RESUMEN
Lysosomes, essential for intracellular degradation and recycling, employ damage-control strategies such as lysophagy and membrane repair mechanisms to maintain functionality and cellular homeostasis. Our study unveils migratory autolysosome disposal (MAD), a response to lysosomal damage where cells expel LAMP1-LC3 positive structures via autolysosome exocytosis, requiring autophagy machinery, SNARE proteins, and cell migration. This mechanism, crucial for mitigating lysosomal damage, underscores the role of cell migration in lysosome damage control and facilitates the release of small extracellular vesicles, highlighting the intricate relationship between cell migration, organelle quality control, and extracellular vesicle release.
Asunto(s)
Autofagia , Movimiento Celular , Lisosomas , Lisosomas/metabolismo , Humanos , Exocitosis , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas SNARE/metabolismo , Proteínas SNARE/genética , Proteínas de Membrana de los Lisosomas/metabolismo , Proteínas de Membrana de los Lisosomas/genética , Animales , Vesículas Extracelulares/metabolismo , Células HeLa , Proteína 1 de la Membrana Asociada a los LisosomasRESUMEN
Lysine demethylase 6A (KDM6A) is abnormally expressed in various cancer. This study aimed to investigate the potential of KDM6A in pancreatic cancer (PC). mRNA expression was calculated by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR). Protein expression was detected by Western blot. Cell viability was measured by Cell Counting Kit (CCK-8) assay. Cell angiogenesis was determined by tube formation assay. Cell migration and invasion were determined by Transwell assay. We found that KDM6A was upregulated in PC patients and cells. Interestingly, KDM6A deficiency inhibited the proliferation and angiogenesis of PC cells. Moreover, KDM6A knockdown suppressed the migration and invasion of PC cells. Additionally, KDM6A upregulated the expression of lysosomal associated membrane protein 3 (LAMP3) via driving demethylation of H3K27me3. Overexpression of LAMP3 reversed the effects of KDM6A knockdown and contributed to the angiogenesis and aggressiveness of PC cells. In summary, KDM6A-mediated demethylation of tri-methylation at lysine 27 of histone H3 (H3K27me3) promotes the transcription of LAMP3, resulting the angiogenesis and aggressiveness of PC. Therefore, targeting KDM6A may be an anti-angiogenetic strategy for PC.
Asunto(s)
Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Histona Demetilasas , Proteínas de Membrana de los Lisosomas , Invasividad Neoplásica , Neovascularización Patológica , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Movimiento Celular/genética , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Histona Demetilasas/metabolismo , Histona Demetilasas/genética , Proliferación Celular/genética , Línea Celular Tumoral , Proteínas de Membrana de los Lisosomas/metabolismo , Proteínas de Membrana de los Lisosomas/genética , Angiogénesis , Proteínas de Neoplasias , Proteína 3 de la Membrana Asociada a LisosomaRESUMEN
As a highly organized system, endo-lysosomes play a crucial role in maintaining immune homeostasis. However, the mechanisms involved in regulating endo-lysosome progression and subsequent inflammatory responses are not fully understood. By screening 103 E3 ubiquitin ligases in regulating endo-lysosomal acidification, it is discovered that lysosomal RNF13 inhibits lysosome maturation and promotes inflammatory responses mediated by endosomal Toll-like receptors (TLRs) in macrophages. Mechanistically, RNF13 mediates K48-linked polyubiquitination of LAMP-1 at residue K128 for proteasomal degradation. Upon TLRs activation, LAMP-1 promotes lysosomes maturation, which accelerates lysosomal degradation of TLRs and reduces TLR signaling in macrophages. Furthermore, peripheral blood mononuclear cells (PBMCs) from patients with rheumatoid arthritis (RA) show increased RNF13 levels and decreased LAMP-1 expression. Accordingly, the immunosuppressive agent hydroxychloroquine (HCQ) can increase the polyubiquitination of RNF13. Taken together, the study establishes a linkage between proteasomal and lysosomal degradation mechanisms for the induction of appropriate innate immune response, and offers a promising approach for the treatment of inflammatory diseases by targeting intracellular TLRs.
