Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Toxins (Basel) ; 13(8)2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34437385

RESUMEN

Snakebite envenomation is a serious neglected tropical disease, and its management is often complicated by the diversity of snake venoms. In Asia, pit vipers of the Ovophis species complex are medically important venomous snakes whose venom properties have not been investigated in depth. This study characterized the venom proteomes of Ovophis convictus (West Malaysia), Ovophis tonkinensis (northern Vietnam, southern China), and Ovophis okinavensis (Okinawa, Japan) by applying liquid chromatography-tandem mass spectrometry, which detected a high abundance of snake venom serine proteases (SVSP, constituting 40-60% of total venom proteins), followed by phospholipases A2, snake venom metalloproteinases of mainly P-III class, L-amino acid oxidases, and toxins from other protein families which were less abundant. The venoms exhibited different procoagulant activities in human plasma, with potency decreasing from O. tonkinensis > O. okinavensis > O. convictus. The procoagulant nature of venom confirms that consumptive coagulopathy underlies the pathophysiology of Ovophis pit viper envenomation. The hetero-specific antivenoms Gloydius brevicaudus monovalent antivenom (GbMAV) and Trimeresurus albolabris monovalent antivenom (TaMAV) were immunoreactive toward the venoms, and cross-neutralized their procoagulant activities, albeit at variably limited efficacy. In the absence of species-specific antivenom, these hetero-specific antivenoms may be useful in treating coagulotoxic envenomation caused by the different snakes in their respective regions.


Asunto(s)
Crotalinae , Proteoma , Proteínas de Reptiles , Venenos de Víboras , Animales , Antivenenos/inmunología , Coagulantes/análisis , Coagulantes/inmunología , Coagulantes/toxicidad , Humanos , L-Aminoácido Oxidasa/análisis , L-Aminoácido Oxidasa/inmunología , L-Aminoácido Oxidasa/toxicidad , Metaloproteasas/análisis , Metaloproteasas/inmunología , Metaloproteasas/toxicidad , Fosfolipasas A2/análisis , Fosfolipasas A2/inmunología , Fosfolipasas A2/toxicidad , Plasma/efectos de los fármacos , Proteoma/análisis , Proteoma/inmunología , Proteoma/toxicidad , Proteómica , Proteínas de Reptiles/análisis , Proteínas de Reptiles/inmunología , Proteínas de Reptiles/toxicidad , Serina Proteasas/análisis , Serina Proteasas/inmunología , Serina Proteasas/toxicidad , Venenos de Víboras/química , Venenos de Víboras/inmunología , Venenos de Víboras/toxicidad
2.
Toxins (Basel) ; 13(8)2021 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-34437419

RESUMEN

Given that the venom system in sea snakes has a role in enhancing their secondary adaption to the marine environment, it follows that elucidating the diversity and function of venom toxins will help to understand the adaptive radiation of sea snakes. We performed proteomic and de novo NGS analyses to explore the diversity of venom toxins in the annulated sea snake (Hydrophis cyanocinctus) and estimated the adaptive molecular evolution of the toxin-coding unigenes and the toxicity of the major components. We found three-finger toxins (3-FTxs), phospholipase A2 (PLA2) and cysteine-rich secretory protein (CRISP) in the venom proteome and 59 toxin-coding unigenes belonging to 24 protein families in the venom-gland transcriptome; 3-FTx and PLA2 were the most abundant families. Nearly half of the toxin-coding unigenes had undergone positive selection. The short- (i.p. 0.09 µg/g) and long-chain neurotoxin (i.p. 0.14 µg/g) presented fairly high toxicity, whereas both basic and acidic PLA2s expressed low toxicity. The toxicity of H. cyanocinctus venom was largely determined by the 3-FTxs. Our data show the venom is used by H. cyanocinctus as a biochemically simple but genetically complex weapon and venom evolution in H. cyanocinctus is presumably driven by natural selection to deal with fast-moving prey and enemies in the marine environment.


Asunto(s)
Venenos Elapídicos , Hydrophiidae , Animales , Venenos Elapídicos/química , Venenos Elapídicos/genética , Venenos Elapídicos/toxicidad , Femenino , Dosificación Letal Mediana , Masculino , Ratones Endogámicos ICR , Neurotoxinas/análisis , Neurotoxinas/genética , Neurotoxinas/toxicidad , Fosfolipasas A2/análisis , Fosfolipasas A2/genética , Fosfolipasas A2/toxicidad , Proteoma/análisis , Proteoma/genética , Proteoma/toxicidad , Proteínas de Reptiles/análisis , Proteínas de Reptiles/genética , Proteínas de Reptiles/toxicidad , Transcriptoma
3.
Artículo en Inglés | MEDLINE | ID: mdl-33197857

