la radiación , Receptores de Reconocimiento de Patrones/efectos de la radiación , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación , Imagen de Lapso de Tiempo
10.
Sci China Life Sci ; 63(7): 943-952, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31974860

RESUMEN

Light acts as the pivotal external environment cue to modulate plant growth and development. Seeds germinate in the soil without light to undergo skotomorphogenesis with rapidly elongating hypocotyls that facilitate emergence from the soil, while seedlings upon light exposure undergo photomorphogenesis with significantly inhibited hypocotyl elongation that benefits plants to stand up firmly and cope with the changing environment. In this study, we demonstrate that light promotes jasmonate (JA) biosynthesis to inhibit hypocotyl elongation and orchestrate seedling photomorphogenesis in Arabidopsis. We showed that JAinhibition on hypocotyl elongation is dependent on JA receptor COI1 and signaling components such as repressor proteins JAZs and transcription activators MYC2/MYC3/MYC4. Furthermore, we found that MYC2/MYC3/MYC4 activate the expression of photomorphogenesis regulator HY5 to repress cell elongation-related genes (such as SAUR62 and EXP2) essential for seedling photomorphogenesis. Our findings provide a novel insight into molecular mechanisms underlying how plants integrate light signal with hormone pathway to establish seedling photomorphogenesis.


Asunto(s)
Arabidopsis/genética , Ciclopentanos/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Oxilipinas/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/efectos de la radiación , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/efectos de la radiación , Hipocótilo/metabolismo , Luz , Morfogénesis/genética , Morfogénesis/efectos de la radiación , Plantas Modificadas Genéticamente , Proteínas Represoras/genética , Proteínas Represoras/efectos de la radiación , Plantones/genética , Plantones/efectos de la radiación , Transactivadores/genética , Transactivadores/efectos de la radiación , Factores de Transcripción/genética , Factores de Transcripción/efectos de la radiación
11.
Planta ; 251(1): 33, 2019 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-31832774

RESUMEN

MAIN CONCLUSION: The cryptochrome photoreceptor mutant cry2I404F exhibits hyperactivity in the dark, hypersensitivity in different light conditions, and in contrast to the wild-type protein, its flavin chromophore is reducible even in the absence of light. Plant cryptochromes (cry) are blue-light photoreceptors involved in multiple signaling pathways and various photomorphogenic responses. One biologically hyperactive mutant of a plant cryptochrome that was previously characterized is Arabidopsis cry1L407F (Exner et al. in Plant Physiol 154:1633-1645, 2010). Protein sequence alignments of different cryptochromes revealed that L407 in cry1 corresponds to I404 in cry2. Point mutation of Ile to Phe in cry2 in this position created a novel mutant. The present study provided a baseline data on the elucidation of the properties of cry2I404F. This mutant was still able to bind ATP-triggering conformational changes, as confirmed by partial tryptic digestion and thermo-FAD assays. Surprisingly, the FAD cofactor of cry2I404F was reduced by the addition of reductant even in the absence of light. In vivo, cry2I404F exhibited a cop phenotype in the dark and hypersensitivity to various light conditions compared to cry2 wild type. Overall, these data suggest that the hypersensitivity to red and blue light and hyperactivity of this novel mutant in the dark can be mostly accounted to structural alterations brought forth by the Ile to Phe mutation at position 404 that allows reduction of the flavin chromophore even in the absence of light.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Criptocromos/genética , Criptocromos/metabolismo , Flavinas/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/efectos de la radiación , Criptocromos/química , Criptocromos/efectos de la radiación , Luz , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Fenotipo , Conformación Proteica , Transducción de Señal , Factores de Transcripción/genética
12.
Plant Cell ; 31(12): 2996-3014, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31604812

