Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 302
Filtrar
1.
Cancer Med ; 13(13): e7424, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38988047

RESUMEN

BACKGROUND: Gastric cancer (GC) is the fourth leading cause of cancer-related death worldwide. Minichromsome maintenance proteins family member 8 (MCM8) assists DNA repair and DNA replication. MCM8 exerts tumor promotor function in multiple digestive system tumors. MCM8 is also considered as a potential cancer therapeutic target. METHODS: Bioinformatics methods were used to analyze MCM8 expression and clinicopathological significance. MCM8 expression was detected by immunohistochemistry (IHC) staining and qRT-PCR. MCM8 functions in GC cell were explored by Celigo cell counting, colony formation, wound-healing, transwell, and annexin V-APC staining assays. The target of MCM8 was determined by human gene expression profile microarray. Human phospho-kinase array kit evaluated changes in key proteins after ribosomal protein S15A (RPS15A) knockdown. MCM8 functions were reassessed in xenograft mouse model. IHC detected related proteins expression in mouse tumor sections. RESULTS: MCM8 was significantly upregulated and predicted poor prognosis in GC. High expression of MCM8 was positively correlated with lymph node positive (p < 0.001), grade (p < 0.05), AJCC Stage (p < 0.001), pathologic T (p < 0.01), and pathologic N (p < 0.001). MCM8 knockdown inhibited proliferation, migration, and invasion while promoting apoptosis. RPS15A expression decreased significantly after MCM8 knockdown. It was also the only candidate target, which ranked among the top 10 downregulated differentially expressed genes (DEGs) in sh-MCM8 group. RPS15A was identified as the target of MCM8 in GC. MCM8/RPS15A promoted phosphorylation of P38α, LYN, and p70S6K. Moreover, MCM8 knockdown inhibited tumor growth, RPS15A expression, and phosphorylation of P38α, LYN, and p70S6K in vivo. CONCLUSIONS: MCM8 is an oncogene and predicts poor prognosis in GC. MCM8/RPS15A facilitates GC progression.


Asunto(s)
Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Proteínas Ribosómicas , Neoplasias Gástricas , Humanos , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidad , Animales , Ratones , Pronóstico , Femenino , Masculino , Línea Celular Tumoral , Progresión de la Enfermedad , Persona de Mediana Edad , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas de Mantenimiento de Minicromosoma/genética , Apoptosis , Ratones Desnudos , Movimiento Celular , Ensayos Antitumor por Modelo de Xenoinjerto , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética
2.
J Cell Mol Med ; 28(12): e18488, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39031896

RESUMEN

MCM8 is a helicase, which participates in DNA replication and tumorigenesis and is upregulated in many human cancers, including lung cancer (LC); however, the function of MCM8 in LC tumour progression is unclear. In this study, we found that MCM8 was expressed at high levels in LC cells and tissues. Further, MCM8 upregulation was associated with advanced tumour grade and lymph node metastasis, and indicated poor prognosis. Silencing of MCM8 suppressed cell growth and migration in vitro and in vivo, while ectopic MCM8 expression promoted cell cycle progression, as well as cell migration, proliferation, and apoptosis. Mechanistically, DNAJC10 was identified as a downstream target of MCM8, using gene array and CO-IP assays. DNAJC10 overexpression combatted the inhibitory activity of MCM8 knockdown on LC progression, while silencing DNAJC10 alleviated the oncogenic function of MCM8 overexpression. MCM8 expression was positively correlated with that of DNAJC10 in LC samples from The Cancer Genome Atlas database, and DNAJC10 upregulation was also associated with poor overall survival of patients with LC. This study indicated that MCM8/DNAJC10 axis plays an important role in in LC development, and maybe as a new potential therapeutic target or a diagnostic biomarker for treating patients with LC.