RESUMEN

Vipera ammodytes (Va), is the European venomous snake of the greatest medical importance. We analyzed whole venom proteome of the subspecies V. ammodytes ammodytes (Vaa) from Serbia for the first time using the shotgun proteomics approach and identified 99 proteins belonging to four enzymatic families: serine protease (SVSPs), L-amino acid oxidase (LAAOs), metalloproteinases (SVMPs), group II phospholipase (PLA2s), and five nonenzymatic families: cysteine-rich secretory proteins (CRISPs), C-type lectins (snaclecs), growth factors -nerve (NGFs) and vascular endothelium (VEGFs), and Kunitz-type protease inhibitors (SPIs). Considerable enzymatic activity of LAAO, SVSPs, and SVMPs and a high acidic PLA2 activity was measured implying potential of Vaa to produce haemotoxic, myotoxic, neuro and cardiotoxic effects. Moreover, significant antimicrobial activity of Vaa venom against Gram-negative (Klebsiella pneumoniae, Pseudomonas aeruginosa) and Gram-positive bacteria (Staphylococcus aureus) was found. The crude venom shows considerable potential cytotoxic activity on the C6 and HL60 and a moderate level of potency on B16 cell lines. HeLa cells showed the same sensitivity, while DU 145 and PC-3 are less sensitive than as normal cell line. Our data demonstrated a high complexity of Vaa and considerable enzymatic, antibacterial and cytotoxic activity, implying a great medical potential of Vaa venom as a promising source for new antibacterial and cytostatic agents.


Asunto(s)
Proteínas de Reptiles/análisis , Venenos de Víboras/análisis , Viperidae , Animales , Antibacterianos/análisis , Antibacterianos/farmacología , Antineoplásicos/análisis , Antineoplásicos/farmacología , Línea Celular , Línea Celular Tumoral , Humanos , Ratones , Proteómica , Ratas , Proteínas de Reptiles/farmacología , Venenos de Víboras/farmacología , Viperidae/metabolismo
4.
Toxins (Basel) ; 12(8)2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32759763

RESUMEN

In contrast to comprehensively investigated antibacterial activity of snake venoms, namely crude venoms and their selected components, little is known about antifungal properties of elapid snake venoms. In the present study, the proteome of two venoms of red spitting cobra Naja pallida (NPV) and Mozambique spitting cobra Naja mossambica (NMV) was characterized using LC-MS/MS approach, and the antifungal activity of crude venoms against three Candida species was established. A complex response to venom treatment was revealed. NPV and NMV, when used at relatively high concentrations, decreased cell viability of C. albicans and C. tropicalis, affected cell cycle of C. albicans, inhibited C. tropicalis-based biofilm formation and promoted oxidative stress in C. albicans, C. glabrata and C. tropicalis cells. NPV and NMV also modulated ammonia pulses during colony development and aging in three Candida species. All these observations provide evidence that NPV and NMV may diminish selected pathogenic features of Candida species. However, NPV and NMV also promoted the secretion of extracellular phospholipases that may facilitate Candida pathogenicity and limit their usefulness as anti-candidal agents. In conclusion, antifungal activity of snake venoms should be studied with great caution and a plethora of pathogenic biomarkers should be considered in the future experiments.


Asunto(s)
Antifúngicos/farmacología , Candida/efectos de los fármacos , Venenos Elapídicos/farmacología , Naja , Animales , Biopelículas/efectos de los fármacos , Candida/fisiología , Ciclo Celular/efectos de los fármacos , Venenos Elapídicos/química , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteoma/análisis , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Reptiles/análisis
5.
Fish Shellfish Immunol ; 98: 653-660, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31676431

RESUMEN

Trionyx sinensis Hemorrhagic Syndrome Virus (TSHSV) is the firstly discovered aquatic arterivirus inducing high mortality of Trionyx sinensis. So far, the lack of genomic resources has hindered further research on revealing the immunological characteristics of T. sinensis in response to TSHSV. In the present study, we performed a transcriptome analysis from the lungs of T. sinensis challenged by TSHSV using Illumina-based RNA-Seq. The validity of transcriptomic data was confirmed with the gradual increase of TSHSV RNA copies detected in lung. A total of 103079339 clean reads were generated, and 58374764 unique mapped reads were analyzed. Assembly of the sequence data allowed identifying 16383 unigenes consisting of 36 significant differentially expressed genes (DEGs). These DEGs were categorized into 30 GO-enriched bioprocesses and 9 KEGG pathways. The combinational analysis of GO-enriched bioprocesses and KEGG pathways demonstrated that TSHSV modulated several immune genes of T. sinensis related to various biological processes, including virus recognition (RIG-I/MDA-5), immune initiation (IFIT-1 and IFIT-5), endocytosis (CUBN, ENPP2 and LRP2) and steroid metabolism (FCNIL and STAR). In summary, the finding of this study revealed several immune pathways and candidated genes involved in the immune response of T. sinensis against TSHSV-infection. These results will provide helpful information to investigate molecular mechanism of T. sinensis in response to TSHSV.