Asunto(s)
Lisosomas , Receptores Toll-Like , Ubiquitina-Proteína Ligasas , Animales , Humanos , Ratones , Artritis Reumatoide/metabolismo , Artritis Reumatoide/genética , Proteínas de Membrana de los Lisosomas/metabolismo , Proteínas de Membrana de los Lisosomas/genética , Lisosomas/metabolismo , Macrófagos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Receptores Toll-Like/metabolismo , Receptores Toll-Like/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , UbiquitinaciónRESUMEN
Protein glycosylation plays a vital role in various cellular functions, many of which occur within the Golgi apparatus. The Golgi pH regulator (GPHR) is essential for the proper functioning of the Golgi apparatus. The lysosomal membrane contains highly glycosylated membrane proteins in abundance. This study investigated the role of the Golgi luminal pH in N-glycosylation of lysosomal membrane proteins and the effect of this protein modification on membrane stability using Gphr-deficient MEFs. We showed that Gphr deficiency causes an imbalance in the Golgi luminal pH, resulting in abnormal protein N-glycosylation, indicated by a reduction in sialylated glycans and markedly reduced molecular weight of glycoproteins. Further experiments using FRAP and PLA revealed that Gphr deficiency prevented the trafficking dynamics and proximity condition of glycosyltransferases in the Golgi apparatus. In addition, incomplete N-glycosylation of lysosomal membrane proteins affected lysosomal membrane stability, as demonstrated by the increased susceptibility to lysosomal damage. Thus, this study highlights the critical role of Golgi pH regulation in controlling protein glycosylation and the impact of Golgi dysfunction on lysosomal membrane stability.
Asunto(s)
Aparato de Golgi , Homeostasis , Membranas Intracelulares , Lisosomas , Proteínas de la Membrana , Glicosilación , Aparato de Golgi/metabolismo , Lisosomas/metabolismo , Concentración de Iones de Hidrógeno , Animales , Proteínas de la Membrana/metabolismo , Ratones , Membranas Intracelulares/metabolismo , Transporte de Proteínas , Humanos , Glicosiltransferasas/metabolismo , Proteínas de Membrana de los Lisosomas/metabolismo , Glicoproteínas/metabolismoRESUMEN
Lassa virus (LASV) is an enveloped, negative-sense RNA virus that causes Lassa hemorrhagic fever. Successful entry of LASV requires the viral glycoprotein 1 (GP1) to undergo a receptor switch from its primary receptor alpha-dystroglycan (α-DG) to its endosomal receptor lysosome-associated membrane protein 1 (LAMP1). A conserved histidine triad in LASV GP1 has been reported to be responsible for receptor switch. To test the hypothesis that other non-conserved residues also contribute to receptor switch, we constructed a series of mutant LASV GP1 proteins and tested them for binding to LAMP1. Four residues, L84, K88, L107, and H170, were identified as critical for receptor switch. Substituting any of the four residues with the corresponding lymphocytic choriomeningitis virus (LCMV) residue (L84 âN, K88E, L10F, and H170S) reduced the binding affinity of LASV GP1 for LAMP1. Moreover, all mutations caused decreases in glycoprotein precursor (GPC)-mediated membrane fusion at both pH 4.5 and 5.2. The infectivity of pseudotyped viruses bearing either GPCL84N or GPCK88E decreased sharply in multiple cell types, while L107F and H170S had only mild effects on infectivity. Using biolayer light interferometry assay, we found that all four mutants had decreased binding affinity to LAMP1, in the order of binding affinity being L84 âN â> âL107F â> âK88E â> âH170S. The four amino acid loci identified for the first time in this study have important reference significance for the in-depth investigation of the mechanism of receptor switching and immune escape of LASV occurrence and the development of reserve anti-LASV infection drugs.
Asunto(s)
Virus Lassa , Receptores Virales , Proteínas del Envoltorio Viral , Internalización del Virus , Virus Lassa/genética , Humanos , Receptores Virales/metabolismo , Receptores Virales/genética , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Proteínas del Envoltorio Viral/química , Distroglicanos/metabolismo , Distroglicanos/genética , Unión Proteica , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Proteína 1 de la Membrana Asociada a los Lisosomas/genética , Animales , Fiebre de Lassa/virología , Proteínas de Membrana de los Lisosomas/genética , Proteínas de Membrana de los Lisosomas/metabolismo , Línea Celular , Sustitución de AminoácidosRESUMEN
Glucocerebrosidase (GCase) is a lysosomal enzyme that catalyzes the breakdown of glucosylceramide in the presence of its activator saposin C (SapC). SapC arises from the proteolytical cleavage of prosaposin (encoded by PSAP gene), which gives rise to four saposins. GCase is targeted to the lysosomes by LIMP-2, encoded by SCARB2 gene. GCase deficiency causes Gaucher Disease (GD), which is mainly due to biallelic pathogenetic variants in the GCase-encoding gene, GBA1. However, impairment of GCase activity can be rarely caused by SapC or LIMP-2 deficiencies. We report a new case of LIMP-2 deficiency and a new case of SapC deficiency (missing all four saposins, PSAP deficiency), and measured common biomarkers of GD and GCase activity. Glucosylsphingosine and chitotriosidase activity in plasma were increased in GCase deficiencies caused by PSAP and GBA1 mutations, whereas SCARB2-linked deficiency showed only Glucosylsphingosine elevation. GCase activity was reduced in fibroblasts and leukocytes: the decrease was sharper in GBA1- and SCARB2-mutant fibroblasts than PSAP-mutant ones; LIMP-2-deficient leukocytes displayed higher residual GCase activity than GBA1-mutant ones. Finally, we demonstrated that GCase mainly undergoes proteasomal degradation in LIMP-2-deficient fibroblasts and lysosomal degradation in PSAP-deficient fibroblasts. Thus, we analyzed the differential biochemical profile of GCase deficiencies due to the ultra-rare PSAP and SCARB2 biallelic pathogenic variants in comparison with the profile observed in GBA1-linked GCase deficiency.
