Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.454
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39218132

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs), such as phenanthrene (PHE), are common pollutants found in coastal areas where shrimp farming is developed. Even though PAHs can have adverse effects on physiology, shrimp can detoxify and metabolize toxic compounds and neutralize the reactive oxygen species (ROS) produced during this process. This requires the activation of multiple antioxidant enzymes, including peroxiredoxin 6 (Prx6). Prx6 uses glutathione (GSH) to reduce phospholipid hydroperoxides, a function shared with GSH peroxidase 4 (GPx4). Prx6 has been scarcely studied in crustaceans exposed to pollutants. Herein, we report a novel Prx6 from the shrimp Penaeus vannamei that is abundantly expressed in gills and hepatopancreas. To elucidate the involvement of Prx6 in response to PAHs, we analyzed its expression in the hepatopancreas of shrimp sub-lethally exposed to PHE (3.3 µg/L) and acetone (control) for 24, 48, 72, and 96 h, along with GPx4 expression, GSH-dependent peroxidase activity, and lipid peroxidation (indicated by TBARS). We found that GPx4 expression is not affected by PHE, but Prx6 expression and peroxidase activity decreased during the trial. This might contribute to the rise of TBARS found at 48 h of exposure. However, maintaining GPx4 expression could aid to minimize lipid damage during longer periods of exposure to PHE.


Asunto(s)
Glutatión Peroxidasa , Peroxidación de Lípido , Penaeidae , Peroxiredoxina VI , Fenantrenos , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Animales , Fenantrenos/toxicidad , Peroxidación de Lípido/efectos de los fármacos , Penaeidae/metabolismo , Penaeidae/efectos de los fármacos , Penaeidae/genética , Penaeidae/enzimología , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Peroxiredoxina VI/metabolismo , Peroxiredoxina VI/genética , Glutatión Peroxidasa/metabolismo , Glutatión Peroxidasa/genética , Contaminantes Químicos del Agua/toxicidad , Hepatopáncreas/metabolismo , Hepatopáncreas/efectos de los fármacos , Branquias/metabolismo , Branquias/efectos de los fármacos , Proteínas de Artrópodos/metabolismo , Proteínas de Artrópodos/genética
2.
PLoS One ; 19(8): e0305127, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39088423

RESUMEN

Type II crustacean hyperglycemic hormone (CHH) neuropeptides play diverse roles in crustaceans. In the hermaphrodite shrimp Lysmata vittata, two transcripts of type II CHHs (molt-inhibiting hormone/gonad-inhibiting hormone, MIH/GIH1 and MIH/GIH2) were identified by transcriptome sequencing, and MIH/GIH1 was later named Lvit-GIH1 for its inhibitory effect on ovarian development. Based on the high similarity of MIH/GIH2 to Lvit-GIH1, we named tentatively MIH/GIH2 as Lvit-GIH2 and explored the role of Lvit-GIH2 in ovarian development. The open reading frame (ORF) of Lvit-GIH2 was 333 bp in length, encoding a precursor consisted of a 32-aa signal peptide and a 78-aa mature peptide, which shared high sequence similarity with the type II subfamily peptides in crustaceans. Notably, Lvit-GIH2 was widely expressed in multiple tissues. The qRT-PCR findings indicated a rising trend in the expression of Lvit-GIH2 from the male phase to the euhermaphrodite phase. Both RNA interference and addition of GIH2 recombinant proteins (rGIH2) experiments showed that Lvit-GIH2 suppressed Lvit-Vg expression in hepatopancreas and Lvit-VgR expression in ovary. To further investigate the role of Lvit-GIH2 in ovarian development, the RNA-sequence analysis was performed to examine the changes in ovary after addition of rGIH2. The results showed that the pathways (Cysteine and methionine metabolism, Apoptosis-multiple species, etc.) and the genes (17bHSD8, IGFR, CHH, etc.) related to ovarian development were negatively regulated by rGIH2. In brief, Lvit-GIH2 might inhibit the ovarian development in L. vittata.


Asunto(s)
Proteínas de Artrópodos , Neuropéptidos , Ovario , Animales , Ovario/metabolismo , Ovario/crecimiento & desarrollo , Femenino , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Hormonas de Invertebrados/metabolismo , Hormonas de Invertebrados/genética , Secuencia de Aminoácidos , Penaeidae/crecimiento & desarrollo , Penaeidae/genética , Penaeidae/metabolismo , Regulación del Desarrollo de la Expresión Génica , Masculino , Filogenia
3.
Front Immunol ; 15: 1411936, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39108270