Asunto(s)
Arteriviridae/fisiología , Pulmón/metabolismo , Infecciones por Virus ARN/veterinaria , Transcriptoma , Tortugas , Animales , Perfilación de la Expresión Génica/veterinaria , Pulmón/virología , Infecciones por Virus ARN/metabolismo , Infecciones por Virus ARN/virología , RNA-Seq/veterinaria , Proteínas de Reptiles/análisis
6.
PLoS One ; 14(12): e0227122, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31887191

RESUMEN

Malayan krait (Bungarus candidus) is a medically important snake species found in Southeast Asia. The neurotoxic effects of envenoming present as flaccid paralysis of skeletal muscles. It is unclear whether geographical variation in venom composition plays a significant role in the degree of clinical neurotoxicity. In this study, the effects of geographical variation on neurotoxicity and venom composition of B. candidus venoms from Indonesia, Malaysia and Thailand were examined. In the chick biventer cervicis nerve-muscle preparation, all venoms abolished indirect twitches and attenuated contractile responses to nicotinic receptor agonists, with venom from Indonesia displaying the most rapid neurotoxicity. A proteomic analysis indicated that three finger toxins (3FTx), phospholipase A2 (PLA2) and Kunitz-type serine protease inhibitors were common toxin groups in the venoms. In addition, venom from Thailand contained L-amino acid oxidase (LAAO), cysteine rich secretory protein (CRISP), thrombin-like enzyme (TLE) and snake venom metalloproteinase (SVMP). Short-chain post-synaptic neurotoxins were not detected in any of the venoms. The largest quantity of long-chain post-synaptic neurotoxins and non-conventional toxins was found in the venom from Thailand. Analysis of PLA2 activity did not show any correlation between the amount of PLA2 and the degree of neurotoxicity of the venoms. Our study shows that variation in venom composition is not limited to the degree of neurotoxicity. This investigation provides additional insights into the geographical differences in venom composition and provides information that could be used to improve the management of Malayan krait envenoming in Southeast Asia.


Asunto(s)
Bungarotoxinas/toxicidad , Bungarus , Unión Neuromuscular/efectos de los fármacos , Neurotoxinas/toxicidad , Proteínas de Reptiles/toxicidad , Animales , Bungarotoxinas/análisis , Pollos , Modelos Animales de Enfermedad , Humanos , Indonesia , Malasia , Masculino , Síndromes de Neurotoxicidad/diagnóstico , Síndromes de Neurotoxicidad/etiología , Neurotoxinas/análisis , Proteoma/análisis , Proteoma/toxicidad , Proteómica/métodos , Proteínas de Reptiles/análisis , Índice de Severidad de la Enfermedad , Mordeduras de Serpientes/complicaciones , Tailandia
7.
J Chem Ecol ; 45(8): 673-683, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31407198

RESUMEN

Animals modulate intraspecific signal shape and intensity, notably during reproductive periods. Signal variability typically follows a seasonal scheme, traceable through the expression of visual, acoustic, chemical and behavioral patterns. The chemical channel is particularly important in lizards, as demonstrated by well-developed epidermal glands in the cloacal region that secrete lipids and proteins recognized by conspecifics. In males, the seasonal pattern of gland activity is underpinned by variation of circulating androgens. Changes in the composition of lipid secretions convey information about the signaler's quality (e.g., size, immunity). Presumably, individual identity is associated with a protein signature present in the femoral secretions, but this has been poorly investigated. For the first time, we assessed the seasonal variability of the protein signal in relation to plasma testosterone level (T), glandular activity and the concentration of provitamin D3 in the lipid fraction. We sampled 174 male common wall lizards (Podarcis muralis) over the entire activity season. An elevation of T was observed one to two months before the secretion peak of lipids during the mating season; such expected delay between hormonal fluctuation and maximal physiological response fits well with the assumption that provitamin D3 indicates individual quality. One-dimensional electrophoretic analysis of proteins showed that gel bands were preserved over the season with an invariant region; a result in agreement with the hypothesis that proteins are stable identity signals. However, the relative intensity of bands varied markedly, synchronously with that of lipid secretion pattern. These variations of protein secretion suggest additional roles of proteins, an issue that requires further studies.


Asunto(s)
Glándulas Exocrinas/metabolismo , Lípidos/análisis , Lagartos/fisiología , Proteínas de Reptiles/análisis , Animales , Deshidrocolesteroles/análisis , Electroforesis en Gel de Campo Pulsado , Cromatografía de Gases y Espectrometría de Masas , Metabolismo de los Lípidos , Lípidos/química , Masculino , Análisis de Componente Principal , Estaciones del Año , Conducta Sexual Animal , Testosterona/sangre
8.
Toxins (Basel) ; 11(6)2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31226842