Asunto(s)
Enfermedad de Gaucher , Glucosilceramidasa , Proteínas de Membrana de los Lisosomas , Receptores Depuradores , Saposinas , Glucosilceramidasa/genética , Glucosilceramidasa/deficiencia , Glucosilceramidasa/metabolismo , Humanos , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/metabolismo , Saposinas/deficiencia , Saposinas/genética , Saposinas/metabolismo , Proteínas de Membrana de los Lisosomas/metabolismo , Proteínas de Membrana de los Lisosomas/genética , Receptores Depuradores/genética , Receptores Depuradores/metabolismo , Fibroblastos/metabolismo , Mutación , Lisosomas/metabolismo , Lisosomas/enzimología , Hexosaminidasas/metabolismo , Hexosaminidasas/genética , Hexosaminidasas/deficiencia , Masculino , FemeninoRESUMEN
BACKGROUND: The tumor microenvironment (TME) plays a crucial role in various aspects of breast cancer development and metastasis. Nevertheless, the expression, prognostic significance, and correlation with clinical features of SCARB2 in breast cancer, as well as the infiltrative characteristics of TME, remain largely unknown. METHODS: We analyzed the differential presentation of SCARB2 mRNA in breast cancer tissues and nontumorous breast tissues and prognosis by The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases. Additionally, the Tumor Immunity Estimation Resource (TIMER) was taken to evaluate the correlation between SCARB2 mRNA presence and tumor-infiltrating immune cells and immune checkpoints in the TME in breast cancer. We performed multiple immunohistochemical staining to verify the SCARB2 protein expression in breast cancer tissues and its relationship to immune cells and checkpoints and clinicopathological features. RESULTS: We identified elevated SCARB2 expression in breast cancer tissues, and high SCARB2 protein presentation was associated with advanced clinical stage and unfavorable prognosis. In addition, enhanced SCARB2 protein presence was closely correlated with up-regulation CD66b+ neutrophils infiltration in tumor tissues (r = 0.210, P < 0.05) and CD68 + CD163+ M2 macrophages in the interstitium (r = 0.233, P < 0.05), as well as the immune checkpoints, including PD-1 (r = 0.314, P < 0.01) protein expression. CONCLUSION: SCARB2 holds promise for predicting the clinical outcome of breast cancer patients and could serve as a potential therapeutic target.
Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama , Neutrófilos , Microambiente Tumoral , Femenino , Humanos , Persona de Mediana Edad , Antígenos CD/metabolismo , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Regulación Neoplásica de la Expresión Génica , Proteínas Ligadas a GPI/metabolismo , Proteínas Ligadas a GPI/genética , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Proteínas de Membrana de los Lisosomas/metabolismo , Proteínas de Membrana de los Lisosomas/genética , Estadificación de Neoplasias , Infiltración Neutrófila , Neutrófilos/metabolismo , Neutrófilos/inmunología , Neutrófilos/patología , Pronóstico , Microambiente Tumoral/inmunologíaRESUMEN
Japanese Encephalitis Virus (JEV), the predominant cause of viral encephalitis in many Asian countries, affects approximately 68,000 people annually. Lysosomes are dynamic structures that regulate cellular metabolism by mediating lysosomal biogenesis and autophagy. Here, we showed that lysosome-associated membrane protein 1 (LAMP1) and LAMP2 were downregulated in cells after JEV infection, resulting in a decrease in the quantity of acidified lysosomes and impaired lysosomal catabolism. What's more, JEV nonstructural protein 4B plays key roles in the reduction of LAMP1/2 via the autophagy-lysosome pathway. JEV NS4B also promoted abnormal aggregation of SLA-DR, an important component of the swine MHC-II molecule family involved in antigen presentation and CD4+ cell activation initiation. Mechanistically, NS4B localized to the ER during JEV infection and interacted with GRP78, leading to the activation of ER stress-mediated autophagy. The 131-204 amino acid (aa) region of NS4B is essential for autophagy induction and LAMP1/2 reduction. In summary, our findings reveal a novel pathway by which JEV induces autophagy and disrupts lysosomal function.