RESUMEN

Iron-binding proteins, known as ferritins, play pivotal roles in immunological response, detoxification, and iron storage. Despite their significance to organisms, little is known about how they affect the immunological system of the red swamp crayfish (Procambarus clarkii). In our previous research, one ferritin subunit was completely discovered as an H-like subunit (PcFeH) from P. clarkii. The full-length cDNA of PcFerH is 1779 bp, including a 5'-UTR (untranslated region, UTR) of 89 bp, 3'-UTR (untranslated region, UTR) of 1180 bp and an ORF (open reading frame, ORF) of 510 bp encoding a polypeptide of 169 amino acids that contains a signal peptide and a Ferritin domain. The deduced PcFerH protein sequence has highly identity with other crayfish. PcFerH protein's estimated tertiary structure is quite comparable to animal structure. The PcFerH is close to Cherax quadricarinatus, according to phylogenetic analysis. All the organs examined showed widespread expression of PcFerH mRNA, with the ovary exhibiting the highest levels of expression. Additionally, in crayfish muscles, intestines, and gills, the mRNA transcript of PcFerH was noticeably up-regulated, after LPS and Poly I:C challenge. The expression of downstream genes in the immunological signaling system was suppressed when the PcFerH gene was knocked down. All of these findings suggested that PcFerH played a vital role in regulating the expression of downstream effectors in the immunological signaling pathway of crayfish.


Asunto(s)
Astacoidea , Inmunidad Innata , Filogenia , Animales , Astacoidea/inmunología , Astacoidea/genética , Secuencia de Aminoácidos , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Proteínas de Artrópodos/metabolismo
4.
Int J Biol Macromol ; 278(Pt 1): 134667, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39134189

RESUMEN

Horseshoe crabs are living fossils. In recent decades, the population of horseshoe crabs, especially the tri-spine horseshoe crab Tachypleus tridentatus, has decreased significantly and was listed as an 'endangered species' under the IUCN Red List in 2019. In order to improve the reproduction of T. tridentatus to facilitate stock enhancement, it is important to understand their ovarian development. In this study, a novel TtVtg2-like gene from T. tridentatus was cloned and functionally characterized. The total legth of TtVtg2-like was 5469 bp, encoding a protein consisting of 1822 amino acid with a pI value of 6.51 and a molecular weight of 208.68 KDa. The TtVtg2-like was highly expressed in the ovary and yellow connective tissues, mainly localized in cytoplasm and endoplasmic reticulum vesicles of oocytes and yellow connective tissues, respectively. RNA interference of TtVtg2-like caused the accumulation of ROS, DNA damage, and apoptosis of ovarian primary cells. The results of this study provide useful baseline information for future studies on ovarian development in horseshoe crabs.


Asunto(s)
Clonación Molecular , Cangrejos Herradura , Ovario , Animales , Ovario/metabolismo , Ovario/crecimiento & desarrollo , Femenino , Cangrejos Herradura/genética , Secuencia de Aminoácidos , Filogenia , Apoptosis/genética , Especies Reactivas de Oxígeno/metabolismo , Daño del ADN , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Proteínas de Artrópodos/química
5.
BMC Genomics ; 25(1): 811, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198731

RESUMEN

BACKGROUND: Dermatophagoides farinae proteins (DFPs) are abundantly expressed in D. farinae; however, their functions remain unknown. Our previous transcriptome sequencing analyses revealed that the basal expression of DFP1 and DFP2 in D. farinae was high and, more importantly, upregulated under temperature stress. Therefore, DFPs were speculated to exert a temperature stress response function. RESULTS: Real-time quantitative polymerase chain reaction detection revealed that both DFP1 and DFP2 were significantly upregulated under temperature stress. Particularly, DFP1 was upregulated under cold stress. Electrophoresis of D. farinae total proteins revealed an increased abundance of DFP1 and DFP2 (40-55 kDa bands) under temperature stress, which was corroborated by the mass spectrometry results. After silencing DFP1 and DFP2 further, temperature stress led to decreases in gene expression and survival rates. Moreover, DFP1 was identified as the upstream regulator of DFP2. CONCLUSION: This study highlights the temperature stress response functions of DFP1 and DFP2 at the mRNA and protein levels. These results provide important insights for applying DFP1 and DFP2 as potential target genes for the molecular prevention and control of D. farinae to prevent allergic diseases. The newly established methods provide methodological guidance for the study of genes with unknown functions in mites.


Asunto(s)
Dermatophagoides farinae , Estrés Fisiológico , Animales , Temperatura , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo
6.
PLoS Biol ; 22(8): e3002771, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39208370

RESUMEN

The chelicerate body plan is distinguished from other arthropod groups by its division of segments into 2 tagmata: the anterior prosoma ("cephalothorax") and the posterior opisthosoma ("abdomen"). Little is understood about the genetic mechanisms that establish the prosomal-opisthosomal (PO) boundary. To discover these mechanisms, we created high-quality genomic resources for the large-bodied spider Aphonopelma hentzi. We sequenced specific territories along the antero-posterior axis of developing embryos and applied differential gene expression analyses to identify putative regulators of regional identity. After bioinformatic screening for candidate genes that were consistently highly expressed in only 1 tagma (either the prosoma or the opisthosoma), we validated the function of highly ranked candidates in the tractable spider model Parasteatoda tepidariorum. Here, we show that an arthropod homolog of the Iroquois complex of homeobox genes is required for proper formation of the boundary between arachnid tagmata. The function of this homolog had not been previously characterized, because it was lost in the common ancestor of Pancrustacea, precluding its investigation in well-studied insect model organisms. Knockdown of the spider copy of this gene, which we designate as waist-less, in P. tepidariorum resulted in embryos with defects in the PO boundary, incurring discontinuous spider germ bands. We show that waist-less is required for proper specification of the segments that span the prosoma-opisthosoma boundary, which in adult spiders corresponds to the narrowed pedicel. Our results demonstrate the requirement of an ancient, taxon-restricted paralog for the establishment of the tagmatic boundary that defines Chelicerata.