RESUMEN

Snakebite envenoming (SBE) is a priority neglected tropical disease, which kills in excess of 100,000 people per year. Additionally, many millions of survivors also suffer through disabilities and long-term health consequences. The only treatment for SBE, antivenom, has a number of major associated problems, not least, adverse reactions and limited availability. This emphasises the necessity for urgent improvements to the management of this disease. Administration of antivenom is too frequently based on symptomatology, which results in wasting crucial time. The majority of SBE-affected regions rely on broad-spectrum polyvalent antivenoms that have a low content of case-specific efficacious immunoglobulins. Research into small molecular therapeutics such as varespladib/methyl-varespladib (PLA2 inhibitors) and batimastat/marimastat (metalloprotease inhibitors) suggest that such adjunctive treatments could be hugely beneficial to victims. Progress into toxin-specific monoclonal antibodies as well as alternative binding scaffolds such as aptamers hold much promise for future treatment strategies. SBE is not implicit during snakebite, due to venom metering. Thus, the delay between bite and symptom presentation is critical and when symptoms appear it may often already be too late to effectively treat SBE. The development of reliable diagnostical tools could therefore initiate a paradigm shift in the treatment of SBE. While the complete eradication of SBE is an impossibility, mitigation is in the pipeline, with new treatments and diagnostics rapidly emerging. Here we critically review the urgent necessity for the development of diagnostic tools and improved therapeutics to mitigate the deaths and disabilities caused by SBE.


Asunto(s)
Mordeduras de Serpientes/diagnóstico , Mordeduras de Serpientes/tratamiento farmacológico , Animales , Antivenenos/uso terapéutico , Humanos , Proteínas de Reptiles/análisis , Venenos de Serpiente/química
9.
Toxins (Basel) ; 11(5)2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-31052189

RESUMEN

Skin blistering as a result of snakebite envenomation is characteristic of some bites, however little is known regarding the mechanism of blister formation or the composition of the blister fluid. In order to investigate if blister fluid proteomes from humans suffering snakebite envenomation could provide insights on the pathophysiology of these skin alterations, blister fluid was collected from six patients upon presentation at a clinic in India bitten by three species of snakes, Daboia russelii (3), Hypnale hypnale (2), or Naja naja (1). Standard clinical data were recorded throughout the treatment. Approximately 805 proteins were identified in blister fluids using proteomic analyses. Informatics analyses of the proteomes identified the top biological response categories as: platelet degranulation, innate immune response, receptor-mediated endocytosis, complement activation, and blood coagulation. Hierarchical clustering did not show a clear segregation of patients' proteomes being associated with the species of snake involved, suggesting that either the proteomic profiles described reflect a general response to venom-induced tissue damage or more patient data sets will be required to observe significant differences. Finally, it is of interest that venom proteins were also identified in the blister fluids suggesting that this fluid may serve as a reservoir of venom biologically active proteins/toxins, and as such, may indicate the clinical value of removing blister fluid to attenuate further tissue damage.


Asunto(s)
Vesícula , Proteoma/análisis , Proteínas de Reptiles/análisis , Mordeduras de Serpientes , Adulto , Anciano , Animales , Preescolar , Venenos Elapídicos/química , Femenino , Humanos , India , Lactante , Masculino , Persona de Mediana Edad , Proteómica , Serpientes , Venenos de Víboras/química , Adulto Joven
10.
Artículo en Inglés | MEDLINE | ID: mdl-30825662

RESUMEN

Snake venoms are extremely active biological secretions composed primarily of various classes of enzymes. The genus Bothrops comprises various pit viper species that represent the most medically significant taxa in Central and South America, accounting for more human envenomations and fatalities than any other snakes in the region. Venom proteomes of many Bothrops species have been well-characterized but investigations have focused almost exclusively on proteins smaller than 100 kDa despite expression of larger components being documented in several Bothrops venoms. This study sought to achieve detailed identification of major components in the high molecular mass subproteome of venoms from eight Bothrops species (B. brazili, B. cotiara, B. insularis, B. jararaca, B. jararacussu, B. leucurus, B. moojeni and B. neuwiedi). Enzymes such as metalloproteinases and L-amino acid oxidases were the most prominent components identified in the first size-exclusion chromatography fractions of these venoms. Minor components also identified in the first peaks included 5'-nucleotidase, aminopeptidase, phosphodiesterase, and phospholipases A2 and B. Most of these components disappeared in electrophoretic profiles under reducing conditions, suggesting that they may be composed of more than one polypeptide chain. A significant shift in the molecular masses of these protein bands was observed following enzymatic N-deglycosylation, indicating that they may contain N-glycans. Furthermore, none of the identified high molecular mass proteins were shared by all eight species, revealing a high level of interspecific variability among these venom components.