Asunto(s)
Autofagia , Regulación hacia Abajo , Virus de la Encefalitis Japonesa (Especie) , Proteína 2 de la Membrana Asociada a los Lisosomas , Lisosomas , Lisosomas/metabolismo , Animales , Virus de la Encefalitis Japonesa (Especie)/fisiología , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Porcinos , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Proteína 1 de la Membrana Asociada a los Lisosomas/genética , Encefalitis Japonesa/virología , Encefalitis Japonesa/veterinaria , Línea Celular , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Proteínas de Membrana de los Lisosomas/metabolismo , Proteínas de Membrana de los Lisosomas/genéticaRESUMEN
Regulatory T cells (Tregs) prevent autoimmunity and contribute to cancer progression. They exert contact-dependent inhibition of immune cells through the production of active transforming growth factor-ß1 (TGF-ß1). However, the absence of a specific surface marker makes inhibiting the production of active TGF-ß1 to specifically deplete human Tregs but not other cell types a challenge. TGF-ß1 in an inactive form binds to Tregs membrane protein Glycoprotein A Repetitions Predominant (GARP) and then activates it via an unknown mechanism. Here, we demonstrated that tumour necrosis factor receptor-associated factor 3 interacting protein 3 (TRAF3IP3) in the Treg lysosome is involved in this activation mechanism. Using a novel naphthalenelactam-platinum-based anticancer drug (NPt), we developed a new synergistic effect by suppressing ATP-binding cassette subfamily B member 9 (ABCB9) and TRAF3IP3-mediated divergent lysosomal metabolic programs in tumors and human Tregs to block the production of active GARP/TGF-ß1 for remodeling the tumor microenvironment. Mechanistically, NPt is stored in Treg lysosome to inhibit TRAF3IP3-meditated GARP/TGF-ß1 complex activation to specifically deplete Tregs. In addition, by promoting the expression of ABCB9 in lysosome membrane, NPt inhibits SARA/p-SMAD2/3 through CHRD-induced TGF-ß1 signaling pathway. In addition to expose a previously undefined divergent lysosomal metabolic program-meditated GARP/TGF-ß1 complex blockade by exploring the inherent metabolic plasticity, NPt may serve as a therapeutic tool to boost unrecognized Treg-based immune responses to infection or cancer via a mechanism distinct from traditional platinum drugs and currently available immune-modulatory antibodies.
Asunto(s)
Neoplasias de la Mama , Lisosomas , Proteínas de la Membrana , Linfocitos T Reguladores , Factor de Crecimiento Transformador beta1 , Humanos , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/inmunología , Femenino , Proteínas de la Membrana/metabolismo , Animales , Ratones , Metástasis de la Neoplasia , Línea Celular Tumoral , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Proteínas de Membrana de los Lisosomas/metabolismo , Transducción de Señal/efectos de los fármacos , Antineoplásicos/farmacologíaRESUMEN
Genetic variants of GBA1 can cause the lysosomal storage disorder Gaucher disease and are among the highest genetic risk factors for Parkinson's disease (PD). GBA1 encodes the lysosomal enzyme beta-glucocerebrosidase (GCase), which orchestrates the degradation of glucosylceramide (GluCer) in the lysosome. Recent studies have shown that GluCer accelerates α-synuclein aggregation, exposing GCase deficiency as a major risk factor in PD pathology and as a promising target for treatment. This study investigates the interaction of GCase and three disease-associated variants (p.E326K, p.N370S, p.L444P) with their transporter, the lysosomal integral membrane protein 2 (LIMP-2). Overexpression of LIMP-2 in HEK 293T cells boosts lysosomal abundance of wt, E326K, and N370S GCase and increases/rescues enzymatic activity of the wt and E326K variant. Using a novel purification approach, co-purification of untagged wt, E326K, and N370S GCase in complex with His-tagged LIMP-2 from cell supernatant of HEK 293F cells is achieved, confirming functional binding and trafficking for these variants. Furthermore, a single helix in the LIMP-2 ectodomain is exploited to design a lysosome-targeted peptide that enhances lysosomal GCase activity in PD patient-derived and control fibroblasts. These findings reveal LIMP-2 as an allosteric activator of GCase, suggesting a possible therapeutic potential of targeting this interaction.
Asunto(s)
Enfermedad de Gaucher , Glucosilceramidasa , Enfermedad de Parkinson , Humanos , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/metabolismo , Células HEK293 , Proteínas de Membrana de los Lisosomas/metabolismo , Proteínas de Membrana de los Lisosomas/genética , Lisosomas/metabolismo , Receptores Depuradores/genética , Receptores Depuradores/metabolismoRESUMEN
Expression levels of the lactate-H+ cotransporter MCT4 (also known as SLC16A3) and its chaperone CD147 (also known as basigin) are upregulated in breast cancers, correlating with decreased patient survival. Here, we test the hypothesis that MCT4 and CD147 favor breast cancer invasion through interdependent effects on extracellular matrix (ECM) degradation. MCT4 and CD147 expression and membrane localization were found to be strongly reciprocally interdependent in MDA-MB-231 breast cancer cells. Overexpression of MCT4 and/or CD147 increased, and their knockdown decreased, migration, invasion and the degradation of fluorescently labeled gelatin. Overexpression of both proteins led to increases in gelatin degradation and appearance of the matrix metalloproteinase (MMP)-generated collagen-I cleavage product reC1M, and these increases were greater than those observed upon overexpression of each protein alone, suggesting a concerted role in ECM degradation. MCT4 and CD147 colocalized with invadopodia markers at the plasma membrane. They also colocalized with MMP14 and the lysosomal marker LAMP1, as well as partially with the autophagosome marker LC3, in F-actin-decorated intracellular vesicles. We conclude that MCT4 and CD147 reciprocally regulate each other and interdependently support migration and invasiveness of MDA-MB-231 breast cancer cells. Mechanistically, this involves MCT4-CD147-dependent stimulation of ECM degradation and specifically of MMP-mediated collagen-I degradation. We suggest that the MCT4-CD147 complex is co-delivered to invadopodia with MMP14.