Asunto(s)
Tipificación del Cuerpo , Regulación del Desarrollo de la Expresión Génica , Arañas , Animales , Arañas/genética , Arañas/embriología , Arañas/clasificación , Tipificación del Cuerpo/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Genes Homeobox/genética , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Filogenia , Embrión no Mamífero
7.
Mol Genet Genomics ; 299(1): 83, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39212752

RESUMEN

The INO80D protein, a component of the INO80 chromatin remodeling complex, plays a pivotal role in chromatin remodeling, gene expression, and DNA repair within mammalian sperm. In contrast to the condensed nuclear structure of mammalian sperm, Chinese mitten crab, Eriocheir sinensis, exhibits a distinctively decondensed sperm nucleus. The distribution and function of INO80D during the E. sinensis spermatogenesis were previously enigmatic. Our research endeavored to elucidate the distribution and function of INO80D, thereby enhancing our comprehension of sperm decondensation and the process of spermatogenesis in this species. Employing transcriptome sequencing, RT-qPCR, western blot analysis, and immunofluorescence techniques, we observed a pronounced upregulation of INO80D in the adult E. sinensis in comparison to the juvenile. The protein predominantly resides in the cellular nucleus, with high levels in spermatogonia and spermatocytes, less in stage I and III spermatids, and lowest in mature sperm. The results indicated that INO80D is initially instrumental in chromatin decondensation to facilitate gene accessibility and DNA repair during the early phases of spermatogenesis. Its role subsequently shifts to maintaining decondensed chromatin stability and genetic integrity during spermiogenesis. The sustained presence of INO80D during spermiogenesis is essential for the ultimate maturation of the decondensed sperm nucleus, imperative for preserving the unique decondensed state and the protection of genetic material in E. sinensis. Our study concludes that INO80D exerts a multifaceted influence on the spermatogenesis of E. sinensis, impacting chromatin decondensation, genetic integrity, and the regulation of early gene expression. This understanding could potentially improve crab breeding in aquaculture.


Asunto(s)
Braquiuros , Ensamble y Desensamble de Cromatina , Espermatogénesis , Animales , Espermatogénesis/genética , Masculino , Braquiuros/genética , Espermatozoides/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/genética , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo
8.
Dev Comp Immunol ; 160: 105231, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39043336

RESUMEN

The immune system of ticks, along with that of other invertebrates, is comparatively simpler than that of vertebrates, relying solely on innate immune responses. Direct antimicrobial defence is provided by the synthesis of antimicrobial peptides (AMPs), including defensins. The aim of this study was to investigate the differences in defensin genes expression between questing and engorged Ixodes ricinus (def1 and def2) and Dermacentor reticulatus (defDr) ticks, in the presence of selected pathogens: Borrelia spp., Rickettsia spp., Babesia spp., Anaplasma phagocytophilum, and Neoehrlichia mikurensis in the natural environment. After pathogen screening by PCR/qPCR, the expression of defensin genes in pathogen positive ticks and ticks without any of the tested pathogens, was analysed by reverse transcription qPCR. The results showed an increased expression of defensin genes in I. ricinus ticks after blood feeding and I. ricinus and D. reticulatus ticks during in cases of co-infection. In particular, the expression of defensins genes was higher in questing D. reticulatus than in questing and engorged I. ricinus ticks, when borreliae were detected. This study contributes to uncovering the expression patterns of defensin genes in the presence of several known tick pathogens, the occurrence of these pathogens and possible regulatory mechanisms of defensins in tick vector competence.


Asunto(s)
Defensinas , Dermacentor , Ixodes , Animales , Ixodes/microbiología , Ixodes/genética , Ixodes/inmunología , Dermacentor/microbiología , Dermacentor/genética , Dermacentor/inmunología , Defensinas/genética , Defensinas/metabolismo , Inmunidad Innata/genética , Enfermedades por Picaduras de Garrapatas/inmunología , Borrelia/inmunología , Babesia/inmunología , Anaplasma phagocytophilum/inmunología , Rickettsia/inmunología , Rickettsia/fisiología , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo
9.
J Agric Food Chem ; 72(31): 17306-17316, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39054269