Asunto(s)
Bothrops , Venenos de Crotálidos/química , Proteínas de Reptiles/análisis , Animales , Bothrops/metabolismo , Cromatografía en Gel , Peso Molecular , Proteoma/análisis , Proteómica , Espectrometría de Masas en Tándem
11.
Toxins (Basel) ; 11(2)2019 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-30736335

RESUMEN

Trimeresurus nebularis is a montane pit viper that causes bites and envenomation to various communities in the central highland region of Malaysia, in particular Cameron's Highlands. To unravel the venom composition of this species, the venom proteins were digested by trypsin and subjected to nano-liquid chromatography-tandem mass spectrometry (LC-MS/MS) for proteomic profiling. Snake venom metalloproteinases (SVMP) dominated the venom proteome by 48.42% of total venom proteins, with a characteristic distribution of P-III: P-II classes in a ratio of 2:1, while P-I class was undetected. Snaclecs constituted the second most venomous protein family (19.43%), followed by snake venom serine proteases (SVSP, 14.27%), phospholipases A2 (5.40%), disintegrins (5.26%) and minor proteins including cysteine-rich secretory proteins, L-amino acid oxidases, phosphodiesterases, 5'-nucleotidases. The venomic profile correlates with local (painful progressive edema) and systemic (hemorrhage, coagulopathy, thrombocytopenia) manifestation of T. nebularis envenoming. As specific antivenom is unavailable for T. nebularis, the hetero-specific Thai Green Pit viper Monovalent Antivenom (GPVAV) was examined for immunological cross-reactivity. GPVAV exhibited good immunoreactivity to T. nebularis venom and the antivenom effectively cross-neutralized the hemotoxic and lethal effects of T. nebularis (lethality neutralizing potency = 1.6 mg venom per mL antivenom). The findings supported GPVAV use in treating T. nebularis envenoming.


Asunto(s)
Venenos de Crotálidos/química , Venenos de Crotálidos/toxicidad , Trimeresurus , Animales , Antivenenos/farmacología , Desintegrinas/análisis , Femenino , Hidrolasas/análisis , L-Aminoácido Oxidasa/análisis , Malasia , Masculino , Ratones Endogámicos ICR , Proteoma , Proteínas de Reptiles/análisis
12.
Toxins (Basel) ; 11(2)2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30717096

RESUMEN

Cancer is a deadly disease and there is an urgent need for the development of effective and safe therapeutic agents to treat it. Snake venom is a complex mixture of bioactive proteins that represents an attractive source of novel and naturally-derived anticancer agents. Malaysia is one of the world's most biodiverse countries and is home to various venomous snake species, including cobras. Naja kaouthia, Naja sumatrana, and Ophiophagus hannah are three of the most common cobra species in Malaysia and are of medical importance. Over the past decades, snake venom has been identified as a potential source of therapeutic agents, including anti-cancer agents. This present review highlights the potential anticancer activity of the venom and purified venom protein of N. kaouthia, N. sumatrana, and O. hannah. In conclusion, this review highlights the important role of the venom from Malaysian cobras as an important resource that researchers can exploit to further investigate its potential in cancer treatment.


Asunto(s)
Antineoplásicos , Venenos Elapídicos , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Venenos Elapídicos/química , Venenos Elapídicos/farmacología , Elapidae , Humanos , Malasia , Proteómica , Proteínas de Reptiles/análisis , Proteínas de Reptiles/farmacología
13.
Anal Chem ; 91(3): 1796-1800, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30599131

RESUMEN

Leather produced from crocodile, alligator, and caiman skin is widely used in the fashion industry. Crocodilian leather is generally more expensive than mammalian leather, and the value greatly differs even between the crocodilian species. However, inappropriate labeling of the animal source on leather products sometimes arises from accidental or fraudulent substitution, which is difficult to unambiguously detect by existing methods. In the present study, animal source identification of crocodilian leather was carried out using type I collagen-derived marker peptides generated after dechroming, heat denaturation, and trypsin digestion. Definitive discrimination between the three crocodilian species and also a related species, lizard, was achieved based on the detection patterns of selected six marker peptides, determined by LC-MS. Furthermore, powdering of the leather samples enabled a reduction in the sample amount required and allowed the elimination of the dechroming step. Approximately 100 µg of powder was taken from commercial leather watch straps by filing, resulting in only slight damage to the undersides of the straps. The animal sources of the crocodilian products and also a crocodile-embossed calf product were successfully identified using a combination of the crocodilian marker peptides and previously established mammalian marker peptides. This semi-nondestructive species identification method is not only useful for certification of leather products but also for monitoring of international trade of leather and skin.


Asunto(s)
Colágeno Tipo I/análisis , Péptidos/análisis , Proteínas de Reptiles/análisis , Piel/química , Caimanes y Cocodrilos , Secuencia de Aminoácidos , Animales , Biomarcadores/análisis , Biomarcadores/química , Cromatografía Liquida/métodos , Colágeno Tipo I/química , Proteolisis , Proteínas de Reptiles/química , Espectrometría de Masas en Tándem , Tripsina/química
14.
Toxins (Basel) ; 11(1)2018 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-30583590