Asunto(s)
Basigina , Neoplasias de la Mama , Matriz Extracelular , Proteína 1 de la Membrana Asociada a los Lisosomas , Metaloproteinasa 14 de la Matriz , Transportadores de Ácidos Monocarboxílicos , Invasividad Neoplásica , Podosomas , Femenino , Humanos , Basigina/metabolismo , Basigina/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Línea Celular Tumoral , Membrana Celular/metabolismo , Movimiento Celular , Matriz Extracelular/metabolismo , Gelatina/metabolismo , Proteínas de Membrana de los Lisosomas/metabolismo , Proteínas de Membrana de los Lisosomas/genética , Metaloproteinasa 14 de la Matriz/metabolismo , Metaloproteinasa 14 de la Matriz/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Invasividad Neoplásica/genética , Podosomas/metabolismoRESUMEN
To spread within a host, intracellular Burkholderia form actin tails to generate membrane protrusions into neighboring host cells and use type VI secretion system-5 (T6SS-5) to induce cell-cell fusions. Here, we show that B. thailandensis also uses T6SS-5 to lyse protrusions to directly spread from cell to cell. Dynamin-2 recruitment to the membrane near a bacterium was followed by a short burst of T6SS-5 activity. This resulted in the polymerization of the actin of the newly invaded host cell and disruption of the protrusion membrane. Most protrusion lysis events were dependent on dynamin activity, caused no cell-cell fusion, and failed to be recognized by galectin-3. T6SS-5 inactivation decreased protrusion lysis but increased galectin-3, LC3, and LAMP1 accumulation in host cells. Our results indicate that B. thailandensis specifically activates T6SS-5 assembly in membrane protrusions to disrupt host cell membranes and spread without alerting cellular responses, such as autophagy.
Asunto(s)
Burkholderia , Sistemas de Secreción Tipo VI , Burkholderia/metabolismo , Burkholderia/fisiología , Sistemas de Secreción Tipo VI/metabolismo , Humanos , Membrana Celular/metabolismo , Proteínas de Membrana de los Lisosomas/metabolismo , Proteínas Bacterianas/metabolismo , Actinas/metabolismo , Dinamina II/metabolismo , Autofagia , Galectinas/metabolismo , Interacciones Huésped-Patógeno , Extensiones de la Superficie Celular/metabolismo , Animales , Proteínas Asociadas a Microtúbulos , Proteína 1 de la Membrana Asociada a los LisosomasRESUMEN
Enterovirus 71 (EV71) is a significant causative agent of hand, foot, and mouth disease, with potential serious neurologic complications or fatal outcomes. The lack of effective treatments for EV71 infection is attributed to its elusive pathogenicity. Our study reveals that human plasmacytoid dendritic cells (pDCs), the main type I IFN-producing cells, selectively express scavenger receptor class B, member 2 (SCARB2) and P-selectin glycoprotein ligand 1 (PSGL-1), crucial cellular receptors for EV71. Some strains of EV71 can replicate within pDCs and stimulate IFN-α production. The activation of pDCs by EV71 is hindered by Abs to PSGL-1 and soluble PSGL-1, whereas Abs to SCARB2 and soluble SCARB2 have a less pronounced effect. Our data suggest that only strains binding to PSGL-1, more commonly found in severe cases, can replicate in pDCs and induce IFN-α secretion, highlighting the importance of PSGL-1 in these processes. Furthermore, IFN-α secretion by pDCs can be triggered by EV71 or UV-inactivated EV71 virions, indicating that productive infection is not necessary for pDC activation. These findings provide new insights into the interaction between EV71 and pDCs, suggesting that pDC activation could potentially mitigate the severity of EV71-related diseases.
