Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Cell Biol ; 222(8)2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37326602

RESUMEN

Intracellular Zn2+ concentrations increase via depolarization-mediated influx or intracellular release, but the immediate effects of Zn2+ signals on neuron function are not fully understood. By simultaneous recording of cytosolic Zn2+ and organelle motility, we find that elevated Zn2+ (IC50 ≈ 5-10 nM) reduces both lysosomal and mitochondrial motility in primary rat hippocampal neurons and HeLa cells. Using live-cell confocal microscopy and in vitro single-molecule TIRF imaging, we reveal that Zn2+ inhibits activity of motor proteins (kinesin and dynein) without disrupting their microtubule binding. Instead, Zn2+ directly binds to microtubules and selectively promotes detachment of tau, DCX, and MAP2C, but not MAP1B, MAP4, MAP7, MAP9, or p150glued. Bioinformatic predictions and structural modeling show that the Zn2+ binding sites on microtubules partially overlap with the microtubule binding sites of tau, DCX, dynein, and kinesin. Our results reveal that intraneuronal Zn2+ regulates axonal transport and microtubule-based processes by interacting with microtubules.


Asunto(s)
Proteínas de Dominio Doblecortina , Dineínas , Cinesinas , Proteínas Asociadas a Microtúbulos , Zinc , Proteínas tau , Animales , Humanos , Ratas , Transporte Axonal , Proteínas de Dominio Doblecortina/metabolismo , Dineínas/metabolismo , Células HeLa , Cinesinas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas tau/metabolismo , Zinc/metabolismo
2.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35163257

RESUMEN

Fetalization associated with a delay in development and the preservation of the features of the embryonic structure of the brain dominates the ontogeny of salmonids. The aim of the present study was to comparatively analyze the distribution of the glial-type aNSC markers such as vimentin and glial fibrillar acidic protein (GFAP) and the migratory neuronal precursors such as doublecortin in the telencephalon subpallium of juvenile masu salmon, Oncorhynchus masou, in normal conditions and at 1 week after an injury to the dorsal pallium. Immunohistochemical labeling of vimentin, GFAP, and doublecortin in the pallium of intact juvenile masu salmon revealed single cells with similar morphologies corresponding to a persistent pool of neuronal and/or glial progenitors. The study of the posttraumatic process showed the presence of intensely GFAP-labeled cells of the neuroepithelial type that form reactive neurogenic zones in all areas of the subpallial zone of juvenile masu salmon. A comparative analysis of the distribution of radial glia in the dorsal, ventral, and lateral zones of the subpallium showed a maximum concentration of cells in the dorsal part of subpallium (VD) and a minimum concentration in the lateral part of subpallium VL. An essential feature of posttraumatic immunolabeling in the masu salmon subpallium is the GFAP distribution patterns that are granular intracellular in the apical periventricular zone (PVZ) and fibrillar extracellular in the subventricular (SVZ) and parenchymal zones (PZ). In contrast to those in intact animals, most of the GFAP+ granules and constitutive neurogenic niches in injured fish were localized in the basal part of the PVZ. With the traumatic injury to the subpallium, the number of Vim+ cells in the lateral and ventral regions significantly increased. At 1 week post-injury, the total immunolabeling of vimentin cells in the PVZ was replaced by the granular pattern of Vim immunodistribution spreading from the PVZ to the SVZ and deeper parenchymal layers of the brain in all areas of the subpallium. A significant increase in the number of DC+ cells was observed also in all areas of the subpallium. The number of cells increased both in the PVZ and in the SVZ, as well as in the deeper PZ. Thus, at 1 week after the injury to the dorsal pallium, the number of DC, Vim, and GFAP expressing cells of the neuroepithelial type in the subpallium of juvenile masu salmon increased, and additionally GFAP+ radial glia appeared in VD, which was absent from intact animals.


Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , Corteza Cerebral/metabolismo , Proteínas de Dominio Doblecortina/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Oncorhynchus/metabolismo , Salmón/metabolismo , Vimentina/metabolismo , Animales , Células Ependimogliales/metabolismo , Filamentos Intermedios , Neurogénesis/fisiología , Neuroglía/metabolismo , Neuronas/metabolismo , Telencéfalo/metabolismo
3.
Sci Rep ; 12(1): 1022, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-35046482

RESUMEN

Adult hippocampal neurogenesis (AHN) plays an important role in hippocampus-dependent function. The number of doublecortin (Dcx)-positive immature neurons in the dentate gyrus decreases over time, especially in the early stages of Alzheimer's disease (AD), and is further reduced in later stages of AD. Obesity in midlife is associated with dementia later in life; however, the underlying mechanisms by which obesity results in the development of dementia later in life remain unknown. Here, we show that endoplasmic reticulum (ER) stress was activated in the hippocampus and processes of Dcx-expressing immature neurons were shortened, coexpressing CHOP in APP23 AD model mice with high-fat diet-induced long-term obesity and in aged Leprdb/db (db/db) mice. Moreover, in cells differentiating from hippocampal neurospheres, Dcx mRNA was rapidly degraded via a microRNA (miRNA) pathway after thapsigargin treatment in vitro. These results indicate that loss of Dcx mRNA induced by ER stress during AHN may cause memory impairment in obese individuals later in life.


Asunto(s)
Proteínas de Dominio Doblecortina/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Neuronas/metabolismo , Obesidad/complicaciones , Envejecimiento , Animales , Conducta Animal/fisiología , Células Cultivadas , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Proteínas de Dominio Doblecortina/genética , Hipocampo , Memoria , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Obesidad/fisiopatología , Tapsigargina/administración & dosificación
4.
Nutrients ; 13(12)2021 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34959916

RESUMEN

Treatment with valproic acid (VPA) deteriorates hippocampal neurogenesis, which leads to memory impairment. Hesperidin (Hsd) is a plant-based bioflavonoid that can augment learning and memory. This study aimed to understand the effect of Hsd on the impairment of hippocampal neurogenesis and memory caused by VPA. The VPA (300 mg/kg) was administered by intraperitoneal injection twice daily for 14 days, and Hsd (100 mg/kg/day) was administered by oral gavage once a day for 21 days. All rats underwent memory evaluation using the novel object location (NOL) and novel object recognition (NOR) tests. Immunofluorescent staining of Ki-67, BrdU/NeuN, and doublecortin (DCX) was applied to determine hippocampal neurogenesis in cell proliferation, neuronal survival, and population of the immature neurons, respectively. VPA-treated rats showed memory impairments in both memory tests. These impairments resulted from VPA-induced decreases in the number of Ki-67-, BrdU/NeuN-, and DCX-positive cells in the hippocampus, leading to memory loss. Nevertheless, the behavioral expression in the co-administration group was improved. After receiving co-administration with VPA and Hsd, the numbers of Ki-67-, BrdU/NeuN-, and DCX-positive cells were improved to the normal levels. These findings suggest that Hsd can reduce the VPA-induced hippocampal neurogenesis down-regulation that results in memory impairments.


Asunto(s)
Hesperidina/administración & dosificación , Hesperidina/farmacología , Hipocampo/patología , Aprendizaje/efectos de los fármacos , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/etiología , Memoria/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Fitoterapia , Ácido Valproico/efectos adversos , Administración Oral , Animales , Bromodesoxiuridina/metabolismo , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Proteínas de Dominio Doblecortina/metabolismo , Antígeno Ki-67/metabolismo , Masculino , Ratas Sprague-Dawley , Estimulación Química
5.
J Histochem Cytochem ; 69(12): 819-834, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34310246

RESUMEN

The neural stem cell niche of the ventricular-subventricular zone supports the persistence of stem and progenitor cells in the mature brain. This niche has many notable cytoarchitectural features that affect the activity of stem cells and may also support the survival and growth of invading tumor cells. Histochemical studies of the niche have revealed many proteins that, in combination, can help to reveal stem-like cells in the normal or cancer context, although many caveats persist in the quest to consistently identify these cells in the human brain. Here, we explore the complex relationship between the persistent proliferative capacity of the neural stem cell niche and the malignant proliferation of brain tumors, with a special focus on histochemical identification of stem cells and stem-like tumor cells and an eye toward the potential application of high-dimensional imaging approaches to the field.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Ventrículos Laterales/metabolismo , Células-Madre Neurales/metabolismo , Nicho de Células Madre/fisiología , Animales , Encéfalo , Neoplasias Encefálicas/diagnóstico por imagen , Diferenciación Celular , Proliferación Celular , Proteínas de Dominio Doblecortina/metabolismo , Glioma/diagnóstico por imagen , Humanos , Ventrículos Laterales/diagnóstico por imagen , Células Madre Neoplásicas , Nestina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...