RESUMEN

Overexpression of carboxyl/cholinesterase (CCE) genes has been reported to be associated with many cases of pesticide resistance in arthropods. However, it has been rarely documented that CCE genes participate in spirodiclofen resistance in Panonychus citri. In previous research, we found that spirodiclofen resistance is related to increased P450 and CCE enzyme activities in P. citri. In this study, we identified two CCE genes, PcCCE3 and PcCCE5, which were significantly upregulated in spirodiclofen-resistant strain and after exposure to spirodiclofen. RNA interference of PcCCE3 and PcCCE5 increased the spirodiclofen susceptibility in P. citri. In vitro metabolism indicated that PcCCE3 and PcCCE5 could interact with spirodiclofen, but metabolites were detected only in the PcCCE3 treatment. Our results indicated that PcCCE3 participates in spirodiclofen resistance through direct metabolism, and PcCCE5 may be involved in the spirodiclofen resistance by passive binding and sequestration, which provides new insights into spirodiclofen resistance in P. citri.


Asunto(s)
Proteínas de Artrópodos , Compuestos de Espiro , Animales , Compuestos de Espiro/farmacología , Compuestos de Espiro/metabolismo , Compuestos de Espiro/química , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Proteínas de Artrópodos/química , Resistencia a Medicamentos/genética , Carboxilesterasa/genética , Carboxilesterasa/metabolismo , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , 4-Butirolactona/farmacología
10.
Int J Mol Sci ; 25(13)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39000423

RESUMEN

Methyl farnesoate epoxidase (MFE) is a gene encoding an enzyme related to the last step of juvenile hormone biosynthesis. Mn-MFE cDNA has a total length of 1695 bp and an open reading frame (ORF) length of 1482 bp, encoding 493 amino acids. Sequence analysis showed that its amino acid sequence has a PPGP hinge, an FGCG structural domain, and other structural domains specific to the P450 family of enzymes. Mn-MFE was most highly expressed in the hepatopancreas, followed by the ovary and gill, weakly expressed in heart and muscle tissue, and barely expressed in the eyestalk and cranial ganglion. Mn-MFE expression remained stable during the larval period, during which it mainly played a critical role in gonadal differentiation. Expression in the ovary was positively correlated and expression in the hepatopancreas was negatively correlated with ovarian development. In situ hybridization (ISH) showed that the signal was expressed in the oocyte, nucleus, cell membrane and follicular cells, and the intensity of expression was strongest at stage O-IV. The knockdown of Mn-MFE resulted in a significantly lower gonadosomatic index and percentage of ovaries past stage O-III compared to the control group. However, no differences were found in the cumulative frequency of molting between the experimental and control groups. Moreover, the analysis of ovarian tissue sections at the end of the experiment showed differences between groups in development speed but not in subcellular structure. These results demonstrate that Mn-MFE promotes the ovarian development of Macrobrachium nipponense adults but has no effect on molting.


Asunto(s)
Ovario , Palaemonidae , Animales , Ovario/metabolismo , Ovario/crecimiento & desarrollo , Femenino , Palaemonidae/genética , Palaemonidae/crecimiento & desarrollo , Palaemonidae/enzimología , Palaemonidae/metabolismo , Regulación del Desarrollo de la Expresión Génica , Secuencia de Aminoácidos , Filogenia , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Hepatopáncreas/metabolismo , Hepatopáncreas/crecimiento & desarrollo , Ácidos Grasos Insaturados
11.
J Virol ; 98(8): e0053024, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39051786

RESUMEN

Tiny controllers referred to as microRNAs (miRNAs) impede the expression of genes to modulate biological processes. In invertebrates, particularly in shrimp as a model organism, it has been demonstrated that miRNAs play a crucial role in modulating innate immune responses against viral infection. By analyzing small RNAs, we identified 60 differentially expressed miRNAs (DEMs) in Penaues vannamei hemocytes following infection with white spot syndrome virus (WSSV). We predicted the target genes of WSSV-responsive miRNAs, shedding light on their participation in diverse biological pathways. We are particularly intrigued by pva-miR-166, which is the most notably elevated miRNA among 60 DEMs. At 24 h post-infection (hpi), the negative correlation between the expression of pva-miR-166 and its target gene, PvProsaposin, was evident and their interaction was confirmed by a reduction in luciferase activity in vitro. Suppression of PvProsaposin in unchallenged shrimp led to decreased survival rates, reduced total hemocyte count (THC), and increased caspase 3/7 activity, suggesting its significant role in maintaining hemocyte homeostasis. In WSSV-infected shrimp, a lower number of hemocytes corresponded to a lower WSSV load, but higher shrimp mortality was observed when PvProsaposin was suppressed. Conformingly, the introduction of the pva-miR-166 mimic to WSSV-infected shrimp resulted in decreased levels of PvProsaposin transcripts, a significant loss of THC, and an increase in the hemocyte apoptosis. Taken together, we propose that pva-miR-166 modulates hemocyte homeostasis during WSSV infection by suppressing the PvProsaposin, an anti-apoptotic gene. PvProsaposin inhibition disrupts hemocyte homeostasis, rendering the shrimp's inability to withstand WSSV invasion.IMPORTANCEGene regulation by microRNAs (miRNAs) has been reported during viral infection. Furthermore, hemocytes serve a dual role, not only producing various immune-related molecules to combat viral infections but also acting as a viral replication site. Maintaining hemocyte homeostasis is pivotal for the shrimp's survival during infection. The upregulated miRNA pva-miR-166 could repress PvProsaposin expression in shrimp hemocytes infected with WSSV. The significance of PvProsaposin in maintaining hemocyte homeostasis via apoptosis led to reduced survival rate, decreased total hemocyte numbers, and elevated caspase 3/7 activity in PvProsaposin-silenced shrimp. Additionally, the inhibitory ability of pva-miR-166-mimic and dsRNA-PvProsaposin on the expression of PvProsaposin also lowered the THC, increases the hemocyte apoptosis, resulting in a lower WSSV copy number. Ultimately, the dysregulation of the anti-apoptotic gene PvProsaposin by pva-miR-166 during WSSV infection disrupts hemocyte homeostasis, leading to an immunocompromised state in shrimp, rendering them incapable of surviving WSSV invasion.