Asunto(s)
Células Dendríticas , Enterovirus Humano A , Interferón-alfa , Proteínas de Membrana de los Lisosomas , Glicoproteínas de Membrana , Células Dendríticas/inmunología , Células Dendríticas/virología , Humanos , Enterovirus Humano A/inmunología , Enterovirus Humano A/fisiología , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana de los Lisosomas/metabolismo , Proteínas de Membrana de los Lisosomas/inmunología , Interferón-alfa/metabolismo , Interferón-alfa/inmunología , Receptores Depuradores/metabolismo , Infecciones por Enterovirus/inmunología , Infecciones por Enterovirus/virología , Replicación ViralRESUMEN
Increased expression of CXCL10 and its receptor CXCR3 represents an inflammatory response in cells and tissues. Macrophage polarization and autophagy are major functions in inflammatory macrophages; however, the cellular functions of the CXCL10-CXCR3 axis in macrophages are not well understood. Here, we examined the role of CXCL10-CXCR3-axis-regulated autophagy in macrophage polarization. First, in non-inflammatory macrophages, whereas CXCL10 promotes M2 polarization and inhibits M1 polarization, CXCR3 antagonist AMG487 induces the opposite macrophage polarization. Next, CXCL10 promotes the expression of autophagy proteins (Atg5-Atg12 complex, p62, LC3-II, and LAMP1) and AMG487 inhibits their expression. Knockdown of LAMP1 by short interfering RNA switches the CXCL10-induced polarization from M2 to M1 in non-inflammatory macrophages. Furthermore, in inflammatory macrophages stimulated by poly(I:C), CXCL10 induces M1 polarization and AMG487 induces M2 polarization in association with a decrease in LAMP1. Finally, AMG487 alleviates lung injury after poly(I:C) treatment in mice. In conclusion, CXCL10-CXCR3 axis differentially directs macrophage polarization in inflammatory and non-inflammatory states, and autophagy protein LAMP1 acts as the switch controlling the direction of macrophage polarization by CXCL10-CXCR3.
Asunto(s)
Acetamidas , Autofagia , Quimiocina CXCL10 , Inflamación , Macrófagos , Ratones Endogámicos C57BL , Pirimidinonas , Receptores CXCR3 , Animales , Receptores CXCR3/metabolismo , Receptores CXCR3/genética , Quimiocina CXCL10/metabolismo , Quimiocina CXCL10/genética , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Autofagia/inmunología , Inflamación/inmunología , Inflamación/metabolismo , Poli I-C/farmacología , Proteínas de Membrana de los Lisosomas/metabolismo , Proteínas de Membrana de los Lisosomas/genética , Masculino , Transducción de Señal , Humanos , Activación de MacrófagosRESUMEN
OBJECTIVE: Lysosome-associated membrane protein 3 (LAMP3) misexpression in salivary gland epithelial cells plays a causal role in the development of salivary gland dysfunction and autoimmunity associated with Sjögren's disease (SjD). This study aimed to clarify how epithelial LAMP3 misexpression is induced in SjD. METHODS: To explore upstream signaling pathways associated with LAMP3 expression, we conducted multiple RNA sequencing analyses of minor salivary glands from patients with SjD, submandibular glands from a mouse model of SjD, and salivary gland epithelial cell lines. A hypothesis generated by the RNA sequencing analyses was further tested by in vitro and in vivo assays with gene manipulation. RESULTS: Transcriptome analysis suggested LAMP3 expression was associated with enhanced type I interferon (IFN) and IFNγ signaling pathways in patients with SjD. In vitro studies showed that type I IFN but not IFNγ stimulation could induce LAMP3 expression in salivary gland epithelial cells. Moreover, we discovered that LAMP3 overexpression could induce ectopic Toll-like receptor 7 (TLR-7) expression and type I IFN production in salivary gland epithelial cells both in vitro and in vivo. TLR-7 knockout mice did not develop any SjD-related symptoms following LAMP3 induction. CONCLUSION: Epithelial LAMP3 misexpression can be induced through enhanced type I IFN response in salivary glands. In addition, LAMP3 can promote type I IFN production via ectopic TLR-7 expression in salivary gland epithelial cells. This positive feedback loop can contribute to maintaining LAMP3 misexpression and amplifying type I IFN production in salivary glands, which plays an essential role in the pathophysiology of SjD.
