Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 373
Filtrar
1.
Nature ; 628(8009): 901-909, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38570679

RESUMEN

Capsular polysaccharides (CPSs) fortify the cell boundaries of many commensal and pathogenic bacteria1. Through the ABC-transporter-dependent biosynthesis pathway, CPSs are synthesized intracellularly on a lipid anchor and secreted across the cell envelope by the KpsMT ABC transporter associated with the KpsE and KpsD subunits1,2. Here we use structural and functional studies to uncover crucial steps of CPS secretion in Gram-negative bacteria. We show that KpsMT has broad substrate specificity and is sufficient for the translocation of CPSs across the inner bacterial membrane, and we determine the cell surface organization and localization of CPSs using super-resolution fluorescence microscopy. Cryo-electron microscopy analyses of the KpsMT-KpsE complex in six different states reveal a KpsE-encaged ABC transporter, rigid-body conformational rearrangements of KpsMT during ATP hydrolysis and recognition of a glycolipid inside a membrane-exposed electropositive canyon. In vivo CPS secretion assays underscore the functional importance of canyon-lining basic residues. Combined, our analyses suggest a molecular model of CPS secretion by ABC transporters.


Asunto(s)
Cápsulas Bacterianas , Proteínas de Escherichia coli , Escherichia coli , Polisacáridos Bacterianos , Adenosina Trifosfato/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/ultraestructura , Cápsulas Bacterianas/metabolismo , Cápsulas Bacterianas/química , Cápsulas Bacterianas/ultraestructura , Membrana Celular/química , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Microscopía por Crioelectrón , Escherichia coli/química , Escherichia coli/metabolismo , Escherichia coli/ultraestructura , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestructura , Glucolípidos/química , Glucolípidos/metabolismo , Hidrólisis , Microscopía Fluorescente , Modelos Moleculares , Polisacáridos Bacterianos/metabolismo , Polisacáridos Bacterianos/química , Especificidad por Sustrato
2.
Biochim Biophys Acta Bioenerg ; 1865(3): 149045, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38614453

RESUMEN

Cytochrome bo3 quinol oxidase belongs to the heme­copper-oxidoreductase (HCO) superfamily, which is part of the respiratory chain and essential for cell survival. While the reaction mechanism of cyt bo3 has been studied extensively over the last decades, specific details about its substrate binding and product release have remained unelucidated due to the lack of structural information. Here, we report a 2.8 Å cryo-electron microscopy structure of cyt bo3 from Escherichia coli assembled in peptidiscs. Our structural model shows a conformation for amino acids 1-41 of subunit I different from all previously published structures while the remaining parts of this enzyme are similar. Our new conformation shows a "U-shape" assembly in contrast to the transmembrane helix, named "TM0", in other reported structural models. However, TM0 blocks ubiquinone-8 (reaction product) release, suggesting that other cyt bo3 conformations should exist. Our structural model presents experimental evidence for an "open" conformation to facilitate substrate/product exchange. This work helps further understand the reaction cycle of this oxidase, which could be a benefit for potential drug/antibiotic design for health science.


Asunto(s)
Microscopía por Crioelectrón , Grupo Citocromo b , Proteínas de Escherichia coli , Escherichia coli , Ubiquinona , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo , Ubiquinona/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestructura , Escherichia coli/enzimología , Grupo Citocromo b/química , Grupo Citocromo b/metabolismo , Conformación Proteica , Modelos Moleculares , Citocromos/química , Citocromos/metabolismo
3.
Nature ; 614(7947): 367-374, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36697824

RESUMEN

Rho is a ring-shaped hexameric ATP-dependent molecular motor. Together with the transcription elongation factor NusG, Rho mediates factor-dependent transcription termination and transcription-translation-coupling quality control in Escherichia coli1-4. Here we report the preparation of complexes that are functional in factor-dependent transcription termination from Rho, NusG, RNA polymerase (RNAP), and synthetic nucleic acid scaffolds, and we report cryogenic electron microscopy structures of the complexes. The structures show that functional factor-dependent pre-termination complexes contain a closed-ring Rho hexamer; have RNA threaded through the central channel of Rho; have 60 nucleotides of RNA interacting sequence-specifically with the exterior of Rho and 6 nucleotides of RNA interacting sequence-specifically with the central channel of Rho; have Rho oriented relative to RNAP such that ATP-dependent translocation by Rho exerts mechanical force on RNAP; and have NusG bridging Rho and RNAP. The results explain five decades of research on Rho and provide a foundation for understanding Rho's function.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Factores de Transcripción , Terminación de la Transcripción Genética , Adenosina Trifosfato/metabolismo , Microscopía por Crioelectrón , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/ultraestructura , Escherichia coli/química , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestructura , ARN/química , ARN/genética , ARN/metabolismo , ARN/ultraestructura , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Factores de Transcripción/ultraestructura
4.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35101979

RESUMEN

The secondary active transporter CitS shuttles citrate across the cytoplasmic membrane of gram-negative bacteria by coupling substrate translocation to the transport of two Na+ ions. Static crystal structures suggest an elevator type of transport mechanism with two states: up and down. However, no dynamic measurements have been performed to substantiate this assumption. Here, we use high-speed atomic force microscopy for real-time visualization of the transport cycle at the level of single transporters. Unexpectedly, instead of a bimodal height distribution for the up and down states, the experiments reveal movements between three distinguishable states, with protrusions of ∼0.5 nm, ∼1.0 nm, and ∼1.6 nm above the membrane, respectively. Furthermore, the real-time measurements show that the individual protomers of the CitS dimer move up and down independently. A three-state elevator model of independently operating protomers resembles the mechanism proposed for the aspartate transporter GltPh Since CitS and GltPh are structurally unrelated, we conclude that the three-state elevators have evolved independently.


Asunto(s)
Membrana Celular , Proteínas de Escherichia coli , Escherichia coli , Microscopía de Fuerza Atómica , Simportadores , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/ultraestructura , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestructura , Simportadores/genética , Simportadores/metabolismo , Simportadores/ultraestructura
5.
Nat Commun ; 13(1): 991, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35181664

RESUMEN

The homo-dimeric bacterial membrane protein EmrE effluxes polyaromatic cationic substrates in a proton-coupled manner to cause multidrug resistance. We recently determined the structure of substrate-bound EmrE in phospholipid bilayers by measuring hundreds of protein-ligand HN-F distances for a fluorinated substrate, 4-fluoro-tetraphenylphosphonium (F4-TPP+), using solid-state NMR. This structure was solved at low pH where one of the two proton-binding Glu14 residues is protonated. Here, to understand how substrate transport depends on pH, we determine the structure of the EmrE-TPP complex at high pH, where both Glu14 residues are deprotonated. The high-pH complex exhibits an elongated and hydrated binding pocket in which the substrate is similarly exposed to the two sides of the membrane. In contrast, the low-pH complex asymmetrically exposes the substrate to one side of the membrane. These pH-dependent EmrE conformations provide detailed insights into the alternating-access model, and suggest that the high-pH conformation may facilitate proton binding in the presence of the substrate, thus accelerating the conformational change of EmrE to export the substrate.


Asunto(s)
Antiportadores/metabolismo , Proteínas de Escherichia coli/metabolismo , Protones , Antiportadores/ultraestructura , Farmacorresistencia Bacteriana Múltiple , Proteínas de Escherichia coli/ultraestructura , Concentración de Iones de Hidrógeno , Simulación del Acoplamiento Molecular , Resonancia Magnética Nuclear Biomolecular , Compuestos Onio/metabolismo , Compuestos Organofosforados/metabolismo
6.
Nat Struct Mol Biol ; 29(1): 59-66, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35013597

RESUMEN

DNA mismatch repair detects and corrects mismatches introduced during DNA replication. The protein MutS scans for mismatches and coordinates the repair cascade. During this process, MutS undergoes multiple conformational changes in response to ATP binding, hydrolysis and release, but how ATP induces the various MutS conformations is incompletely understood. Here we present four cryogenic electron microscopy structures of Escherichia coli MutS at sequential stages of the ATP hydrolysis cycle that reveal how ATP binding and hydrolysis induce closing and opening of the MutS dimer, respectively. Biophysical analysis demonstrates how DNA binding modulates the ATPase cycle by prevention of hydrolysis during scanning and mismatch binding, while preventing ADP release in the sliding clamp state. Nucleotide release is achieved when MutS encounters single-stranded DNA that is produced during removal of the daughter strand. The combination of ATP binding and hydrolysis and its modulation by DNA enables MutS to adopt the different conformations needed to coordinate the sequential steps of the mismatch repair cascade.


Asunto(s)
Adenosina Trifosfato/metabolismo , Microscopía por Crioelectrón , Reparación de la Incompatibilidad de ADN , ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestructura , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/metabolismo , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/ultraestructura , Adenosina Difosfato/metabolismo , Dominio Catalítico , Escherichia coli , Hidrólisis , Modelos Moleculares , Unión Proteica , Multimerización de Proteína
7.
Biochim Biophys Acta Biomembr ; 1864(1): 183791, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34624277

RESUMEN

Cell membranes provide an environment that is essential to the functions of membrane proteins. Cell membranes are mainly composed of proteins and highly diverse phospholipids. The influence of diverse lipid compositions of native cell membranes on the dynamics of the embedded membrane proteins has not been examined. Here we employ solid-state NMR to investigate the dynamics of E. coli Aquaporin Z (AqpZ) in its native inner cell membranes, and reveal the influence of diverse lipid compositions on the dynamics of AqpZ by comparing it in native cell membranes to that in POPC/POPG bilayers. We demonstrate that the dynamic rigidity of AqpZ generally conserves in both native cell membranes and POPC/POPG bilayers, due to its tightly packed tetrameric structure. In the gel and the liquid crystal phases of lipids, our experimental results show that AqpZ is more dynamic in native cell membranes than that in POPC/POPG bilayers. In addition, we observe that phase transitions of lipids in native membranes are less sensitive to temperature variations compared with that in POPC/POPG bilayers, which results in that the dynamics of AqpZ is less affected by the phase transitions of lipids in native cell membranes than that in POPC/POPG bilayers. This study provides new insights into the dynamics of membrane proteins in native cell membranes.


Asunto(s)
Acuaporinas/química , Membrana Celular/química , Proteínas de Escherichia coli/química , Proteínas de la Membrana/química , Fosfolípidos/química , Acuaporinas/genética , Acuaporinas/ultraestructura , Membrana Celular/genética , Membrana Celular/ultraestructura , Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/ultraestructura , Proteínas de la Membrana/ultraestructura , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Fosfolípidos/genética
8.
Int J Mol Sci ; 22(22)2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34829983

RESUMEN

The BAM is a macromolecular machine responsible for the folding and the insertion of integral proteins into the outer membrane of diderm Gram-negative bacteria. In Escherichia coli, it consists of a transmembrane ß-barrel subunit, BamA, and four outer membrane lipoproteins (BamB-E). Using BAM-specific antibodies, in E. coli cells, the complex is shown to localize in the lateral wall in foci. The machinery was shown to be enriched at midcell with specific cell cycle timing. The inhibition of septation by aztreonam did not alter the BAM midcell localization substantially. Furthermore, the absence of late cell division proteins at midcell did not impact BAM timing or localization. These results imply that the BAM enrichment at the site of constriction does not require an active cell division machinery. Expression of the Tre1 toxin, which impairs the FtsZ filamentation and therefore midcell localization, resulted in the complete loss of BAM midcell enrichment. A similar effect was observed for YidC, which is involved in the membrane insertion of cell division proteins in the inner membrane. The presence of the Z-ring is needed for preseptal peptidoglycan (PG) synthesis. As BAM was shown to be embedded in the PG layer, it is possible that BAM is inserted preferentially simultaneously with de novo PG synthesis to facilitate the insertion of OMPs in the newly synthesized outer membrane.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/ultraestructura , Proteínas Bacterianas/genética , Proteínas del Citoesqueleto/genética , Proteínas de Escherichia coli/genética , Proteínas de Transporte de Membrana/genética , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Bacterianas/ultraestructura , División Celular/genética , Proteínas del Citoesqueleto/ultraestructura , Escherichia coli/química , Escherichia coli/genética , Infecciones por Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/ultraestructura , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/ultraestructura , Lipoproteínas/genética , Lipoproteínas/ultraestructura , Proteínas de Transporte de Membrana/ultraestructura , Pliegue de Proteína , Multimerización de Proteína/genética
9.
Biomolecules ; 11(10)2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34680030

RESUMEN

Bacterial flagella are cell surface protein appendages that are critical for motility and pathogenesis. Flagellar filaments are tubular structures constructed from thousands of copies of the protein flagellin, or FliC, arranged in helical fashion. Individual unfolded FliC subunits traverse the filament pore and are folded and sorted into place with the assistance of the flagellar capping protein complex, an oligomer of the FliD protein. The FliD filament cap is a stool-like structure, with its D2 and D3 domains forming a flat head region, and its D1 domain leg-like structures extending perpendicularly from the head towards the inner core of the filament. Here, using an approach combining bacterial genetics, motility assays, electron microscopy and molecular modeling, we define, in numerous Gram-negative bacteria, which regions of FliD are critical for interaction with FliC subunits and result in the formation of functional flagella. Our data indicate that the D1 domain of FliD is its sole functionally important domain, and that its flexible coiled coil region comprised of helices at its extreme N- and C-termini controls compatibility with the FliC filament. FliD sequences from different bacterial species in the head region are well tolerated. Additionally, head domains can be replaced by small peptides and larger head domains from different species and still produce functional flagella.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas de Escherichia coli/genética , Flagelina/genética , Proteínas de la Membrana/genética , Proteínas Bacterianas/ultraestructura , Escherichia coli/genética , Escherichia coli/patogenicidad , Escherichia coli/ultraestructura , Proteínas de Escherichia coli/ultraestructura , Flagelos/química , Flagelos/genética , Flagelos/ultraestructura , Flagelina/ultraestructura , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/patogenicidad , Filamentos Intermedios/genética , Microscopía Electrónica , Modelos Moleculares , Dominios Proteicos/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidad , Pseudomonas aeruginosa/ultraestructura
10.
Sci Rep ; 11(1): 18885, 2021 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-34556749

RESUMEN

Since 1993, when the structure of Escherichia coli type II L-asparaginase (EcAII) in complex with L-aspartate was firstly reported, many structures of the wild type and mutated enzyme have been deposited in the Protein Data Bank. None of them report the full structure of the monomer in its ligand-free, open conformation, mainly because of the high dynamic and flexibility of the active site flexible loop. Here we report for the first time the structure of EcAII wild type in its open conformation comprising, for at least one protomer, clear electron density for the active site flexible loop (PDB ID: 6YZI). The structural element is highly mobile and it is transposed onto the rigid part of the active site upon substrate binding to allow completion of the enzyme catalytic center, thanks to key residues that serve as hinges and anchoring points. In the substrate binding pocket, several highly conserved water molecules are coordinated by residues involved in substrate binding, comprising two water molecules very likely involved in the enzyme catalytic process. We also describe, by molecular dynamics simulations, how the transposition of the loop, besides providing the proximity of residues needed for catalysis, causes a general stabilization of the protein.


Asunto(s)
Asparaginasa/ultraestructura , Proteínas de Escherichia coli/ultraestructura , Proteínas Recombinantes/ultraestructura , Asparaginasa/aislamiento & purificación , Dominio Catalítico , Escherichia coli/enzimología , Proteínas de Escherichia coli/aislamiento & purificación , Simulación de Dinámica Molecular , Estabilidad Proteica , Proteínas Recombinantes/aislamiento & purificación , Difracción de Rayos X
11.
Nucleic Acids Res ; 49(16): 9539-9547, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34403461

RESUMEN

In Escherichia coli, elevated levels of free l-tryptophan (l-Trp) promote translational arrest of the TnaC peptide by inhibiting its termination. However, the mechanism by which translation-termination by the UGA-specific decoding release factor 2 (RF2) is inhibited at the UGA stop codon of stalled TnaC-ribosome-nascent chain complexes has so far been ambiguous. This study presents cryo-EM structures for ribosomes stalled by TnaC in the absence and presence of RF2 at average resolutions of 2.9 and 3.5 Å, respectively. Stalled TnaC assumes a distinct conformation composed of two small α-helices that act together with residues in the peptide exit tunnel (PET) to coordinate a single L-Trp molecule. In addition, while the peptidyl-transferase center (PTC) is locked in a conformation that allows RF2 to adopt its canonical position in the ribosome, it prevents the conserved and catalytically essential GGQ motif of RF2 from adopting its active conformation in the PTC. This explains how translation of the TnaC peptide effectively allows the ribosome to function as a L-Trp-specific small-molecule sensor that regulates the tnaCAB operon.


Asunto(s)
Proteínas de Escherichia coli/ultraestructura , Factores de Terminación de Péptidos/ultraestructura , Biosíntesis de Proteínas , Ribosomas/ultraestructura , Codón de Terminación/genética , Microscopía por Crioelectrón , Escherichia coli/genética , Escherichia coli/ultraestructura , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Factores de Terminación de Péptidos/química , Factores de Terminación de Péptidos/genética , Conformación Proteica , Conformación Proteica en Hélice alfa , Ribosomas/genética , Triptófano/genética
12.
Nat Commun ; 12(1): 4174, 2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34234105

RESUMEN

The folding of ß-barrel outer membrane proteins (OMPs) in Gram-negative bacteria is catalysed by the ß-barrel assembly machinery (BAM). How lateral opening in the ß-barrel of the major subunit BamA assists in OMP folding, and the contribution of membrane disruption to BAM catalysis remain unresolved. Here, we use an anti-BamA monoclonal antibody fragment (Fab1) and two disulphide-crosslinked BAM variants (lid-locked (LL), and POTRA-5-locked (P5L)) to dissect these roles. Despite being lethal in vivo, we show that all complexes catalyse folding in vitro, albeit less efficiently than wild-type BAM. CryoEM reveals that while Fab1 and BAM-P5L trap an open-barrel state, BAM-LL contains a mixture of closed and contorted, partially-open structures. Finally, all three complexes globally destabilise the lipid bilayer, while BamA does not, revealing that the BAM lipoproteins are required for this function. Together the results provide insights into the role of BAM structure and lipid dynamics in OMP folding.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Hidrolasas/metabolismo , Liposomas/metabolismo , Pliegue de Proteína , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/aislamiento & purificación , Proteínas de la Membrana Bacteriana Externa/ultraestructura , Microscopía por Crioelectrón , Dispersión Dinámica de Luz , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/aislamiento & purificación , Proteínas de Escherichia coli/ultraestructura , Hidrolasas/genética , Hidrolasas/aislamiento & purificación , Hidrolasas/ultraestructura , Metabolismo de los Lípidos , Liposomas/ultraestructura , Simulación de Dinámica Molecular , Conformación Proteica en Lámina beta , Proteolípidos/metabolismo , Proteolípidos/ultraestructura , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura
13.
Int J Mol Sci ; 22(11)2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34205216

RESUMEN

Two independent, complementary methods of structural analysis were used to elucidate the effect of divalent magnesium and iron cations on the structure of the protective Dps-DNA complex. Small-angle X-ray scattering (SAXS) and cryo-electron microscopy (cryo-EM) demonstrate that Mg2+ ions block the N-terminals of the Dps protein preventing its interaction with DNA. Non-interacting macromolecules of Dps and DNA remain in the solution in this case. The subsequent addition of the chelating agent (EDTA) leads to a complete restoration of the structure of the complex. Different effect was observed when Fe cations were added to the Dps-DNA complex; the presence of Fe2+ in solution leads to the total complex destruction and aggregation without possibility of the complex restoration with the chelating agent. Here, we discuss these different responses of the Dps-DNA complex on the presence of additional free metal cations, investigating the structure of the Dps protein with and without cations using SAXS and cryo-EM. Additionally, the single particle analysis of Dps with accumulated iron performed by cryo-EM shows localization of iron nanoparticles inside the Dps cavity next to the acidic (hydrophobic) pore, near three glutamate residues.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/ultraestructura , ADN/ultraestructura , Proteínas de Escherichia coli/ultraestructura , Hierro/química , Magnesio/química , Secuencia de Aminoácidos/efectos de los fármacos , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Cationes/química , Microscopía por Crioelectrón , ADN/química , ADN/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/ultraestructura , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Dispersión del Ángulo Pequeño , Difracción de Rayos X
14.
Nature ; 594(7863): 385-390, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34135520

RESUMEN

Understanding structural dynamics of biomolecules at the single-molecule level is vital to advancing our knowledge of molecular mechanisms. Currently, there are few techniques that can capture dynamics at the sub-nanometre scale and in physiologically relevant conditions. Atomic force microscopy (AFM)1 has the advantage of analysing unlabelled single molecules in physiological buffer and at ambient temperature and pressure, but its resolution limits the assessment of conformational details of biomolecules2. Here we present localization AFM (LAFM), a technique developed to overcome current resolution limitations. By applying localization image reconstruction algorithms3 to peak positions in high-speed AFM and conventional AFM data, we increase the resolution beyond the limits set by the tip radius, and resolve single amino acid residues on soft protein surfaces in native and dynamic conditions. LAFM enables the calculation of high-resolution maps from either images of many molecules or many images of a single molecule acquired over time, facilitating single-molecule structural analysis. LAFM is a post-acquisition image reconstruction method that can be applied to any biomolecular AFM dataset.


Asunto(s)
Microscopía de Fuerza Atómica/métodos , Microscopía de Fuerza Atómica/normas , Algoritmos , Aminoácidos/química , Anexina A5/química , Anexina A5/ultraestructura , Acuaporinas/química , Acuaporinas/ultraestructura , Canales de Cloruro/química , Canales de Cloruro/ultraestructura , Conjuntos de Datos como Asunto , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/ultraestructura , Humanos , Concentración de Iones de Hidrógeno , Simulación de Dinámica Molecular
16.
PLoS Genet ; 17(4): e1009366, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33857142

RESUMEN

SEDS family peptidoglycan (PG) glycosyltransferases, RodA and FtsW, require their cognate transpeptidases PBP2 and FtsI (class B penicillin binding proteins) to synthesize PG along the cell cylinder and at the septum, respectively. The activities of these SEDS-bPBPs complexes are tightly regulated to ensure proper cell elongation and division. In Escherichia coli FtsN switches FtsA and FtsQLB to the active forms that synergize to stimulate FtsWI, but the exact mechanism is not well understood. Previously, we isolated an activation mutation in ftsW (M269I) that allows cell division with reduced FtsN function. To try to understand the basis for activation we isolated additional substitutions at this position and found that only the original substitution produced an active mutant whereas drastic changes resulted in an inactive mutant. In another approach we isolated suppressors of an inactive FtsL mutant and obtained FtsWE289G and FtsIK211I and found they bypassed FtsN. Epistatic analysis of these mutations and others confirmed that the FtsN-triggered activation signal goes from FtsQLB to FtsI to FtsW. Mapping these mutations, as well as others affecting the activity of FtsWI, on the RodA-PBP2 structure revealed they are located at the interaction interface between the extracellular loop 4 (ECL4) of FtsW and the pedestal domain of FtsI (PBP3). This supports a model in which the interaction between the ECL4 of SEDS proteins and the pedestal domain of their cognate bPBPs plays a critical role in the activation mechanism.


Asunto(s)
Proteínas Bacterianas/ultraestructura , Proteínas de Escherichia coli/ultraestructura , Proteínas de la Membrana/ultraestructura , Complejos Multiproteicos/ultraestructura , Proteínas de Unión a las Penicilinas/ultraestructura , Peptidoglicano Glicosiltransferasa/ultraestructura , Conformación Proteica , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Proteínas de Unión a las Penicilinas/química , Proteínas de Unión a las Penicilinas/genética , Peptidoglicano/química , Peptidoglicano/genética , Peptidoglicano/ultraestructura , Peptidoglicano Glicosiltransferasa/química , Peptidoglicano Glicosiltransferasa/genética , Peptidil Transferasas/química , Peptidil Transferasas/genética , Peptidil Transferasas/ultraestructura
17.
mBio ; 12(2)2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33820823

RESUMEN

Gram-negative bacteria utilize the resistance-nodulation-cell division (RND) superfamily of efflux pumps to expel a variety of toxic compounds from the cell. The Escherichia coli CusA membrane protein, which recognizes and extrudes biocidal Cu(I) and Ag(I) ions, belongs to the heavy-metal efflux (HME) subfamily of RND efflux pumps. We here report four structures of the trimeric CusA heavy-metal efflux pump in the presence of Cu(I) using single-particle cryo-electron microscopy (cryo-EM). We discover that different CusA protomers within the trimer are able to bind Cu(I) ions simultaneously. Our structural data combined with molecular dynamics (MD) simulations allow us to propose a mechanism for ion transport where each CusA protomer functions independently within the trimer.IMPORTANCE The bacterial RND superfamily of efflux pumps mediate resistance to a variety of biocides, including Cu(I) and Ag(I) ions. Here we report four cryo-EM structures of the trimeric CusA pump in the presence of Cu(I). Combined with MD simulations, our data indicate that each CusA protomer within the trimer recognizes and extrudes Cu(I) independently.


Asunto(s)
Microscopía por Crioelectrón , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Transporte Iónico , Proteínas de Transporte de Membrana/química , Metales Pesados/metabolismo , Sitios de Unión , Transporte Biológico , Cobre/metabolismo , Escherichia coli/genética , Escherichia coli/ultraestructura , Proteínas de Escherichia coli/ultraestructura , Proteínas de Transporte de Membrana/ultraestructura , Simulación de Dinámica Molecular , Unión Proteica , Plata/metabolismo
18.
Nat Struct Mol Biol ; 28(4): 373-381, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33820992

RESUMEN

DNA mismatch repair detects and removes mismatches from DNA by a conserved mechanism, reducing the error rate of DNA replication by 100- to 1,000-fold. In this process, MutS homologs scan DNA, recognize mismatches and initiate repair. How the MutS homologs selectively license repair of a mismatch among millions of matched base pairs is not understood. Here we present four cryo-EM structures of Escherichia coli MutS that provide snapshots, from scanning homoduplex DNA to mismatch binding and MutL activation via an intermediate state. During scanning, the homoduplex DNA forms a steric block that prevents MutS from transitioning into the MutL-bound clamp state, which can only be overcome through kinking of the DNA at a mismatch. Structural asymmetry in all four structures indicates a division of labor between the two MutS monomers. Together, these structures reveal how a small conformational change from the homoduplex- to heteroduplex-bound MutS acts as a licensing step that triggers a dramatic conformational change that enables MutL binding and initiation of the repair cascade.


Asunto(s)
ADN/ultraestructura , Proteínas de Escherichia coli/ultraestructura , Proteínas MutL/ultraestructura , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/ultraestructura , Conformación Proteica , Microscopía por Crioelectrón , ADN/genética , Reparación de la Incompatibilidad de ADN/genética , Reparación del ADN/genética , Replicación del ADN/genética , Escherichia coli/genética , Escherichia coli/ultraestructura , Proteínas de Escherichia coli/genética , Proteínas MutL/genética , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/genética
19.
Nat Struct Mol Biol ; 28(4): 347-355, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33782615

RESUMEN

Lipoproteins in the outer membrane of Gram-negative bacteria are involved in various vital physiological activities, including multidrug resistance. Synthesized in the cytoplasm and matured in the inner membrane, lipoproteins must be transported to the outer membrane through the Lol pathway mediated by the ATP-binding cassette transporter LolCDE in the inner membrane via an unknown mechanism. Here, we report cryo-EM structures of Escherichia coli LolCDE in apo, lipoprotein-bound, LolA-bound, ADP-bound and AMP-PNP-bound states at a resolution of 3.2-3.8 Å, covering the complete lipoprotein transport cycle. Mutagenesis and in vivo viability assays verify features of the structures and reveal functional residues and structural characteristics of LolCDE. The results provide insights into the mechanisms of sorting and transport of outer-membrane lipoproteins and may guide the development of novel therapies against multidrug-resistant Gram-negative bacteria.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/ultraestructura , Proteínas de Escherichia coli/ultraestructura , Lipoproteínas/ultraestructura , Transportadoras de Casetes de Unión a ATP/genética , Adenosina Difosfato/química , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/ultraestructura , Membrana Celular/ultraestructura , Microscopía por Crioelectrón , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Lipoproteínas/genética , Transporte de Proteínas/genética
20.
Biochim Biophys Acta Proteins Proteom ; 1869(7): 140644, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33716191

RESUMEN

Microbacterium hydrocarbonoxydans has been isolated using an unnatural acylhydrazide compound as the sole carbon source. The compound is hydrolyzed by bacterial hydrazidase, and the gene expression of the enzyme is considered to be controlled by a transcription factor of the Isocitrate lyase Regulator (IclR) family, belonging to the one-component signaling systems. Recently, we reported the crystal structure of an unliganded IclR homolog from M. hydrocarbonoxydans, named putative 4-hydroxybenzoate response regulator (pHbrR), which has a unique homotetramer conformation. In this study, we report the crystal structure of pHbrR complexed with 4-hydroxybenzoic acid, the catalytic product of hydrazidase, at 2.0 Å resolution. pHbrR forms a homodimer with multimeric rearrangement in the unliganded state. Gel filtration column chromatography results suggested dimer-tetramer rearrangement. We observed conformational change in the loop region covering the ligand-binding site, and domain rearrangements in the monomer. This study reports the first liganded IclR family protein structure that demonstrates large structural rearrangements between liganded and unliganded proteins, which may represent a general model for IclRs.


Asunto(s)
Isocitratoliasa/metabolismo , Factores de Transcripción/metabolismo , Proteínas Bacterianas/química , Sitios de Unión , Cristalografía por Rayos X/métodos , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestructura , Isocitratoliasa/ultraestructura , Isocitratos , Ligandos , Microbacterium/metabolismo , Modelos Moleculares , Conformación Proteica , Proteínas Represoras/metabolismo , Proteínas Represoras/ultraestructura , Factores de Transcripción/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...