Asunto(s)
Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares , Proteínas de Mantenimiento de Minicromosoma , Humanos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas de Mantenimiento de Minicromosoma/genética , Proliferación Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Masculino , Animales , Femenino , Ratones , Apoptosis/genética , Regulación hacia Arriba/genética , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas del Choque Térmico HSP40/genética , Pronóstico , Ratones Desnudos , Persona de Mediana Edad , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética
3.
DNA Repair (Amst) ; 141: 103713, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38959715

RESUMEN

Eukaryotic DNA replication is a tightly controlled process that occurs in two main steps, i.e., licensing and firing, which take place in the G1 and S phases of the cell cycle, respectively. In Saccharomyces cerevisiae, the budding yeast, replication origins contain consensus sequences that are recognized and bound by the licensing factor Orc1-6, which then recruits the replicative Mcm2-7 helicase. By contrast, mammalian initiation sites lack such consensus sequences, and the mammalian ORC does not exhibit sequence specificity. Studies performed over the past decades have identified replication initiation sites in the mammalian genome using sequencing-based assays, raising the question of whether replication initiation occurs at confined sites or in broad zones across the genome. Although recent reports have shown that the licensed MCMs in mammalian cells are broadly distributed, suggesting that ORC-dependent licensing may not determine the initiation sites/zones, they are predominantly located upstream of actively transcribed genes. This review compares the mechanism of replication initiation in yeast and mammalian cells, summarizes the sequencing-based technologies used for the identification of initiation sites/zones, and proposes a possible mechanism of initiation-site/zone selection in mammalian cells. Future directions and challenges in this field are also discussed.


Asunto(s)
Replicación del ADN , Origen de Réplica , Saccharomyces cerevisiae , Animales , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Complejo de Reconocimiento del Origen/metabolismo , Complejo de Reconocimiento del Origen/genética , Mamíferos/genética , Genoma , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas de Mantenimiento de Minicromosoma/genética
4.
EMBO J ; 43(14): 3044-3071, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38858601

RESUMEN

MCM8 has emerged as a core gene in reproductive aging and is crucial for meiotic homologous recombination repair. It also safeguards genome stability by coordinating the replication stress response during mitosis, but its function in mitotic germ cells remains elusive. Here we found that disabling MCM8 in mice resulted in proliferation defects of primordial germ cells (PGCs) and ultimately impaired fertility. We further demonstrated that MCM8 interacted with two known helicases DDX5 and DHX9, and loss of MCM8 led to R-loop accumulation by reducing the retention of these helicases at R-loops, thus inducing genome instability. Cells expressing premature ovarian insufficiency-causative mutants of MCM8 with decreased interaction with DDX5 displayed increased R-loop levels. These results show MCM8 interacts with R-loop-resolving factors to prevent R-loop-induced DNA damage, which may contribute to the maintenance of genome integrity of PGCs and reproductive reserve establishment. Our findings thus reveal an essential role for MCM8 in PGC development and improve our understanding of reproductive aging caused by genome instability in mitotic germ cells.


Asunto(s)
ARN Helicasas DEAD-box , Inestabilidad Genómica , Proteínas de Mantenimiento de Minicromosoma , Estructuras R-Loop , Animales , Femenino , Humanos , Masculino , Ratones , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Daño del ADN , Células Germinativas/metabolismo , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas de Mantenimiento de Minicromosoma/genética , Estructuras R-Loop/genética
5.
Nat Struct Mol Biol ; 31(8): 1265-1276, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38760633

RESUMEN

To prevent detrimental chromosome re-replication, DNA loading of a double hexamer of the minichromosome maintenance (MCM) replicative helicase is temporally separated from DNA unwinding. Upon S-phase transition in yeast, DNA unwinding is achieved in two steps: limited opening of the double helix and topological separation of the two DNA strands. First, Cdc45, GINS and Polε engage MCM to assemble a double CMGE with two partially separated hexamers that nucleate DNA melting. In the second step, triggered by Mcm10, two CMGEs separate completely, eject the lagging-strand template and cross paths. To understand Mcm10 during helicase activation, we used biochemical reconstitution with cryogenic electron microscopy. We found that Mcm10 splits the double CMGE by engaging the N-terminal homo-dimerization face of MCM. To eject the lagging strand, DNA unwinding is started from the N-terminal side of MCM while the hexamer channel becomes too narrow to harbor duplex DNA.