Asunto(s)
Células Epiteliales , Interferón Tipo I , Proteínas de Membrana de los Lisosomas , Glándulas Salivales , Síndrome de Sjögren , Receptor Toll-Like 7 , Síndrome de Sjögren/inmunología , Síndrome de Sjögren/genética , Síndrome de Sjögren/metabolismo , Animales , Ratones , Interferón Tipo I/metabolismo , Humanos , Células Epiteliales/metabolismo , Receptor Toll-Like 7/genética , Receptor Toll-Like 7/metabolismo , Glándulas Salivales/metabolismo , Glándulas Salivales/inmunología , Proteínas de Membrana de los Lisosomas/genética , Proteínas de Membrana de los Lisosomas/metabolismo , Transducción de Señal , Femenino , Interferón gamma/metabolismo , Línea Celular , Glándulas Salivales Menores/inmunología , Glándulas Salivales Menores/metabolismo , Proteínas de Neoplasias , Proteína 3 de la Membrana Asociada a LisosomaRESUMEN
Glycosylation changes in cancer proteins have been associated with malignant transformation. However, techniques for analyzing site-specific glycosylation changes in target proteins obtained from clinical tissue samples are insufficient. To overcome these problems, we developed a targeted N-glycoproteomic approach consisting of immunoprecipitation, glycopeptide enrichment, LC/MS/MS and structural assignment using commercially available analytical software followed by manual confirmation. This approach was applied to the comparative site-specific glycosylation analysis of lysosome-associated membrane glycoprotein 1 (LAMP1) between breast cancer (BC) tumors and normal tissues adjacent to tumors. Extensive determination of glycan heterogeneity from four N-glycosylation sites (Asn84/103/249/261) in LAMP1 identified 262 glycoforms and revealed remarkable diversity in tumor glycan structures. A significant increase in N-glycoforms with multiple fucoses and sialic acids at Asn84/249 and high-mannose-type glycans at Asn103/261 were observed in the tumor. Principal component analysis revealed that tumors of different subtypes have independent distributions. This approach enables site-specific glycopeptide analysis of target glycoprotein in breast cancer tissue and become a powerful tool for characterizing tumors with different pathological features by their glycan profiles.
Asunto(s)
Neoplasias de la Mama , Proteína 1 de la Membrana Asociada a los Lisosomas , Humanos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Glicosilación , Femenino , Proteínas de Membrana de los Lisosomas/metabolismo , Espectrometría de Masas en Tándem , Polisacáridos/metabolismo , Polisacáridos/químicaRESUMEN
BACKGROUND: Cervical cancer (CC) is the fourth most common cancer in women worldwide. Although immunotherapy has been applied in clinical practice, its therapeutic efficacy remains far from satisfactory, necessitating further investigation of the mechanism of CC immune remodeling and exploration of novel treatment targets. This study aimed to investigate the mechanism of CC immune remodeling and explore potential therapeutic targets. METHODS: We conducted single-cell RNA sequencing on a total of 17 clinical specimens, including normal cervical tissues, high-grade squamous intraepithelial lesions, and CC tissues. To validate our findings, we conducted multicolor immunohistochemical staining of CC tissues and constructed a subcutaneous tumorigenesis model in C57BL/6 mice using murine CC cell lines (TC1) to evaluate the effectiveness of combination therapy involving indoleamine 2,3-dioxygenase 1 (IDO1) inhibition and immune checkpoint blockade (ICB). We used the unpaired two-tailed Student's t-test, Mann-Whitney test, or Kruskal-Wallis test to compare continuous data between two groups and one-way ANOVA with Tukey's post hoc test to compare data between multiple groups. RESULTS: Malignant cervical epithelial cells did not manifest noticeable signs of tumor escape, whereas lysosomal-associated membrane protein 3-positive (LAMP3+ ) dendritic cells (DCs) in a mature state with immunoregulatory roles were found to express IDO1 and affect tryptophan metabolism. These cells interacted with both tumor-reactive exhausted CD8+ T cells and CD4+ regulatory T cells, synergistically forming a vicious immunosuppressive cycle and mediating CC immune escape. Further validation through multicolor immunohistochemical staining showed co-localization of neoantigen-reactive T cells (CD3+ , CD4+ /CD8+ , and PD-1+ ) and LAMP3+ DCs (CD80+ and PD-L1+ ). Additionally, a combination of the IDO1 inhibitor with an ICB agent significantly reduced tumor volume in the mouse model of CC compared with an ICB agent alone. CONCLUSIONS: Our study suggested that a combination treatment consisting of targeting IDO1 and ICB agent could improve the therapeutic efficacy of current CC immunotherapies. Additionally, our results provided crucial insights for designing drugs and conducting future clinical trials for CC.
Asunto(s)
Linfocitos T Reguladores , Neoplasias del Cuello Uterino , Animales , Femenino , Humanos , Ratones , Linfocitos T CD8-positivos/metabolismo , Células Dendríticas , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Proteínas de Membrana de los Lisosomas/metabolismo , Ratones Endogámicos C57BL , Proteínas de Neoplasias/metabolismo , Linfocitos T Reguladores/metabolismo , Microambiente Tumoral , Neoplasias del Cuello Uterino/terapia , Neoplasias del Cuello Uterino/metabolismoRESUMEN
Inadequate invasion and excessive apoptosis of trophoblast cells are associated with the development of preeclampsia. Vitamin D deficiency in pregnant women may lead to an increased risk of preeclampsia. However, the underlying mechanisms by which vitamin D is effective in preventing preeclampsia are not fully understood. The objectives of this study were to investigate the role of lysosome-associated membrane glycoprotein 3 (LAMP3) in the pathogenesis of preeclampsia and to evaluate whether vitamin D supplementation would protect against the development of preeclampsia by regulating LAMP3 expression. Firstly, the mRNA and protein levels of LAMP3 were significantly upregulated in the placentas of preeclampsia patients compared to normal placentas, especially in trophoblast cells (a key component of the human placenta). In the hypoxia/reoxygenation (H/R)-exposed HTR-8/Svneo trophoblast cells, LAMP3 expression was also upregulated. H/R exposure repressed cell viability and invasion and increased apoptosis of trophoblast cells. siRNA-mediated knockdown of LAMP3 increased cell viability and invasion and suppressed apoptosis of H/R-exposed trophoblast cells. We further found that 1,25(OH)2D3 (the hormonally active form of vitamin D) treatment reduced LAMP3 expression in H/R exposed trophoblast cells. In addition, 1,25(OH)2D3 treatment promoted cell viability and invasion and inhibited apoptosis of H/R-exposed trophoblast cells. Notably, overexpression of LAMP3 abrogated the protective effect of 1,25(OH)2D3 on H/R-exposed trophoblast cells. Collectively, we demonstrated trophoblast cytoprotection by vitamin D, a process mediated via LAMP3.
Asunto(s)
Preeclampsia , Trofoblastos , Humanos , Embarazo , Femenino , Trofoblastos/metabolismo , Vitamina D/farmacología , Preeclampsia/genética , Calcitriol/metabolismo , Calcitriol/farmacología , Línea Celular , Placenta , Hipoxia , Proteínas de Membrana de los Lisosomas/metabolismo , Proteínas de Membrana de los Lisosomas/farmacología , Movimiento Celular , Proteínas de Neoplasias/metabolismoRESUMEN
Maintaining a highly acidic lysosomal pH is central to cellular physiology. Here, we use functional proteomics, single-particle cryo-EM, electrophysiology, and in vivo imaging to unravel a key biological function of human lysosome-associated membrane proteins (LAMP-1 and LAMP-2) in regulating lysosomal pH homeostasis. Despite being widely used as a lysosomal marker, the physiological functions of the LAMP proteins have long been overlooked. We show that LAMP-1 and LAMP-2 directly interact with and inhibit the activity of the lysosomal cation channel TMEM175, a key player in lysosomal pH homeostasis implicated in Parkinson's disease. This LAMP inhibition mitigates the proton conduction of TMEM175 and facilitates lysosomal acidification to a lower pH environment crucial for optimal hydrolase activity. Disrupting the LAMP-TMEM175 interaction alkalinizes the lysosomal pH and compromises the lysosomal hydrolytic function. In light of the ever-increasing importance of lysosomes to cellular physiology and diseases, our data have widespread implications for lysosomal biology.
Asunto(s)
Enfermedad de Parkinson , Humanos , Concentración de Iones de Hidrógeno , Proteínas de Membrana de los Lisosomas/genética , Proteínas de Membrana de los Lisosomas/metabolismo , Lisosomas/metabolismo , Enfermedad de Parkinson/metabolismo , Canales de Potasio/metabolismoRESUMEN
Chaperone-mediated autophagy (CMA) plays multiple roles in cell metabolism. We found that lysosome-associated membrane protein type 2A (LAMP2A), a crucial protein of CMA, plays a key role in the control of mesenchymal stem cell (MSC) adipo-osteogenesis. We identified a differentially expressed CMA gene (LAMP2) in GEO datasets (GSE4911 and GSE494). Further, we performed co-expression analyses to define the relationships between CMA components genes and other relevant genes including Col1a1, Runx2, Wnt3 and Gsk3ß. Mouse BMSCs (mMSCs) exhibiting Lamp2a gene knockdown (LA-KD) and overexpression (LA-OE) were created using an adenovirus system; then we investigated LAMP2A function in vitro by Western blot, Oil Red staining, ALP staining, ARS staining and Immunofluorescence analysis. Next, we used a modified mouse model of tibial fracture to investigate LAMP2A function in vivo. LAMP2A knockdown in mMSCs decreased the levels of osteogenic-specific proteins (COL1A1 and RUNX2) and increased those of the adipogenesis markers PPARγ and C/EBPα; LAMP2A overexpression had the opposite effects. The active-ß-catenin and phospho-GSK3ß (Ser9) levels were upregulated by LAMP2A overexpression and downregulated by LAMP2A knockdown. In the mouse model of tibial fracture, mMSC-overexpressing LAMP2A improved bone healing, as demonstrated by microcomputed tomography and histological analyses. In summary, LAMP2A positively regulates mMSC osteogenesis and suppresses adipo-osteogenesis, probably via Wnt/ß-catenin/GSK3ß signaling. LAMP2A promoted fracture-healing in the mouse model of tibial fracture. KEY MESSAGES: ⢠LAMP2 positively regulates the mBMSCs osteogenic differentiation. ⢠LAMP2 negatively regulates the mBMSCs adipogenic differentiation. ⢠LAMP2 regulates mBMSCs osteogenesis via Wnt/ß-catenin/GSK3ß signaling pathway. ⢠LAMP2 overexpression mBMSCs promote the fracture healing.