RESUMEN

The venom proteome of Hydrophis curtus (synonym: Lapemis hardwickii) from Penang, Malaysia was investigated with nano-electrospray ionization-liquid chromatography tandem mass spectrometry (ESI-LCMS/MS) of the reverse-phase high-performance liquid chromatography (HPLC) venom fractions. Thirty distinct protein forms were identified as toxins from ten families. The three major protein families were phospholipase A2 (PLA2, 62.0% of total venom proteins), three-finger toxin (3FTX, 26.33%) and cysteine-rich secretory protein (CRiSP, 9.00%). PLA2 comprises diverse homologues (11 forms), predominantly the acidic subtypes (48.26%). 3FTX composed of one short alpha-neurotoxin (SNTX, 22.89%) and four long alpha-neurotoxins (LNTX, 3.44%). Both SNTX and LNTX were lethal in mice (intravenous LD50 = 0.10 and 0.24 µg/g, respectively) but the PLA2 were non-lethal (LD50 >1 µg/g). The more abundant and toxic SNTX appeared to be the main driver of venom lethality (holovenom LD50 = 0.20 µg/g). The heterologous Sea Snake Antivenom (SSAV, Australia) effectively cross-neutralized the venom (normalized potency = 9.35 mg venom neutralized per g antivenom) and the two neurotoxins in vivo, with the LNTX being neutralized more effectively (normalized potency = 3.5 mg toxin/g antivenom) than SNTX (normalized potency = 1.57 mg/g). SSAV immunorecognition was strong toward PLA2 but moderate-to-weak toward the alpha-neurotoxins, indicating that neutralization of the alpha-neurotoxins should be further improved.


Asunto(s)
Antivenenos/inmunología , Colubridae , Proteínas de Reptiles , Venenos de Serpiente , Animales , Cromatografía Líquida de Alta Presión , Electroforesis en Gel de Poliacrilamida , Dosificación Letal Mediana , Malasia , Ratones Endogámicos ICR , Proteoma/análisis , Proteínas de Reptiles/análisis , Proteínas de Reptiles/inmunología , Proteínas de Reptiles/toxicidad , Venenos de Serpiente/química , Venenos de Serpiente/inmunología , Venenos de Serpiente/toxicidad , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
15.
Toxins (Basel) ; 10(12)2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30513722

RESUMEN

Ontogenetic changes in venom composition have important ecological implications due the relevance of venom in prey acquisition and defense. Additionally, intraspecific venom variation has direct medical consequences for the treatment of snakebite. However, ontogenetic changes are not well documented in most species. The Mexican Black-tailed Rattlesnake (Crotalus molossus nigrescens) is large-bodied and broadly distributed in Mexico. To document venom variation and test for ontogenetic changes in venom composition, we obtained venom samples from twenty-seven C. m. nigrescens with different total body lengths (TBL) from eight states in Mexico. The primary components in the venom were detected by reverse-phase HPLC, western blot, and mass spectrometry. In addition, we evaluated the biochemical (proteolytic, coagulant and fibrinogenolytic activities) and biological (LD50 and hemorrhagic activity) activities of the venoms. Finally, we tested for recognition and neutralization of Mexican antivenoms against venoms of juvenile and adult snakes. We detected clear ontogenetic venom variation in C. m. nigrescens. Venoms from younger snakes contained more crotamine-like myotoxins and snake venom serine proteinases than venoms from older snakes; however, an increase of snake venom metalloproteinases was detected in venoms of larger snakes. Venoms from juvenile snakes were, in general, more toxic and procoagulant than venoms from adults; however, adult venoms were more proteolytic. Most of the venoms analyzed were hemorrhagic. Importantly, Mexican antivenoms had difficulties recognizing low molecular mass proteins (<12 kDa) of venoms from both juvenile and adult snakes. The antivenoms did not neutralize the crotamine effect caused by the venom of juveniles. Thus, we suggest that Mexican antivenoms would have difficulty neutralizing some human envenomations and, therefore, it may be necessary improve the immunization mixture in Mexican antivenoms to account for low molecular mass proteins, like myotoxins.


Asunto(s)
Venenos de Serpiente/química , Animales , Antivenenos/farmacología , Coagulación Sanguínea/efectos de los fármacos , Caseínas/química , Crotalus , Femenino , Gelatina/química , Humanos , Dosificación Letal Mediana , Masculino , México , Ratones Endogámicos ICR , Neurotoxinas/análisis , Neurotoxinas/farmacología , Proteínas de Reptiles/análisis , Proteínas de Reptiles/farmacología , Venenos de Serpiente/farmacología
16.
Toxins (Basel) ; 10(11)2018 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-30373186