Asunto(s)
Apoptosis , Hemocitos , Homeostasis , MicroARNs , Penaeidae , Virus del Síndrome de la Mancha Blanca 1 , Animales , Hemocitos/metabolismo , Hemocitos/virología , MicroARNs/genética , MicroARNs/metabolismo , Penaeidae/virología , Penaeidae/genética , Penaeidae/inmunología , Inmunidad Innata , Regulación de la Expresión Génica , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Interacciones Huésped-Patógeno
12.
Artículo en Inglés | MEDLINE | ID: mdl-38972622

RESUMEN

Endocrine-disrupting chemicals (EDCs) are toxic pollutants generated by artificial activities. Moreover, their hormone-like structure induces disturbances, such as mimicking or blocking metabolic activity. Previous studies on EDCs have focused on the adverse effect of the endocrine system in vertebrates, with limited investigations conducted on ion channels in invertebrates. Thus, in this study, we investigated the potential adverse effects of exposure to bisphenol-A (BPA) and di-(2-ethylhexyl) phthalate (DEHP) at the molecular level on the ryanodine receptor (RyR), a calcium ion channel receptor in Macrophthalmus japonicus. In the phylogenetic analysis, the RyR amino acid sequences in M. japonicus clustered with those in the Crustacean and formed separated branches for RyR in insects and mammals. When exposed to 1 µg L-1 BPA, a significant increase in RyR mRNA expression was observed in the gills on day 1, although a similar level to the control group was observed from day 4 to day 7. However, the RyR expression due to DEHP exposure decreased on days 1 and 4, although it increased on day 7 following exposure to 10 µg L-1. The RyR expression pattern in the hepatopancreas increased for up to 4 days, depending on the BPA concentration. However, there was a tendency for the expression to decrease gradually after the statistical significance increased during the early stage of DEHP exposure (D1). Hence, the transcriptional alterations in the M. japonicus RyR gene observed in the study suggest that exposure toxicities to EDCs, such as BPA and DEHP, have the potential to disrupt calcium ion channel signaling in the gills and hepatopancreas of M. japonicus crabs.


Asunto(s)
Compuestos de Bencidrilo , Braquiuros , Disruptores Endocrinos , Fenoles , Canal Liberador de Calcio Receptor de Rianodina , Contaminantes Químicos del Agua , Animales , Disruptores Endocrinos/toxicidad , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Braquiuros/efectos de los fármacos , Braquiuros/genética , Braquiuros/metabolismo , Compuestos de Bencidrilo/toxicidad , Fenoles/toxicidad , Contaminantes Químicos del Agua/toxicidad , Filogenia , Dietilhexil Ftalato/toxicidad , Branquias/metabolismo , Branquias/efectos de los fármacos , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Secuencia de Aminoácidos
13.
Artículo en Inglés | MEDLINE | ID: mdl-38977174

RESUMEN

Ecdysis-triggering hormone (ETH) is a neuropeptide hormone characterized by a conserved KxxKxxPRx amide structure widely identified in arthropods. While its involvement in the regulation of molting and reproduction in insects is well-established, its role in crustaceans has been overlooked. This study aimed to de-orphanise a receptor for ETH in the mud crab Scylla paramamosain and explore its potential impact on ovarian development. A 513-amino-acid G protein-coupled receptor for ETH (SpETHR) was identified in S. paramamosain, exhibiting a dose-dependent activation by SpETH with an EC50 value of 75.18 nM. Tissue distribution analysis revealed SpETH was in the cerebral ganglion and thoracic ganglion, while SpETHR was specifically expressed in the ovary, hepatopancreas, and Y-organ of female crabs. In vitro experiments demonstrated that synthetic SpETH (at a concentration of 10-8 M) significantly increased the expression of SpVgR in the ovary and induced ecdysone biosynthesis in the Y-organ. In vivo experiments showed a significant upregulation of SpEcR in the ovary and Disembodied and Shadow in the Y-organ after 12 h of SpETH injection. Furthermore, a 16-day administration of SpETH significantly increased 20E titers in hemolymph, gonadosomatic index (GSI) and oocyte size of S. paramamosain. In conclusion, our findings suggest that SpETH may play stimulatory roles in ovarian development and ecdysone biosynthesis by the Y-organ.