Asunto(s)
Microscopía por Crioelectrón , Replicación del ADN , Proteínas de Mantenimiento de Minicromosoma , Origen de Réplica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestructura , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas de Mantenimiento de Minicromosoma/química , Modelos Moleculares , ADN de Hongos/metabolismo , ADN de Hongos/química , Multimerización de Proteína
7.
PLoS Genet ; 20(5): e1011148, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38776358

RESUMEN

The helicase MCM and the ribonucleotide reductase RNR are the complexes that provide the substrates (ssDNA templates and dNTPs, respectively) for DNA replication. Here, we demonstrate that MCM interacts physically with RNR and some of its regulators, including the kinase Dun1. These physical interactions encompass small subpopulations of MCM and RNR, are independent of the major subcellular locations of these two complexes, augment in response to DNA damage and, in the case of the Rnr2 and Rnr4 subunits of RNR, depend on Dun1. Partial disruption of the MCM/RNR interactions impairs the release of Rad52 -but not RPA-from the DNA repair centers despite the lesions are repaired, a phenotype that is associated with hypermutagenesis but not with alterations in the levels of dNTPs. These results suggest that a specifically regulated pool of MCM and RNR complexes plays non-canonical roles in genetic stability preventing persistent Rad52 centers and hypermutagenesis.


Asunto(s)
Proteínas de Ciclo Celular , Daño del ADN , Reparación del ADN , Replicación del ADN , Inestabilidad Genómica , Proteína Recombinante y Reparadora de ADN Rad52 , Ribonucleótido Reductasas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Replicación del ADN/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Daño del ADN/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/genética , Ribonucleótido Reductasas/genética , Ribonucleótido Reductasas/metabolismo , Reparación del ADN/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas de Mantenimiento de Minicromosoma/genética , Proteína de Replicación A/metabolismo , Proteína de Replicación A/genética , Ribonucleósido Difosfato Reductasa/genética , Ribonucleósido Difosfato Reductasa/metabolismo
8.
Nat Commun ; 15(1): 3584, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678026

RESUMEN

HROB promotes the MCM8-9 helicase in DNA damage response. To understand how HROB activates MCM8-9, we defined their interaction interface. We showed that HROB makes important yet transient contacts with both MCM8 and MCM9, and binds the MCM8-9 heterodimer with the highest affinity. MCM8-9-HROB prefer branched DNA structures, and display low DNA unwinding processivity. MCM8-9 unwinds DNA as a hexamer that assembles from dimers on DNA in the presence of ATP. The hexamer involves two repeating protein-protein interfaces between the alternating MCM8 and MCM9 subunits. One of these interfaces is quite stable and forms an obligate heterodimer across which HROB binds. The other interface is labile and mediates hexamer assembly, independently of HROB. The ATPase site formed at the labile interface contributes disproportionally more to DNA unwinding than that at the stable interface. Here, we show that HROB promotes DNA unwinding downstream of MCM8-9 loading and ring formation on ssDNA.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN , Proteínas de Mantenimiento de Minicromosoma , Humanos , Adenosina Trifosfato/metabolismo , ADN/metabolismo , ADN/química , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas de Mantenimiento de Minicromosoma/genética , Unión Proteica , Multimerización de Proteína , Reparación del ADN/genética
9.
Gene ; 916: 148449, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38588931

RESUMEN

Germline-specific genes are usually activated in cancer cells and drive cancer progression; such genes are called cancer-germline or cancer-testis genes. The RNA-binding protein DAZL is predominantly expressed in germ cells and plays a role in gametogenesis as a translational activator or repressor. However, its expression and role in non-small cell lung cancer (NSCLC) are unknown. Here, mining of RNA-sequencing data from public resources and immunohistochemical analysis of tissue microarrays showed that DAZL was expressed exclusively in testis among normal human tissues but ectopically expressed in NSCLC tissues. Testis and NSCLC cells expressed the shorter and longer transcript variants of the DAZL gene, respectively. Overexpression of the longer DAZL transcript promoted tumor growth in a mouse xenograft model. Silencing of DAZL suppressed cell proliferation, colony formation, migration, invasion, and cisplatin resistance in vitro and tumor growth in vivo. Quantitative proteomic analysis based on tandem mass tag and Western blot analysis showed that DAZL upregulated the expression of JAK2 and MCM8. RNA-binding protein immunoprecipitation assays showed that DAZL bound to the mRNA of JAK2 and MCM8. The JAK2 inhibitor fedratinib attenuated the oncogenic outcomes induced by DAZL overexpression, whereas silencing MCM8 counteracted the effects of DAZL overexpression on cisplatin-damaged DNA synthesis and half-maximal inhibitory concentration of cisplatin. In conclusion, DAZL was identified as a novel cancer-germline gene that enhances the translation of JAK2 and MCM8 to promote NSCLC progression and resistance to cisplatin, respectively. These findings suggest that DAZL is a potential therapeutic target in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Cisplatino , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Janus Quinasa 2 , Neoplasias Pulmonares , Proteínas de Mantenimiento de Minicromosoma , Proteínas de Unión al ARN , Animales , Femenino , Humanos , Masculino , Ratones , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cisplatino/farmacología , Progresión de la Enfermedad , Resistencia a Antineoplásicos/genética , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Ratones Endogámicos BALB C , Ratones Desnudos , Proteínas de Mantenimiento de Minicromosoma/genética , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Genes (Basel) ; 15(3)2024 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-38540419

RESUMEN

The initiation reactions of DNA synthesis are central processes during human chromosomal DNA replication. They are separated into two main processes: the initiation events at replication origins, the start of the leading strand synthesis for each replicon, and the numerous initiation events taking place during lagging strand DNA synthesis. In addition, a third mechanism is the re-initiation of DNA synthesis after replication fork stalling, which takes place when DNA lesions hinder the progression of DNA synthesis. The initiation of leading strand synthesis at replication origins is regulated at multiple levels, from the origin recognition to the assembly and activation of replicative helicase, the Cdc45-MCM2-7-GINS (CMG) complex. In addition, the multiple interactions of the CMG complex with the eukaryotic replicative DNA polymerases, DNA polymerase α-primase, DNA polymerase δ and ε, at replication forks play pivotal roles in the mechanism of the initiation reactions of leading and lagging strand DNA synthesis. These interactions are also important for the initiation of signalling at unperturbed and stalled replication forks, "replication stress" events, via ATR (ATM-Rad 3-related protein kinase). These processes are essential for the accurate transfer of the cells' genetic information to their daughters. Thus, failures and dysfunctions in these processes give rise to genome instability causing genetic diseases, including cancer. In their influential review "Hallmarks of Cancer: New Dimensions", Hanahan and Weinberg (2022) therefore call genome instability a fundamental function in the development process of cancer cells. In recent years, the understanding of the initiation processes and mechanisms of human DNA replication has made substantial progress at all levels, which will be discussed in the review.


Asunto(s)
Replicación del ADN , ADN , Humanos , ADN/genética , ADN/metabolismo , Replicación del ADN/genética , ADN Polimerasa III/genética , ADN Polimerasa III/metabolismo , Proteínas de Mantenimiento de Minicromosoma/genética , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Inestabilidad Genómica
11.
Mol Diagn Ther ; 28(3): 249-264, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38530633

RESUMEN

The minichromosome maintenance (MCM) protein is a component of an active helicase that is essential for the initiation of DNA replication. Dysregulation of MCM functions contribute to abnormal cell proliferation and genomic instability. The interactions of MCM with cellular factors, including Cdc45 and GINS, determine the formation of active helicase and functioning of helicase. The functioning of MCM determines the fate of DNA replication and, thus, genomic integrity. This complex is upregulated in precancerous cells and can act as an important tool for diagnostic applications. The MCM protein complex can be an important broad-spectrum therapeutic target in various cancers. Investigations have supported the potential and applications of MCM in cancer diagnosis and its therapeutics. In this article, we discuss the physiological roles of MCM and its associated factors in DNA replication and cancer pathogenesis.


Asunto(s)
Replicación del ADN , Proteínas de Mantenimiento de Minicromosoma , Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/terapia , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas de Mantenimiento de Minicromosoma/genética , Inestabilidad Genómica , Biomarcadores de Tumor/metabolismo , ADN Helicasas/metabolismo , ADN Helicasas/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Animales
12.
Science ; 384(6691): 119-124, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38484038

RESUMEN

Newly copied sister chromatids are tethered together by the cohesin complex, but how sister chromatid cohesion coordinates with DNA replication is poorly understood. Prevailing models suggest that cohesin complexes, bound to DNA before replication, remain behind the advancing replication fork to keep sister chromatids together. By visualizing single replication forks colliding with preloaded cohesin complexes, we find that the replisome instead pushes cohesin to where a converging replisome is met. Whereas the converging replisomes are removed during DNA replication termination, cohesin remains on nascent DNA and provides cohesion. Additionally, we show that CMG (CDC45-MCM2-7-GINS) helicase disassembly during replication termination is vital for proper cohesion in budding yeast. Together, our results support a model wherein sister chromatid cohesion is established during DNA replication termination.


Asunto(s)
Cromátides , Cohesinas , Replicación del ADN , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Intercambio de Cromátides Hermanas , Cromátides/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cohesinas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
13.
Nat Commun ; 15(1): 1797, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413589

RESUMEN

Activation of the replicative Mcm2-7 helicase by loading GINS and Cdc45 is crucial for replication origin firing, and as such for faithful genetic inheritance. Our biochemical and structural studies demonstrate that the helicase activator GINS interacts with TopBP1 through two separate binding surfaces, the first involving a stretch of highly conserved amino acids in the TopBP1-GINI region, the second a surface on TopBP1-BRCT4. The two surfaces bind to opposite ends of the A domain of the GINS subunit Psf1. Mutation analysis reveals that either surface is individually able to support TopBP1-GINS interaction, albeit with reduced affinity. Consistently, either surface is sufficient for replication origin firing in Xenopus egg extracts and becomes essential in the absence of the other. The TopBP1-GINS interaction appears sterically incompatible with simultaneous binding of DNA polymerase epsilon (Polε) to GINS when bound to Mcm2-7-Cdc45, although TopBP1-BRCT4 and the Polε subunit PolE2 show only partial competitivity in binding to Psf1. Our TopBP1-GINS model improves the understanding of the recently characterised metazoan pre-loading complex. It further predicts the coordination of three molecular origin firing processes, DNA polymerase epsilon arrival, TopBP1 ejection and GINS integration into Mcm2-7-Cdc45.


Asunto(s)
Replicación del ADN , Proteínas de Unión al ADN , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa II/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Replicación Viral
14.
Commun Biol ; 7(1): 167, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336851

RESUMEN

Accurate and complete replication of genetic information is a fundamental process of every cell division. The replication licensing is the first essential step that lays the foundation for error-free genome duplication. During licensing, minichromosome maintenance protein complexes, the molecular motors of DNA replication, are loaded to genomic sites called replication origins. The correct quantity and functioning of licensed origins are necessary to prevent genome instability associated with severe diseases, including cancer. Here, we delve into recent discoveries that shed light on the novel functions of licensed origins, the pathways necessary for their proper maintenance, and their implications for cancer therapies.


Asunto(s)
Replicación del ADN , Neoplasias , Humanos , Proteínas de Mantenimiento de Minicromosoma/genética , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Neoplasias/genética
15.
Histol Histopathol ; 39(4): 471-482, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37526267

RESUMEN

BACKGROUND: Head and neck squamous cell carcinoma (HNSC) is a common malignant tumor in the world and has a poor prognosis. The family of minichromosome maintenance proteins (MCM) improves the stability of genome replication by inhibiting the rate of DNA replication in eukaryotic cells, thus, small changes in physiological MCM levels would increase the instability of gene replication and increase the incidence of tumor formation, most of which are significantly elevated in multiple cancers. However, the expression of different MCM families in HNSC and their prognostic value remain unclear. METHODS: ONCOMINE and GEPIA databases were used to analyze the expression of MCMs in HNSC. The Kaplan-Meier plotter database was used to identify molecules with prognostic values. We collected 77 HNSC tissues and 50 normal tissues to validate the results of the bioinformatics analysis by immunohistochemical staining. RESULTS: The expression of MCM3, MCM5 and MCM6 in mRNA and protein levels were higher in HNSC. Moreover, the increased expression of MCM3, MCM5 and MCM6 in mRNA and protein levels predicted better prognosis of HNSC patients. Furthermore, multivariate analysis showed that high expressions of MCM3, MCM5 and MCM6 in protein level may be independent prognostic factors for HNSC patients. CONCLUSION: The results of this study indicated that MCM3, MCM5 and MCM6 play an important role in occurrence and development in HNSC and might be risk factors for the survival of HNSC patients.


Asunto(s)
Neoplasias de Cabeza y Cuello , Proteínas de Mantenimiento de Minicromosoma , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello , Pronóstico , Proteínas de Mantenimiento de Minicromosoma/genética , Proteínas de Mantenimiento de Minicromosoma/metabolismo , ARN Mensajero
16.
Biochim Biophys Acta Mol Cell Res ; 1871(1): 119621, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37907194

RESUMEN

The replication of DNA requires specialized and intricate machinery. This machinery is known as a replisome and is highly evolutionarily conserved, from simple unicellular organisms such as yeast to human cells. The replisome comprises multiple protein complexes responsible for various steps in the replication process. One crucial component of the replisome is the Cdc45-MCM-GINS (CMG) helicase complex, which unwinds double-stranded DNA and coordinates the assembly and function of other replisome components, including DNA polymerases. The genes encoding the CMG helicase components are essential for initiating DNA replication. In this study, we aimed to investigate how the absence of one copy of the CMG complex genes in heterozygous Saccharomyces cerevisiae cells impacts the cells' physiology and aging. Our data revealed that these cells exhibited a significant reduction in transcript levels for the respective CMG helicase complex proteins, as well as disruptions in the cell cycle, extended doubling times, and alterations in their biochemical profile. Notably, this study provided the first demonstration that cells heterozygous for genes encoding subunits of the CMG helicase exhibited a significantly increased reproductive potential and delayed chronological aging. Additionally, we observed a noteworthy correlation between RNA and polysaccharide levels in yeast and their reproductive potential, as well as a correlation between fatty acid levels and cell doubling times. Our findings also shed new light on the potential utility of yeast in investigating potential therapeutic targets for cancer treatment.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Humanos , Saccharomyces cerevisiae/metabolismo , Replicación del ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Proteínas de Mantenimiento de Minicromosoma/química , Proteínas de Mantenimiento de Minicromosoma/genética , Proteínas de Mantenimiento de Minicromosoma/metabolismo , ADN
17.
Nat Commun ; 14(1): 8049, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38081811

RESUMEN

The mammalian DNA replication timing (RT) program is crucial for the proper functioning and integrity of the genome. The best-known mechanism for controlling RT is the suppression of late origins of replication in heterochromatin by RIF1. Here, we report that in antigen-activated, hypermutating murine B lymphocytes, RIF1 binds predominantly to early-replicating active chromatin and promotes early replication, but plays a minor role in regulating replication origin activity, gene expression and genome organization in B cells. Furthermore, we find that RIF1 functions in a complementary and non-epistatic manner with minichromosome maintenance (MCM) proteins to establish early RT signatures genome-wide and, specifically, to ensure the early replication of highly transcribed genes. These findings reveal additional layers of regulation within the B cell RT program, driven by the coordinated activity of RIF1 and MCM proteins.


Asunto(s)
Momento de Replicación del ADN , Replicación del ADN , Animales , Ratones , Cromatina/genética , Replicación del ADN/genética , Heterocromatina/genética , Mamíferos/genética , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Origen de Réplica/genética , Proteínas de Unión a Telómeros/metabolismo
18.
Proc Natl Acad Sci U S A ; 120(52): e2316466120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38109526

RESUMEN

DNA replication in all cells begins with the melting of base pairs at the duplex origin to allow access to single-stranded DNA templates which are replicated by DNA polymerases. In bacteria, origin DNA is presumed to be melted by accessory proteins that allow loading of two ring-shaped replicative helicases around single-strand DNA (ssDNA) for bidirectional unwinding and DNA replication. In eukaryotes, by contrast, two replicative CMG (Cdc45-Mcm2-7-GINS) helicases are initially loaded head to head around origin double-strand DNA (dsDNA), and there does not appear to be a separate origin unwinding factor. This led us to investigate whether head-to-head CMGs use their adenosine triphosphate (ATP)-driven motors to initiate duplex DNA unwinding at the origin. Here, we show that CMG tracks on one strand of the duplex while surrounding it, and this feature allows two head-to-head CMGs to unwind dsDNA by using their respective motors to pull on opposite strands of the duplex. We further show that while CMG is capable of limited duplex unwinding on its own, the extent of unwinding is greatly and rapidly stimulated by addition of the multifunctional CMG-binding protein Mcm10 that is critical for productive initiation of DNA replication in vivo. On the basis of these findings, we propose that Mcm10 is a processivity or positioning factor that helps translate the work performed by the dual CMG motors at the origin into productive unwinding that facilitates bidirectional DNA replication.


Asunto(s)
Proteínas de Mantenimiento de Minicromosoma , Proteínas de Saccharomyces cerevisiae , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Replicación del ADN , ADN/metabolismo , ADN de Cadena Simple/genética
19.
Front Biosci (Landmark Ed) ; 28(9): 230, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37796706

RESUMEN

BACKGROUND: Epigenetic modifications, such as transcription, DNA repair, and replication significantly influence tumour development. Aberrant gene expression and modifications can have a crucial impact on the initiation and progression of tumours. The minichromosome maintenance (MCM) protein family, which is responsible for DNA synthesis, plays a crucial role in tumorigenesis and chemotherapy resistance by regulating the cell cycle and DNA replication stress. Recent studies have shown that dysregulation of the MCMs can lead to these negative outcomes. This study aimed to examine the role of the MCM proteins in DNA synthesis in 33 types of cancers. METHODS: Various public databases were used to examine the expression, methylation regulation, mutations, and functions of eight MCM proteins (MCM2-9) in pan-cancer. The study investigated the correlation between abnormal MCM expression and clinical outcomes, including prognosis and drug response. The microRNA-mRNA network upstream of the MCM genes and the downstream signalling pathways were extensively investigated to determine the molecular mechanisms that drive tumour development. RESULTS: The study found that the MCM gene expressions differed depending on the type of cancer; high MCM gene expression was linked to poor overall survival in most cancers. Additionally, MCM gene expression was associated with various immunological features and drug sensitivity. These findings offer important insights for the development of targeted cancer therapies. CONCLUSIONS: Altogether, this study reveals that the MCM genes are differentially expressed across various cancers and are associated with clinical prognoses. These genes may influence the occurrence and development of tumours through several pathways, including the PI3K-AKT, PAS/MAPK and TSC/mTOR signalling pathways and immune-related pathways.


Asunto(s)
Multiómica , Neoplasias , Humanos , Fosfatidilinositol 3-Quinasas , Proteínas de Mantenimiento de Minicromosoma/genética , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Neoplasias/genética , ADN , Proteínas de Ciclo Celular/genética
20.
Nat Commun ; 14(1): 6735, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872142

RESUMEN

Chromatin replication involves the assembly and activity of the replisome within the nucleosomal landscape. At the core of the replisome is the Mcm2-7 complex (MCM), which is loaded onto DNA after binding to the Origin Recognition Complex (ORC). In yeast, ORC is a dynamic protein that diffuses rapidly along DNA, unless halted by origin recognition sequences. However, less is known about the dynamics of ORC proteins in the presence of nucleosomes and attendant consequences for MCM loading. To address this, we harnessed an in vitro single-molecule approach to interrogate a chromatinized origin of replication. We find that ORC binds the origin of replication with similar efficiency independently of whether the origin is chromatinized, despite ORC mobility being reduced by the presence of nucleosomes. Recruitment of MCM also proceeds efficiently on a chromatinized origin, but subsequent movement of MCM away from the origin is severely constrained. These findings suggest that chromatinized origins in yeast are essential for the local retention of MCM, which may facilitate subsequent assembly of the replisome.


Asunto(s)
Complejo de Reconocimiento del Origen , Proteínas de Saccharomyces cerevisiae , Complejo de Reconocimiento del Origen/genética , Complejo de Reconocimiento del Origen/metabolismo , Nucleosomas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , ADN/metabolismo , Replicación del ADN , Proteínas de Mantenimiento de Minicromosoma/genética , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Origen de Réplica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...