RESUMEN

Calloselasma rhodostoma (CR) and Ophiophagus hannah (OH) are two medically important snakes found in Malaysia. While some studies have described the biological properties of these venoms, feeding and environmental conditions also influence the concentration and distribution of snake venom toxins, resulting in variations in venom composition. Therefore, a combined proteomic approach using shotgun and gel filtration chromatography, analyzed by tandem mass spectrometry, was used to examine the composition of venoms from these Malaysian snakes. The analysis revealed 114 proteins (15 toxin families) and 176 proteins (20 toxin families) in Malaysian Calloselasma rhodostoma and Ophiophagus hannah species, respectively. Flavin monoamine oxidase, phospholipase A2, phosphodiesterase, snake venom metalloproteinase, and serine protease toxin families were identified in both venoms. Aminopeptidase, glutaminyl-peptide cyclotransferase along with ankyrin repeats were identified for the first time in CR venom, and insulin, c-type lectins/snaclecs, hepatocyte growth factor, and macrophage colony-stimulating factor together with tumor necrosis factor were identified in OH venom for the first time. Our combined proteomic approach has identified a comprehensive arsenal of toxins in CR and OH venoms. These data may be utilized for improved antivenom production, understanding pathological effects of envenoming, and the discovery of biologically active peptides with medical and/or biotechnological value.


Asunto(s)
Venenos de Crotálidos/química , Venenos Elapídicos/química , Proteínas de Reptiles/análisis , Animales , Crotalinae , Malasia , Ophiophagus hannah , Proteómica
17.
Toxins (Basel) ; 10(9)2018 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-30217057

RESUMEN

The use of -omics technologies allows for the characterization of snake venom composition at a fast rate and at high levels of detail. In the present study, we investigated the protein content of Red-headed Krait (Bungarus flaviceps) venom. This analysis revealed a high diversity of snake venom protein families, as evidenced by high-throughput mass spectrometric analysis. We found all six venom protein families previously reported in a transcriptome study of the venom gland of B. flaviceps, including phospholipases A2 (PLA2s), Kunitz-type serine proteinase inhibitors (KSPIs), three-finger toxins (3FTxs), cysteine-rich secretory proteins (CRISPs), snaclecs, and natriuretic peptides. A combined approach of automated database searches and de novo sequencing of tandem mass spectra, followed by sequence similarity searches, revealed the presence of 12 additional toxin families. De novo sequencing alone was able to identify 58 additional peptides, and this approach contributed significantly to the comprehensive description of the venom. Abundant protein families comprise 3FTxs (22.3%), KSPIs (19%), acetylcholinesterases (12.6%), PLA2s (11.9%), venom endothelial growth factors (VEGFs, 8.4%), nucleotidases (4.3%), and C-type lectin-like proteins (snaclecs, 3.3%); an additional 11 toxin families are present at significantly lower concentrations, including complement depleting factors, a family not previously detected in Bungarus venoms. The utility of a multifaceted approach toward unraveling the proteome of snake venoms, employed here, allowed detection of even minor venom components. This more in-depth knowledge of the composition of B. flaviceps venom facilitates a better understanding of snake venom molecular evolution, in turn contributing to more effective treatment of krait bites.


Asunto(s)
Bungarus , Venenos Elapídicos/química , Proteínas de Reptiles/análisis , Animales , Femenino , Masculino , Proteoma/análisis , Proteómica , Espectrometría de Masas en Tándem
18.
Sci Rep ; 8(1): 12067, 2018 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-30104604

RESUMEN

Proteins constitute almost 95% of snake venom's dry weight and are produced and released by venom glands in a solubilized form during a snake bite. These proteins are responsible for inducing several pharmacological effects aiming to immobilize and initiate the pre-digestion of the prey. This study shows that proteins can be secreted and confined in snake venom extracellular vesicles (SVEVs) presenting a size distribution between 50 nm and 500 nm. SVEVs isolated from lyophilized venoms collected from four different species of snakes (Agkistrodon contortrix contortrix, Crotalus atrox, Crotalus viridis and Crotalus cerberus oreganus) were analyzed by mass spectrometry-based proteomic, which allowed the identification of proteins belonging to eight main functional protein classes such as SVMPs, serine proteinases, PLA2, LAAO, 5'nucleotidase, C-type lectin, CRISP and Disintegrin. Biochemical assays indicated that SVEVs are functionally active, showing high metalloproteinase and fibrinogenolytic activity besides being cytotoxic against HUVEC cells. Overall, this study comprehensively depicts the protein composition of SVEVs for the first time. In addition, the molecular function of some of the described proteins suggests a central role for SVEVs in the cytotoxicity of the snake venom and sheds new light in the envenomation process.


Asunto(s)
Venenos de Crotálidos/análisis , Vesículas Extracelulares/química , Proteoma/análisis , Proteínas de Reptiles/análisis , Agkistrodon/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Venenos de Crotálidos/metabolismo , Venenos de Crotálidos/toxicidad , Crotalus/metabolismo , Vesículas Extracelulares/metabolismo , Fibrinógeno , Células Endoteliales de la Vena Umbilical Humana , Humanos , Espectrometría de Masas , Proteoma/metabolismo , Proteoma/toxicidad , Proteómica/métodos , Proteínas de Reptiles/metabolismo , Proteínas de Reptiles/toxicidad , Pruebas de Toxicidad/métodos
19.
Anal Bioanal Chem ; 410(23): 5751-5763, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30090989