RESUMEN

The conversion of etioplasts into chloroplasts in germinating cotyledons is a crucial transition for higher plants, enabling photoautotrophic growth upon illumination. Tight coordination of chlorophyll biosynthesis and photosynthetic complex assembly is critical for this process. ORANGE (OR), a DnaJ-like zinc finger domain-containing protein, was reported to trigger the biogenesis of carotenoid-accumulating plastids by promoting carotenoid biosynthesis and sequestration. Both nuclear and plastidic localizations of OR have been observed. Here, we show that Arabidopsis (Arabidopsis thaliana) OR physically interacts with the transcription factor TCP14 in the nucleus and represses its transactivation activity. Through this interaction, the nucleus-localized OR negatively regulates expression of EARLY LIGHT-INDUCIBLE PROTEINS (ELIPs), reduces chlorophyll biosynthesis, and delays development of thylakoid membranes in the plastids of germinating cotyledons. Nuclear abundance of OR decreased upon illumination. Together with an accumulation of TCP14 in the nucleus, this derepresses chloroplast biogenesis during de-etiolation. TCP14 is epistatic to OR and expression of ELIPs is directly regulated by the binding of TCP14 to Up1 elements in the ELIP promoter regions. Our results demonstrate that the interaction between OR and TCP14 in the nucleus leads to repression of chloroplast biogenesis in etiolated seedlings and provide new insights into the regulation of early chloroplast development.plantcell;31/12/2996/FX1F1fx1.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Clorofila/biosíntesis , Cloroplastos/metabolismo , Cotiledón/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/efectos de la radiación , Núcleo Celular/metabolismo , Núcleo Celular/efectos de la radiación , Cotiledón/genética , Etiolado , Regulación de la Expresión Génica de las Plantas/genética , Germinación , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/efectos de la radiación , Iluminación , Plastidios/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Plantones/metabolismo , Tilacoides/metabolismo , Factores de Transcripción/genética , Regulación hacia Arriba
13.
Proc Natl Acad Sci U S A ; 116(13): 6451-6456, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30850529

RESUMEN

Germinated plant seeds buried in soil undergo skotomorphogenic development before emergence to reach the light environment. Young seedlings transitioning from dark to light undergo photomorphogenic development. During photomorphogenesis, light alters the transcriptome and enhances the translation of thousands of mRNAs during the dark-to-light transition in Arabidopsis young seedlings. About 1,500 of these mRNAs have comparable abundance before and after light treatment, which implies widespread translational repression in dark-grown seedlings. Processing bodies (p-bodies), the cytoplasmic granules found in diverse organisms, can balance the storage, degradation, and translation of mRNAs. However, the function of p-bodies in translation control remains largely unknown in plants. Here we found that an Arabidopsis mutant defective in p-body formation (Decapping 5; dcp5-1) showed reduced fitness under both dark and light conditions. Comparative transcriptome and translatome analyses of wild-type and dcp5-1 seedlings revealed that p-bodies can attenuate the premature translation of specific mRNAs in the dark, including those encoding enzymes for protochlorophyllide synthesis and PIN-LIKES3 for auxin-dependent apical hook opening. When the seedlings protrude from soil, light perception by photoreceptors triggers a reduced accumulation of p-bodies to release the translationally stalled mRNAs for active translation of mRNAs encoding proteins needed for photomorphogenesis. Our data support a key role for p-bodies in translation repression, an essential mechanism for proper skotomorphogenesis and timely photomorphogenesis in seedlings.


Asunto(s)
Arabidopsis/fisiología , Luz , Morfogénesis/fisiología , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/efectos de la radiación , Proteínas Co-Represoras/efectos de la radiación , Oscuridad , Endorribonucleasas/efectos de la radiación , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Morfogénesis/genética , Morfogénesis/efectos de la radiación , Protoclorofilida/biosíntesis , ARN Mensajero/metabolismo , Plantones/citología , Plantones/efectos de la radiación , Transcriptoma
14.
Biochem Biophys Res Commun ; 508(1): 191-197, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30471853

RESUMEN

CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1), a multifunctional E3 ligase protein with many target proteins, is involved in diverse developmental processes throughout the plant's lifecycle, including seed germination, the regulation of circadian rhythms, photomorphogenesis, and the control of flowering time. To function, COP1 must form multimeric complexes with SUPPRESSOR OF PHYA1 (SPA1), i.e., [(COP1)2(SPA1)2] tetramers. We recently reported that the blue-light receptor FKF1 (FLAVIN-BINDING, KELCH REPEAT, F-BOX1) represses COP1 activity by inhibiting its homodimerization, but it is not yet clear whether FKF1 affects the formation of COP1-containing multimeric complexes. To explore this issue, we performed size exclusion chromatography (SEC) of Arabidopsis thaliana proteins and found that the levels and composition of COP1-containing multimeric complexes varied throughout a 24-h period. The levels of 440-669 kDa complexes were dramatically reduced in the late afternoon compared to the morning and at night in wild-type plants. During the daytime, the levels of these complexes were reduced in FKF1-overexpressing plants but not in fkf1-t, a loss-of-function mutant of FKF1, suggesting that FKF1 is closely associated with the destabilization of COP1 multimeric protein complexes in a light-dependent manner. We also analyzed the SEC patterns of COP1 multimeric complexes in transgenic plants overexpressing mutant COP1 variants, including COP1L105A (which forms homodimers) and COP1L170A (which cannot form homodimers), and found that COP1 multimeric complexes were scarce in plants overexpressing COP1L170A. These results indicate that COP1 homodimers serve as basic building blocks that assemble into COP1 multimeric complexes with diverse target proteins. We propose that light-activated FKF1 inhibits COP1 homodimerization, mainly by destabilizing 440-669 kDa COP1 complexes, resulting in the repression of CONSTANS-degrading COP1 activity in the late afternoon in long days, but not in short days, thereby regulating photoperiodic flowering in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/efectos de la radiación , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Luz , Ubiquitina-Proteína Ligasas/biosíntesis , Ubiquitina-Proteína Ligasas/efectos de la radiación , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cromatografía en Gel , Mutación , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
15.
J Plant Physiol ; 232: 23-26, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30530200

RESUMEN

Plant endogenous clock consists of self-sustained interlocked transcriptional/translational feedback loops whose oscillation regulates many circadian processes, including gene expression. Its free running rhythm can be entrained by external cues, which can influence all clock parameters. Among external cues, the geomagnetic field (GMF) has been demonstrated to influence plant growth and development. We evaluated the quantitative expression (qRT-PCR) of three clock genes (LHY, GI and PRR7) in time-course experiments under either continuous darkness (CD) or long days (LD) conditions in Arabidopsis thaliana seedlings exposed to GMF (∼40 µT) and Near Null Magnetic Field (NNMF; ∼40 nT) conditions. Under both LD and CD conditions, reduction of GMF to NNMF prompted a significant increase of the gene expression of LHY and PRR7, whereas an opposite trend was found for GI gene expression. Exposure of Arabidopsis to NNMF altered clock gene amplitude, regardless the presence of light, by reinforcing the morning loop. Our data are consistent with the existence of a plant magnetoreceptor that affects the Arabidopsis endogenous clock.


Asunto(s)
Arabidopsis/efectos de la radiación , Relojes Biológicos/efectos de la radiación , Genes de Plantas/efectos de la radiación , Campos Magnéticos , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/fisiología , Proteínas de Arabidopsis/efectos de la radiación , Relojes Biológicos/genética , Proteínas de Unión al ADN/fisiología , Proteínas de Unión al ADN/efectos de la radiación , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Genes de Plantas/fisiología , Luz , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Represoras/fisiología , Proteínas Represoras/efectos de la radiación , Factores de Transcripción/fisiología , Factores de Transcripción/efectos de la radiación
16.
Plant Physiol Biochem ; 130: 267-276, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30032070

RESUMEN

Under light conditions, highly reactive oxygen species (ROS) can be generated in the antenna systems and the reaction center of photosystems (PS). The protective roles of Lhcb4 (CP29), Lhcb5 (CP26) and Lhcb6 (CP24), three minor chlorophyll binding antenna proteins during photoinhibition have been well studied. However, their regulatory mechanisms against oxidative damages under natural light conditions remain unknown. Here we investigated their specific roles in oxidative stress responses and photosynthetic adaptation by using the Arabidopsis thaliana knockout lines grown in the field condition. All three mutant lines exhibited decreased energy-transfer efficiency from the LHCII (light-harvesting complex II) to the PSII reaction center. Oxygen evolution capacity decreased slightly in the plants lacking Lhcb4 (koLHCB4) and Lhcb6 (koLHCB6). Photosynthetic rates and fitness for the plants lacking Lhcb5 (koLHCB5) or koLHCB6 grown in the field were affected, but not in the plants lacking Lhcb4. Antioxidant analysis indicated the lowest antioxidant enzyme activities and the lowest levels of non-enzymatic antioxidants in koLHCB6 plants. In addition, koLHCB6 plants accumulated much higher levels of superoxide and hydrogen, and suffered more severe oxidative-damages in the field. Our results clearly demonstrate that Lhcb6 may be involved in alleviating oxidative stress and photoprotection under natural conditions.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Proteínas de Unión a Clorofila/fisiología , Estrés Oxidativo , Complejo de Proteína del Fotosistema II/fisiología , Antioxidantes/metabolismo , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/efectos de la radiación , Clorofila/metabolismo , Proteínas de Unión a Clorofila/metabolismo , Proteínas de Unión a Clorofila/efectos de la radiación , Técnicas de Inactivación de Genes , Luz , Microscopía Electrónica de Transmisión , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/efectos de la radiación
17.
J Phys Chem B ; 121(11): 2407-2419, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28240906

RESUMEN

The yellow fluorescent protein (YFP) is frequently used in a protein complementation assay called bimolecular fluorescence complementation (BiFC), and is employed to visualize protein-protein interactions. In this analysis, two different, nonfluorescent fragments of YFP are genetically attached to proteins of interest. Upon interaction of these proteins, the YFP fragments are brought into proximity close enough to reconstitute their original structure, enabling fluorescence. BiFC allows for a straightforward readout of protein-protein interactions and furthermore facilitates their functional investigation by in vivo imaging. Furthermore, it has been observed that the available color range in BiFC can be extended upon complementing fragments of different proteins that are, like YFP, derived from the Aequorea victoria green fluorescent protein, thereby allowing for a multiplexed investigation of protein-protein interactions. Some spectral characteristics of "multicolor" BiFC (mcBiFC) complexes have been reported before; however, no in-depth analysis has been performed yet. Therefore, little is known about the photophysical characteristics of these mcBiFC complexes because a proper characterization essentially relies on in vitro data. This is particularly difficult for fragments of autofluorescent proteins (AFPs) because they show a very strong tendency to form supramolecular aggregates which precipitate ex vivo. In this study, this intrinsic difficulty is overcome by directly fusing the coding DNA of different AFP fragments. Translation of the genetic sequence in Escherichia coli leads to fully functional, highly soluble fluorescent proteins with distinct properties. On the basis of their construction, they are designated chimeric AFPs, or BiFC chimeras, here. Comparison of their spectral characteristics with experimental in vivo BiFC data confirmed the utility of the chimeric proteins as a BiFC model system. In this study, nine different chimeras were thoroughly analyzed at both the ensemble and the single-molecular level. The data indicates that mutations believed to be photophysically silent significantly alter the properties of AFPs.


Asunto(s)
Proteínas de Arabidopsis/efectos de la radiación , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/efectos de la radiación , Proteínas Luminiscentes/efectos de la radiación , Fragmentos de Péptidos/efectos de la radiación , Proteínas Recombinantes de Fusión/efectos de la radiación , Factores de Transcripción/efectos de la radiación , Arabidopsis , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Bacterias , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/efectos de la radiación , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/química , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Fluorescencia , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/efectos de la radiación , Concentración de Iones de Hidrógeno , Luz , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Mutación , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Mapeo de Interacción de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Factores de Transcripción/química , Factores de Transcripción/genética
18.
Science ; 354(6310): 343-347, 2016 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-27846570

RESUMEN

Cryptochromes are blue-light receptors that regulate development and the circadian clock in plants and animals. We found that Arabidopsis cryptochrome 2 (CRY2) undergoes blue light-dependent homodimerization to become physiologically active. We identified BIC1 (blue-light inhibitor of cryptochromes 1) as an inhibitor of plant cryptochromes that binds to CRY2 to suppress the blue light-dependent dimerization, photobody formation, phosphorylation, degradation, and physiological activities of CRY2. We hypothesize that regulated dimerization governs homeostasis of the active cryptochromes in plants and other evolutionary lineages.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/metabolismo , Criptocromos/química , Criptocromos/efectos de la radiación , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Homeostasis , Luz , Fosforilación , Procesos Fotoquímicos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/efectos de la radiación , Unión Proteica , Multimerización de Proteína/efectos de la radiación , Proteolisis/efectos de la radiación , Transcriptoma/efectos de la radiación
19.
Dev Cell ; 39(5): 597-610, 2016 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-27889482

RESUMEN

Plants germinating under subterranean darkness assume skotomorphogenesis, a developmental program strengthened by ethylene in response to mechanical pressure of soil. Upon reaching the surface, light triggers a dramatic developmental transition termed de-etiolation that requires immediate termination of ethylene responses. Here, we report that light activation of photoreceptor phyB results in rapid degradation of EIN3, the master transcription factor in the ethylene signaling pathway. As a result, light rapidly and efficiently represses ethylene actions. Specifically, phyB directly interacts with EIN3 in a light-dependent manner and also physically associates with F box protein EBFs. The light-activated association of phyB, EIN3, and EBF1/EBF2 proteins stimulates robust EIN3 degradation by SCFEBF1/EBF2 E3 ligases. We reveal that phyB manipulates substrate-E3 ligase interactions in a light-dependent manner, thus directly controlling the stability of EIN3. Our findings illustrate a mechanistic model of how plants transduce light information to immediately turn off ethylene signaling for de-etiolation initiation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Etilenos/metabolismo , Proteínas F-Box/metabolismo , Proteínas Nucleares/metabolismo , Fitocromo B/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/efectos de la radiación , Proteínas de Unión al ADN , Proteínas F-Box/genética , Luz , Modelos Biológicos , Mutación , Proteínas Nucleares/genética , Procesos Fototróficos , Fitocromo B/efectos de la radiación , Plantas Modificadas Genéticamente , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica/efectos de la radiación , Proteolisis/efectos de la radiación , Transducción de Señal , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/genética
20.
Sci Rep ; 6: 35777, 2016 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-27767077

RESUMEN

Alpha subunits of heterotrimeric G proteins (Gα) are involved in a variety of cellular functions. Here we report an optogenetic strategy to spatially and temporally manipulate Gα in living cells. More specifically, we applied the blue light-induced dimerization system, known as the Magnet system, and an alternative red light-induced dimerization system consisting of Arabidopsis thaliana phytochrome B (PhyB) and phytochrome-interacting factor 6 (PIF6) to optically control the activation of two different classes of Gα (Gαq and Gαs). By utilizing this strategy, we demonstrate successful regulation of Ca2+ and cAMP using light in mammalian cells. The present strategy is generally applicable to different kinds of Gα and could contribute to expanding possibilities of spatiotemporal regulation of Gα in mammalian cells.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP/efectos de la radiación , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/efectos de la radiación , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/efectos de la radiación , Células COS , Señalización del Calcio/efectos de la radiación , Chlorocebus aethiops , AMP Cíclico/metabolismo , Dimerización , Subunidades alfa de la Proteína de Unión al GTP/genética , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Células HEK293 , Células HeLa , Humanos , Luz , Optogenética , Fitocromo B/genética , Fitocromo B/metabolismo , Fitocromo B/efectos de la radiación , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...