Asunto(s)
Braquiuros , Ovario , Animales , Braquiuros/metabolismo , Braquiuros/fisiología , Braquiuros/crecimiento & desarrollo , Femenino , Ovario/metabolismo , Ovario/crecimiento & desarrollo , Secuencia de Aminoácidos , Filogenia , Proteínas de Artrópodos/metabolismo , Proteínas de Artrópodos/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Neuropéptidos/metabolismo , Neuropéptidos/genética , Hormonas de Invertebrados/metabolismo , Hormonas de Invertebrados/genética , Muda , Clonación Molecular
14.
Fish Shellfish Immunol ; 151: 109689, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38866349

RESUMEN

Succinate dehydrogenase (SDH) is a crucial enzyme in the tricarboxylic acid cycle (TCA) and has established roles in immune function. However, the understanding of SDH in Penaeus vannamei, particularly its involvement in immune responses, is currently limited. Through affinity proteomics, a potential interaction between hemocyanin (HMC) and SDH in shrimp has been identified. The successful cloning of PvSDH in this study has revealed a high degree of evolutionary conservation. Additionally, it has been found that hemocyanin regulates SDH not only at the transcriptional and enzymatic levels but also through confirmed protein-protein interactions observed via Co-immunoprecipitation (CoIP) assay. Moreover, by combining PvHMC knockdown and Vibrio parahaemolyticus challenge, it was demonstrated that fumaric acid, a product of SDH, enhances the host's immune resistance to pathogen infection by modulating the expression of antimicrobial peptides. This research provides new insights into HMC as a crucial regulator of SDH, potentially impacting glycometabolism and the dynamics of immune responses.


Asunto(s)
Proteínas de Artrópodos , Hemocianinas , Penaeidae , Succinato Deshidrogenasa , Vibrio parahaemolyticus , Animales , Penaeidae/inmunología , Penaeidae/genética , Hemocianinas/inmunología , Hemocianinas/genética , Hemocianinas/metabolismo , Vibrio parahaemolyticus/fisiología , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Proteínas de Artrópodos/metabolismo , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/metabolismo , Succinato Deshidrogenasa/inmunología , Glucosa/metabolismo , Inmunidad Innata/genética , Regulación de la Expresión Génica/inmunología , Secuencia de Aminoácidos , Filogenia , Alineación de Secuencia
15.
Artículo en Inglés | MEDLINE | ID: mdl-38908544

RESUMEN

Mannose-binding lectin (MBL) is a vital member of the lectin family, crucial for mediating functions within the complement lectin pathway. In this study, following the cloning of the mannose-binding lectin (MBL) gene in the ridgetail white prawn, Exopalaemon carinicauda, we examined its expression patterns across various tissues and its role in combating challenges posed by Vibrio parahaemolyticus. The results revealed that the MBL gene spans 1342 bp, featuring an open reading frame of 972 bp. It encodes a protein comprising 323 amino acids, with a predicted relative molecular weight of 36 kDa and a theoretical isoelectric point of 6.18. The gene exhibited expression across various tissues including the eyestalk, heart, gill, hepatopancreas, stomach, intestine, ventral nerve cord, muscle, and hemolymph, with the highest expression detected in the hepatopancreas. Upon challenge with V. parahaemolyticus, RT-PCR analysis revealed a trend of MBL expression in hepatopancreatic tissues, characterized by an initial increase followed by a subsequent decrease, peaking at 24 h post-infection. Employing RNA interference to disrupt MBL gene expression resulted in a significant increase in mortality rates among individuals challenged with V. parahaemolyticus. Furthermore, we successfully generated the Pet32a-MBL recombinant protein through the construction of a prokaryotic expression vector for conducting in vitro bacterial inhibition assays, which demonstrated the inhibitory effect of the recombinant protein on V. parahaemolyticus, laying a foundation for further exploration into its immune mechanism in response to V. parahaemolyticus challenges.


Asunto(s)
Clonación Molecular , Lectina de Unión a Manosa , Palaemonidae , Vibrio parahaemolyticus , Animales , Palaemonidae/genética , Palaemonidae/microbiología , Palaemonidae/inmunología , Palaemonidae/metabolismo , Lectina de Unión a Manosa/genética , Lectina de Unión a Manosa/metabolismo , Secuencia de Aminoácidos , Filogenia , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Proteínas de Artrópodos/inmunología , Proteínas de Artrópodos/química , Vibriosis/inmunología , Vibriosis/veterinaria
16.
Fish Shellfish Immunol ; 151: 109735, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945414

RESUMEN

Antimicrobial peptide (AMP) is an important component of crustaceans' innate immune system. In this study, a short neuropeptide F (sNPF) gene (Pc-sNPF) and a Forkhead box O (FOXO) gene (PcFOXO) from Procambarus clarkii were identified. Analysis findings showed that the expression level of AMP genes differed between male and female P. clarkii. Furthermore, Pc-sNPF and PcFOXO were related to the sex dimorphism of AMP. Knockdown of Pc-sNPF in the eyestalk significantly upregulated the expression of PcFOXO and two anti-lipopolysaccharide factors (PcALF4 and PcALFL) in the intestine of P. clarkii. The expression of PcFOXO in the intestine of female P. clarkii was higher than in that of males. Results from RNA interference revealed that PcFOXO positively regulated the expression of PcALF4 and PcALFL in the intestine of male and female P. clarkii. In summary, our study showed that differences in Pc-sNPF expression in eyestalk of male and female P. clarkii leading to sex dimorphism of AMP expression in the intestine are mediated by the sNPF-FOXO-AMP signal pathway called the eyestalk-intestine axis.


Asunto(s)
Proteínas de Artrópodos , Regulación de la Expresión Génica , Neuropéptidos , Caracteres Sexuales , Animales , Masculino , Femenino , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Proteínas de Artrópodos/metabolismo , Regulación de la Expresión Génica/inmunología , Neuropéptidos/genética , Neuropéptidos/metabolismo , Astacoidea/genética , Astacoidea/inmunología , Intestinos , Péptidos Antimicrobianos/genética , Péptidos Antimicrobianos/metabolismo , Inmunidad Innata/genética , Filogenia , Perfilación de la Expresión Génica , Secuencia de Aminoácidos , Alineación de Secuencia
17.
Pestic Biochem Physiol ; 202: 105963, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38879311

RESUMEN

The long-term use of pesticides in the field, and the high fertility and adaptability of phytophagous mites have led to resistance problems; consequently, novel safe and efficient active substances are necessary to broaden the tools of pest mite control. Natural enemies of arthropods typically secrete substances with paralytic or lethal effects on their prey, and those substances are a resource for future biopesticides. In this study, two putative venom peptide genes were identified in a parasitic mite Neoseiulus barkeri transcriptome. Recombinant venom NbSP2 peptide injected into Tetranychus cinnabarinus mites was significantly more lethal than recombinant NBSP1. NbSP2 was also lethal to Spodoptera litura when injected but not when fed to third instar larvae. The interaction proteins of NbSP2 in T. cinnabarinus and S. litura were identified by affinity chromatography. Among these proteins, ATP synthase subunit ß (ATP SSß) was deduced as a potential target. Four binding sites were predicted between NBSP2 and ATP SSß of T. cinnabarinus and S. litura. In conclusion, we identified a venom peptide with activity against T. cinnabarinus and S. litura. This study provides a novel component for development of a new biological pesticide.


Asunto(s)
Péptidos , Venenos de Araña , Animales , Venenos de Araña/química , Venenos de Araña/genética , Péptidos/farmacología , Péptidos/química , Ácaros/efectos de los fármacos , Spodoptera/efectos de los fármacos , Tetranychidae/efectos de los fármacos , Tetranychidae/genética , Control Biológico de Vectores/métodos , Secuencia de Aminoácidos , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Proteínas de Artrópodos/química , Conducta Predatoria/efectos de los fármacos
18.
Int J Mol Sci ; 25(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38891781

RESUMEN

Carotenoid cleavage oxygenases can cleave carotenoids into a range of biologically important products. Carotenoid isomerooxygenase (NinaB) and ß, ß-carotene 15, 15'-monooxygenase (BCO1) are two important oxygenases. In order to understand the roles that both oxygenases exert in crustaceans, we first investigated NinaB-like (EsNinaBl) and BCO1-like (EsBCO1l) within the genome of Chinese mitten crab (Eriocheir sinensis). Their functions were then deciphered through an analysis of their expression patterns, an in vitro ß-carotene degradation assay, and RNA interference. The results showed that both EsNinaBl and EsBCO1l contain an RPE65 domain and exhibit high levels of expression in the hepatopancreas. During the molting stage, EsNinaBl exhibited significant upregulation in stage C, whereas EsBCO1l showed significantly higher expression levels at stage AB. Moreover, dietary supplementation with ß-carotene resulted in a notable increase in the expression of EsNinaBl and EsBCO1l in the hepatopancreas. Further functional assays showed that the EsNinaBl expressed in E. coli underwent significant changes in its color, from orange to light; in addition, its ß-carotene cleavage was higher than that of EsBCO1l. After the knockdown of EsNinaBl or EsBCO1l in juvenile E. sinensis, the expression levels of both genes were significantly decreased in the hepatopancreas, accompanied by a notable increase in the redness (a*) values. Furthermore, a significant increase in the ß-carotene content was observed in the hepatopancreas when EsNinaBl-mRNA was suppressed, which suggests that EsNinaBl plays an important role in carotenoid cleavage, specifically ß-carotene. In conclusion, our findings suggest that EsNinaBl and EsBCO1l may exhibit functional co-expression and play a crucial role in carotenoid cleavage in crabs.


Asunto(s)
Braquiuros , Hepatopáncreas , beta Caroteno , beta-Caroteno 15,15'-Monooxigenasa , Animales , beta Caroteno/metabolismo , Braquiuros/metabolismo , Braquiuros/genética , beta-Caroteno 15,15'-Monooxigenasa/metabolismo , beta-Caroteno 15,15'-Monooxigenasa/genética , Hepatopáncreas/metabolismo , Muda/genética , Oxigenasas/metabolismo , Oxigenasas/genética , Filogenia , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo
19.
Protein Expr Purif ; 221: 106519, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38830441

RESUMEN

Sinopotamon Henanense expresses two metal‒induced metallothioneins (MTs), Cd‒induced MT and Cu‒induced MT (ShCuMT). The Cd‒induced MT has been characterized as a Cd‒thiolate MT. However, it is unknown whether ShCuMT is a Cu‒thiolate MT. In the present study, ShCuMT was expressed heterologously in Escherichia coli and purified by Ni‒NTA column and superdex‒75 column. And its metal‒binding feature was evaluated by DTNB reaction, circular dichroism spectroscopy (CD), isothermal microtitration (ITC), electrospray flight mass spectrometry (ESI‒TOF‒MS), and matrix‒assisted laser desorption ionization flight mass spectrometry (MALDI‒TOF‒MS). Bioinformatics analysis demonstrated that ShCuMT possessed the cysteine‒triplet motif of a Cu‒specific MT. Expression and purification of ShCuMT illustrated that SUMO tag used as the production system for ShCuMT resulted in a high production yield. The stability order of ShCuMT binding metal ions were Cu (Ⅰ) > Cd (Ⅱ) > Zn (Ⅱ). The CD spectrum indicated that ShCuMT binding with Cu (I) exhibited a compact thiol metal clusters structure. Besides, there emerged no a visible nickel‒thiol absorption after Ni‒NTA column affinity chromatography. The ITC results implied that Cu‒ShCuMT possessed the optimal thermodynamic conformation and the highest stoichiometric number of Cu (Ⅰ). Overall, the results suggested that SUMO fusion system is a robust and inexpensive approach for ShCuMT expression and Ni‒NTA column had no influence on metal binding of ShCuMT and Cu(Ⅰ) was considered its cognate metal ion, and ShCuMT possessed canonical Cu‒thiolate characteristics. The metal binding feature of ShCuMT reported here contributes to elucidating the structure‒function relationship of ShCuMT in S. Henanense.


Asunto(s)
Cobre , Metalotioneína , Metalotioneína/genética , Metalotioneína/química , Metalotioneína/metabolismo , Metalotioneína/aislamiento & purificación , Animales , Cobre/metabolismo , Cobre/química , Braquiuros/genética , Braquiuros/metabolismo , Braquiuros/química , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/química , Proteínas de Artrópodos/metabolismo , Cadmio/metabolismo , Cadmio/química , Escherichia coli/genética , Escherichia coli/metabolismo , Secuencia de Aminoácidos , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/biosíntesis
20.
J Invertebr Pathol ; 206: 108162, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38944151

RESUMEN

Decapod iridescent virus 1 (DIV1) stands as a significant pathogen affecting crustaceans, posing a grave threat to the shrimp industries in aquaculture dependent nations. Within the Iridoviridae family, the conserved envelope protein DIV1-168L plays a pivotal role in virion entry. Nonetheless, the host factors that interact with 168L remain unidentified. To address this gap, we established a cDNA library derived from Litopenaeus vannamei gill tissue and conducted yeast two-hybrid screening to identify host factors that interact with 168L. Additionally, we performed co-immunoprecipitation assays to verify the interaction between cuticle protein 8 (CP8) and 168L. Expression pattern analysis revealed the presence of CP8 transcripts in the gill and epidermis. Furthermore, immunohistochemistry results demonstrated the expression of CP8 in gill cells and its localization in the gill filament epithelium. Fluorescence analysis indicated that full-length CP8 colocalized with 168L in the cytoplasm of Sf9 cells. Removal of the signal peptide from the N-terminal of CP8 eliminated its concentration in the cytoplasm. Additionally, CP8 expression was significantly inhibited during DIV1 infection. Therefore, our research contributes to a better understanding of the entry mechanism of iridovirids. The GenBank accession number for the DIV1 sequence is MF197913.1.


Asunto(s)
Iridoviridae , Penaeidae , Animales , Penaeidae/virología , Iridoviridae/fisiología , Proteínas de Artrópodos/metabolismo , Proteínas de Artrópodos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...