RESUMEN

To better understand envenoming and to facilitate the development of new therapies for snakebite victims, rapid, sensitive, and robust methods for assessing the toxicity of individual venom proteins are required. Metalloproteinases comprise a major protein family responsible for many aspects of venom-induced haemotoxicity including coagulopathy, one of the most devastating effects of snake envenomation, and is characterized by fibrinogen depletion. Snake venoms are also known to contain anti-fibrinolytic agents with therapeutic potential, which makes them a good source of new plasmin inhibitors. The protease plasmin degrades fibrin clots, and changes in its activity can lead to life-threatening levels of fibrinolysis. Here, we present a methodology for the screening of plasmin inhibitors in snake venoms and the simultaneous assessment of general venom protease activity. Venom is first chromatographically separated followed by column effluent collection onto a 384-well plate using nanofractionation. Via a post-column split, mass spectrometry (MS) analysis of the effluent is performed in parallel. The nanofractionated venoms are exposed to a plasmin bioassay, and the resulting bioassay activity chromatograms are correlated to the MS data. To study observed proteolytic activity of venoms in more detail, venom fractions were exposed to variants of the plasmin bioassay in which the assay mixture was enriched with zinc or calcium ions, or the chelating agents EDTA or 1,10-phenanthroline were added. The plasmin activity screening system was applied to snake venoms and successfully detected compounds exhibiting antiplasmin (anti-fibrinolytic) activities in the venom of Daboia russelii, and metal-dependent proteases in the venom of Crotalus basiliscus. Graphical abstract ᅟ.


Asunto(s)
Antifibrinolíticos/análisis , Fibrinolisina/antagonistas & inhibidores , Espectrometría de Masas/instrumentación , Péptido Hidrolasas/análisis , Proteínas de Reptiles/análisis , Venenos de Víboras/química , Venenos de Víboras/enzimología , Viperidae , Animales , Antifibrinolíticos/farmacología , Fraccionamiento Químico/instrumentación , Cromatografía Liquida/instrumentación , Evaluación Preclínica de Medicamentos/instrumentación , Diseño de Equipo , Fibrinolisina/metabolismo , Humanos , Nanotecnología/instrumentación , Péptido Hidrolasas/farmacología , Proteómica/métodos , Proteínas de Reptiles/farmacología , Viperidae/metabolismo
20.
Toxins (Basel) ; 10(7)2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29970805

RESUMEN

As trophic adaptations, rattlesnake venoms can vary in composition depending on several intrinsic and extrinsic factors. Ontogenetic changes in venom composition have been documented for numerous species, but little is known of the potential age-related changes in many rattlesnake species found in México. In the current study, venom samples collected from adult and neonate Crotalus polystictus from Estado de México were subjected to enzymatic and electrophoretic analyses, toxicity assays (LD50), and MALDI-TOF mass spectrometry, and a pooled sample of adult venom was analyzed by shotgun proteomics. Electrophoretic profiles of adult males and females were quite similar, and only minor sex-based variation was noted. However, distinct differences were observed between venoms from adult females and their neonate offspring. Several prominent bands, including P-I and P-III snake venom metalloproteinases (SVMPs) and disintegrins (confirmed by MS/MS) were present in adult venoms and absent/greatly reduced in neonate venoms. Age-dependent differences in SVMP, kallikrein-like, phospholipase A2 (PLA2), and L-amino acid oxidase (LAAO) activity levels were confirmed by enzymatic activity assays, and like many other rattlesnake species, venoms from adult snakes have higher SVMP activity than neonate venoms. Conversely, PLA2 activity was approximately 2.5 × greater in venoms from neonates, likely contributing to the increased toxicity (neonate venom LD50 = 4.5 μg/g) towards non-Swiss albino mice when compared to adult venoms (LD50 = 5.5 μg/g). Thrombin-like (TLE) and phosphodiesterase activities did not vary significantly with age. A significant effect of sex (between adult male and adult female venoms) was also observed for SVMP, TLE, and LAAO activities. Analysis of pooled adult venom by LC-MS/MS identified 14 toxin protein families, dominated by bradykinin-inhibitory peptides, SVMPs (P-I, P-II and P-III), disintegrins, PLA2s, C-type-lectins, CRiSPs, serine proteinases, and LAAOs (96% of total venom proteins). Neonate and adult C. polystictus in this population consume almost exclusively mammals, suggesting that age-based differences in composition are related to physical differences in prey (e.g., surface-to-volume ratio differences) rather than taxonomic differences between prey. Venoms from adult C. polystictus fit a Type I pattern (high SVMP activity, lower toxicity), which is characteristic of many larger-bodied rattlesnakes of North America.


Asunto(s)
Venenos de Crotálidos/química , Venenos de Crotálidos/toxicidad , Animales , Cromatografía Liquida , Crotalus , Femenino , Dosificación Letal Mediana , Masculino , Ratones , Proteómica , Proteínas de Reptiles/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA