Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 509
Filtrar
1.
Mol Biol Cell ; 33(2): ar17, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34910579

RESUMEN

Cytokinesis is the final step of the cell-division cycle. In fungi, it relies on the coordination of constriction of an actomyosin contractile ring and construction of the septum at the division site. Glucan synthases synthesize glucans, which are the major components in fungal cell walls and division septa. It is known that Rho1 and Rho2 GTPases regulate glucan synthases Bgs1, Bgs4, and Ags1, and that Sbg1 and the F-BAR protein Cdc15 play roles in Bgs1 stability and delivery to the plasma membrane. Here we characterize Smi1, an intrinsically disordered protein that interacts with Bgs4 and regulates its trafficking and localization in fission yeast. Smi1 is important for septum integrity, and its absence causes severe lysis during cytokinesis. Smi1 localizes to secretory vesicles and moves together with Bgs4 toward the division site. The concentrations of the glucan synthases Bgs1 and Bgs4 and the glucanases Agn1 and Bgl2 decrease at the division site in the smi1 mutant, but Smi1 seems to be more specific to Bgs4. Mistargeting of Smi1 to mitochondria mislocalizes Bgs4 but not Bgs1. Together, our data reveal a novel regulator of glucan synthases and glucanases, Smi1, which is more important for Bgs4 trafficking, stability, and localization during cytokinesis.


Asunto(s)
Pared Celular/metabolismo , Glucosiltransferasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Membrana Celular/metabolismo , Pared Celular/fisiología , Citocinesis/fisiología , Glucosiltransferasas/fisiología , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/fisiología , Factores de Transcripción/metabolismo , beta-Glucanos/metabolismo
2.
Genetics ; 219(4)2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34849842

RESUMEN

Most sexually reproducing organisms have the ability to recognize individuals of the same species. In ascomycete fungi including yeasts, mating between cells of opposite mating type depends on the molecular recognition of two peptidyl mating pheromones by their corresponding G-protein coupled receptors (GPCRs). Although such pheromone/receptor systems are likely to function in both mate choice and prezygotic isolation, very few studies have focused on the stringency of pheromone receptors. The fission yeast Schizosaccharomyces pombe has two mating types, Plus (P) and Minus (M). Here, we investigated the stringency of the two GPCRs, Mam2 and Map3, for their respective pheromones, P-factor and M-factor, in fission yeast. First, we switched GPCRs between S. pombe and the closely related species Schizosaccharomyces octosporus, which showed that SoMam2 (Mam2 of S. octosporus) is partially functional in S. pombe, whereas SoMap3 (Map3 of S. octosporus) is not interchangeable. Next, we swapped individual domains of Mam2 and Map3 with the respective domains in SoMam2 and SoMap3, which revealed differences between the receptors both in the intracellular regions that regulate the downstream signaling of pheromones and in the activation by the pheromone. In particular, we demonstrated that two amino acid residues of Map3, F214 and F215, are key residues important for discrimination of closely related M-factors. Thus, the differences in these two GPCRs might reflect the significantly distinct stringency/flexibility of their respective pheromone/receptor systems; nevertheless, species-specific pheromone recognition remains incomplete.


Asunto(s)
Feromonas/fisiología , Receptores Acoplados a Proteínas G/fisiología , Proteínas de Schizosaccharomyces pombe/fisiología , Schizosaccharomyces/fisiología , Dominio Catalítico , Dominios Proteicos/fisiología , Transducción de Señal , Especificidad de la Especie
3.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34810257

RESUMEN

Kinetochores, a protein complex assembled on centromeres, mediate chromosome segregation. In most eukaryotes, centromeres are epigenetically specified by the histone H3 variant CENP-A. CENP-T, an inner kinetochore protein, serves as a platform for the assembly of the outer kinetochore Ndc80 complex during mitosis. How CENP-T is regulated through the cell cycle remains unclear. Ccp1 (counteracter of CENP-A loading protein 1) associates with centromeres during interphase but delocalizes from centromeres during mitosis. Here, we demonstrated that Ccp1 directly interacts with CENP-T. CENP-T is important for the association of Ccp1 with centromeres, whereas CENP-T centromeric localization depends on Mis16, a homolog of human RbAp48/46. We identified a Ccp1-interaction motif (CIM) at the N terminus of CENP-T, which is adjacent to the Ndc80 receptor motif. The CIM domain is required for Ccp1 centromeric localization, and the CIM domain-deleted mutant phenocopies ccp1Δ. The CIM domain can be phosphorylated by CDK1 (cyclin-dependent kinase 1). Phosphorylation of CIM weakens its interaction with Ccp1. Consistent with this, Ccp1 dissociates from centromeres through all stages of the cell cycle in the phosphomimetic mutant of the CIM domain, whereas in the phospho-null mutant of the domain, Ccp1 associates with centromeres during mitosis. We further show that the phospho-null mutant disrupts the positioning of the Ndc80 complex during mitosis, resulting in chromosome missegregation. This work suggests that competitive exclusion between Ccp1 and Ndc80 at the N terminus of CENP-T via phosphorylation ensures precise kinetochore assembly during mitosis and uncovers a previously unrecognized mechanism underlying kinetochore assembly through the cell cycle.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteína Quinasa CDC2/metabolismo , Centrómero/metabolismo , Proteína A Centromérica/genética , Proteínas Cromosómicas no Histona/fisiología , Segregación Cromosómica , Histonas/metabolismo , Interfase , Cinetocoros/fisiología , Proteínas Asociadas a Microtúbulos/fisiología , Mitosis , Fosforilación , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiología
4.
Nucleic Acids Res ; 49(18): 10465-10476, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34520548

RESUMEN

Telomere binding protein Stn1 forms the CST (Cdc13/CTC1-STN1-TEN1) complex in budding yeast and mammals. Likewise, fission yeast Stn1 and Ten1 form a complex indispensable for telomere protection. We have previously reported that stn1-1, a high-temperature sensitive mutant, rapidly loses telomere DNA at the restrictive temperature due to frequent failure of replication fork progression at telomeres and subtelomeres, both containing repetitive sequences. It is unclear, however, whether Stn1 is required for maintaining other repetitive DNAs such as ribosomal DNA. In this study, we have demonstrated that stn1-1 cells, even when grown at the permissive temperature, exhibited dynamic rearrangements in the telomere-proximal regions of subtelomere and ribosomal DNA repeats. Furthermore, Rad52 and γH2A accumulation was observed at ribosomal DNA repeats in the stn1-1 mutant. The phenotypes exhibited by the stn1-1 allele were largely suppressed in the absence of Reb1, a replication fork barrier-forming protein, suggesting that Stn1 is involved in the maintenance of the arrested replication forks. Collectively, we propose that Stn1 maintains the stability of repetitive DNAs at subtelomeres and rDNA regions.


Asunto(s)
ADN de Hongos/química , ADN Ribosómico/química , Secuencias Repetitivas de Ácidos Nucleicos , Proteínas de Schizosaccharomyces pombe/fisiología , Schizosaccharomyces/genética , Proteínas de Unión a Telómeros/fisiología , Proteínas de Unión al ADN/genética , Viabilidad Microbiana , Mutación , Recombinación Genética , Reparación del ADN por Recombinación , Proteínas de Schizosaccharomyces pombe/genética , Telómero , Proteínas de Unión a Telómeros/genética , Factores de Transcripción/genética
5.
Nucleic Acids Res ; 49(17): 9809-9820, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34486060

RESUMEN

Transcriptional regulation, a pivotal biological process by which cells adapt to environmental fluctuations, is achieved by the binding of transcription factors to target sequences in a sequence-specific manner. However, how transcription factors recognize the correct target from amongst the numerous candidates in a genome has not been fully elucidated. We here show that, in the fission-yeast fbp1 gene, when transcription factors bind to target sequences in close proximity, their binding is reciprocally stabilized, thereby integrating distinct signal transduction pathways. The fbp1 gene is massively induced upon glucose starvation by the activation of two transcription factors, Atf1 and Rst2, mediated via distinct signal transduction pathways. Atf1 and Rst2 bind to the upstream-activating sequence 1 region, carrying two binding sites located 45 bp apart. Their binding is reciprocally stabilized due to the close proximity of the two target sites, which destabilizes the independent binding of Atf1 or Rst2. Tup11/12 (Tup-family co-repressors) suppress independent binding. These data demonstrate a previously unappreciated mechanism by which two transcription-factor binding sites, in close proximity, integrate two independent-signal pathways, thereby behaving as a hub for signal integration.


Asunto(s)
Factor de Transcripción Activador 1/metabolismo , Fructosa-Bifosfatasa/genética , Regulación Fúngica de la Expresión Génica , Fosfoproteínas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Factores de Transcripción/metabolismo , Activación Transcripcional , Factor de Transcripción Activador 1/fisiología , Sitios de Unión , Cromatina/metabolismo , Fructosa-Bifosfatasa/biosíntesis , Fosfoproteínas/fisiología , Unión Proteica , Proteínas Represoras/fisiología , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiología , Transducción de Señal , Factores de Transcripción/fisiología
6.
J Biosci ; 462021.
Artículo en Inglés | MEDLINE | ID: mdl-34344846

RESUMEN

Gene silencing in S. pombe occurs by heterochromatin formation at the centromere (cen), mating-type (mat) and telomere loci. It is mediated by silencing factors including Swi6, Clr1-4, Rhp6 and Pola. RNAi pathway also plays a role in establishment of silencing at the mat and cen loci. Recently, the stress response factors, Atf1 and Pcr1were shown to play an RNAi-independent role in silencing at the mat3 locus through a cis-acting Atf1-binding site located within the repression element REIII and recruitment of the silencing factors Clr3 and Clr6. Another cis-acting site, named repression element REII abutting the mat2 locus, also establishes heterochromatin structure through Clr5 and histone deacetylases but independently of H3-Lys9-methylation and RNAi. Here, we report the occurrence of binding sites for another oxidative response factor, the pombe AP1- like factor Pap1, at the mating-type, centromere and telomere loci. By genetic studies we show that these sites play a role in silencing at the outer repeats of centromeres as well as mating-type locus and this effect is mediated through Pap1 binding site and interaction with and recruitment of the HP1/Swi6. Importantly, pap1Δ cells display a silencing defect even in absence of the oxidative stress. Such a role of Pap1 in heterochromatin formation may be evolutionarily conserved.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/fisiología , Centrómero , Interferencia de ARN/fisiología , Proteínas Represoras/fisiología , Proteínas de Schizosaccharomyces pombe/fisiología , Schizosaccharomyces/fisiología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Estrés Oxidativo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/efectos de los fármacos
7.
Mol Biol Cell ; 32(20): ar7, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34347508

RESUMEN

Polarized morphogenesis is achieved by targeting or inhibiting growth in distinct regions. Rod-shaped fission yeast cells grow exclusively at their ends by restricting exocytosis and secretion to these sites. This growth pattern implies the existence of mechanisms that prevent exocytosis and growth along nongrowing cell sides. We previously identified a set of 50-100 megadalton-sized node structures along the sides of fission yeast cells that contained the interacting proteins Skb1 and Slf1. Here, we show that Skb1-Slf1 nodes contain the syntaxin-like soluble N-ethylmaleimide-sensitive factor attachment protein receptor Psy1, which mediates exocytosis in fission yeast. Psy1 localizes in a diffuse pattern at cell tips, where it likely promotes exocytosis and growth, but is sequestered in Skb1-Slf1 nodes at cell sides where growth does not occur. Mutations that prevent node assembly or inhibit Psy1 localization to nodes lead to aberrant exocytosis at cell sides and increased cell width. Genetic results indicate that this Psy1 node mechanism acts in parallel to actin cables and Cdc42 regulation. Our work suggests that sequestration of syntaxin-like Psy1 at nongrowing regions of the cell cortex reinforces cell morphology by restricting exocytosis to proper sites of polarized growth.


Asunto(s)
Metiltransferasas/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Actinas/metabolismo , Ciclo Celular/fisiología , Membrana Celular/metabolismo , Polaridad Celular/fisiología , Exocitosis , Fusión de Membrana , Morfogénesis , Transporte de Proteínas , Proteínas Qa-SNARE/fisiología , Proteínas SNARE/metabolismo , Schizosaccharomyces/citología , Proteínas de Schizosaccharomyces pombe/fisiología
8.
Int J Mol Sci ; 22(13)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209806

RESUMEN

Pre-mRNA splicing is a key process in the regulation of gene expression. In the fission yeast Schizosaccharomyces pombe, Nrl1 regulates splicing and expression of several genes and non-coding RNAs, and also suppresses the accumulation of R-loops. Here, we report analysis of interactions between Nrl1 and selected RNA-processing proteins and regulation of Nrl1 function by phosphorylation. Bacterial two-hybrid system (BACTH) assays revealed that the N-terminal region of Nrl1 is important for the interaction with ATP-dependent RNA helicase Mtl1 while the C-terminal region of Nrl1 is important for interactions with spliceosome components Ctr1, Ntr2, and Syf3. Consistent with this result, tandem affinity purification showed that Mtl1, but not Ctr1, Ntr2, or Syf3, co-purifies with the N-terminal region of Nrl1. Interestingly, mass-spectrometry analysis revealed that in addition to previously identified phosphorylation sites, Nrl1 is also phosphorylated on serines 86 and 112, and that Nrl1-TAP co-purifies with Cka1, the catalytic subunit of casein kinase 2. In vitro assay showed that Cka1 can phosphorylate bacterially expressed Nrl1 fragments. An analysis of non-phosphorylatable nrl1 mutants revealed defects in gene expression and splicing consistent with the notion that phosphorylation is an important regulator of Nrl1 function. Taken together, our results provide insights into two mechanisms that are involved in the regulation of the spliceosome-associated factor Nrl1, namely domain-specific interactions between Nrl1 and RNA-processing proteins and post-translational modification of Nrl1 by phosphorylation.


Asunto(s)
Proteínas de Unión al ARN/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Quinasa de la Caseína II/metabolismo , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Procesamiento Postranscripcional del ARN , Empalme del ARN , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/fisiología , Empalmosomas/metabolismo , Técnicas del Sistema de Dos Híbridos
9.
Mol Biol Cell ; 32(17): 1534-1544, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34133210

RESUMEN

Divisions of the genetic material and cytoplasm are coordinated spatially and temporally to ensure genome integrity. This coordination is mediated in part by the major cell cycle regulator cyclin-dependent kinase (Cdk1). Cdk1 activity peaks during mitosis, but during mitotic exit/cytokinesis Cdk1 activity is reduced, and phosphorylation of its substrates is reversed by various phosphatases including Cdc14, PP1, PP2A, and PP2B. Cdk1 is known to phosphorylate several components of the actin- and myosin-based cytokinetic ring (CR) that mediates division of yeast and animal cells. Here we show that Cdk1 also phosphorylates the Schizosaccharomyces pombe CR component paxillin Pxl1. We determined that both the Cdc14 phosphatase Clp1 and the PP1 phosphatase Dis2 contribute to Pxl1 dephosphorylation at mitotic exit, but PP2B/calcineurin does not. Preventing Pxl1 phosphorylation by Cdk1 results in increased Pxl1 levels, precocious Pxl1 recruitment to the division site, and increased duration of CR constriction. In vitro Cdk1-mediated phosphorylation of Pxl1 inhibits its interaction with the F-BAR domain of the cytokinetic scaffold Cdc15, thereby disrupting a major mechanism of Pxl1 recruitment. Thus, Pxl1 is a novel substrate through which S. pombe Cdk1 and opposing phosphatases coordinate mitosis and cytokinesis.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Citocinesis/fisiología , Proteínas del Citoesqueleto/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Proteína Quinasa CDC2/genética , Proteínas de Ciclo Celular/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Citocinesis/genética , Proteínas del Citoesqueleto/fisiología , Mitosis , Paxillin/metabolismo , Fosforilación , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/fisiología
10.
Nucleic Acids Res ; 49(12): 6832-6848, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34157114

RESUMEN

Rad51 is the key protein in homologous recombination that plays important roles during DNA replication and repair. Auxiliary factors regulate Rad51 activity to facilitate productive recombination, and prevent inappropriate, untimely or excessive events, which could lead to genome instability. Previous genetic analyses identified a function for Rrp1 (a member of the Rad5/16-like group of SWI2/SNF2 translocases) in modulating Rad51 function, shared with the Rad51 mediator Swi5-Sfr1 and the Srs2 anti-recombinase. Here, we show that Rrp1 overproduction alleviates the toxicity associated with excessive Rad51 levels in a manner dependent on Rrp1 ATPase domain. Purified Rrp1 binds to DNA and has a DNA-dependent ATPase activity. Importantly, Rrp1 directly interacts with Rad51 and removes it from double-stranded DNA, confirming that Rrp1 is a translocase capable of modulating Rad51 function. Rrp1 affects Rad51 binding at centromeres. Additionally, we demonstrate in vivo and in vitro that Rrp1 possesses E3 ubiquitin ligase activity with Rad51 as a substrate, suggesting that Rrp1 regulates Rad51 in a multi-tiered fashion.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Recombinasa Rad51/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Adenosina Trifosfatasas/metabolismo , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/aislamiento & purificación , Proteínas de Unión al ADN/fisiología , Inestabilidad Genómica , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/aislamiento & purificación , Proteínas de Schizosaccharomyces pombe/fisiología
11.
PLoS One ; 16(6): e0253494, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34153074

RESUMEN

The sla1+ gene of Schizosachharoymces pombe encodes La protein which promotes proper processing of precursor-tRNAs. Deletion of sla1 (sla1Δ) leads to disrupted tRNA processing and sensitivity to target of rapamycin (TOR) inhibition. Consistent with this, media containing NH4+ inhibits leucine uptake and growth of sla1Δ cells. Here, transcriptome analysis reveals that genes upregulated in sla1Δ cells exhibit highly significant overalp with general amino acid control (GAAC) genes in relevant transcriptomes from other studies. Growth in NH4+ media leads to additional induced genes that are part of a core environmental stress response (CESR). The sla1Δ GAAC response adds to evidence linking tRNA homeostasis and broad signaling in S. pombe. We provide evidence that deletion of the Rrp6 subunit of the nuclear exosome selectively dampens a subset of GAAC genes in sla1Δ cells suggesting that nuclear surveillance-mediated signaling occurs in S. pombe. To study the NH4+-effects, we isolated sla1Δ spontaneous revertants (SSR) of the slow growth phenotype and found that GAAC gene expression and rapamycin hypersensitivity were also reversed. Genome sequencing identified a F32V substitution in Any1, a known negative regulator of NH4+-sensitive leucine uptake linked to TOR. We show that 3H-leucine uptake by SSR-any1-F32V cells in NH4+-media is more robust than by sla1Δ cells. Moreover, F32V may alter any1+ function in sla1Δ vs. sla1+ cells in a distinctive way. Thus deletion of La, a tRNA processing factor leads to a GAAC response involving reprogramming of amino acid metabolism, and isolation of the any1-F32V rescuing mutant provides an additional specific link.


Asunto(s)
Aminoácidos/metabolismo , Arrestinas/fisiología , Proteínas de Unión al ARN/fisiología , Proteínas de Schizosaccharomyces pombe/fisiología , Arrestinas/metabolismo , Perfilación de la Expresión Génica , Genes Fúngicos/genética , Mutación/genética , Proteínas de Unión al ARN/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/crecimiento & desarrollo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
12.
Curr Genet ; 67(5): 807-821, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34086083

RESUMEN

The cAMP-dependent protein kinase (Pka1) regulates many cellular events, including sexual development and glycogenesis, and response to the limitation of glucose, in Schizosaccharomyces pombe. Despite its importance in many cellular events, the targets of the cAMP/PKA pathway have not been fully investigated. Here, we demonstrate that the expression of mug14 is induced by downregulation of the cAMP/PKA pathway and limitation of glucose. This regulation is dependent on the function of Rst2, a transcription factor that regulates transition from mitosis to meiosis. The loss of the C2H2-type zinc finger domain in Rst2, termed Rst2 (C2H2∆), abolished the induction of Mug14 expression. Upon deletion of the stress starvation response element of the S. pombe (STREP: CCCCTC) sequence, which is a potential binding site of Rst2 on mug14, in the pka1∆ strain, its induction was abolished. The expression of Mug14 was significantly reduced and delayed by the limitation of glucose and also by nitrogen starvation in the rst2∆ strain. Mug14 is known to share a common function with Mde1 and Mta3 in the methionine salvage pathway, but the expression of mde1 and mta3 mRNAs was not enhanced by pka1 deletion and limitation of glucose. We conclude that the expression of Mug14 is upregulated by Rst2 under the control of the cAMP/PKA signaling pathway, which senses the limitation of glucose.


Asunto(s)
Proteínas de Ciclo Celular/genética , Regulación Fúngica de la Expresión Génica , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Factores de Transcripción/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Glucosa/metabolismo , Proteínas Fluorescentes Verdes/genética , Sistema de Señalización de MAP Quinasas , Nitrógeno/metabolismo , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas , ARN de Hongos , ARN Mensajero , Proteínas Recombinantes de Fusión/genética , Schizosaccharomyces/enzimología , Proteínas de Schizosaccharomyces pombe/fisiología , Estrés Fisiológico
13.
Microbiologyopen ; 10(2): e1176, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33970532

RESUMEN

Nutrients including glucose, nitrogen, sulfur, zinc, and iron are involved in the regulation of chronological lifespan (CLS) of yeast, which serves as a model of the lifespan of differentiated cells of higher organisms. Herein, we show that magnesium (Mg2+ ) depletion extends CLS of the fission yeast Schizosaccharomyces pombe through a mechanism involving the Ecl1 gene family. We discovered that ecl1+ expression, which extends CLS, responds to Mg2+ depletion. Therefore, we investigated the underlying intracellular responses. In amino acid auxotrophic strains, Mg2+ depletion robustly induces ecl1+ expression through the activation of the general amino acid control (GAAC) pathway-the equivalent of the amino acid response of mammals. Polysome analysis indicated that the expression of Ecl1 family genes was required for regulating ribosome amount when cells were starved, suggesting that Ecl1 family gene products control the abundance of ribosomes, which contributes to longevity through the activation of the evolutionarily conserved GAAC pathway. The present study extends our understanding of the cellular response to Mg2+ depletion and its influence on the mechanism controlling longevity.


Asunto(s)
Aminoácidos/metabolismo , Magnesio/metabolismo , Proteínas Nucleares/fisiología , Ribosomas/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiología , Schizosaccharomyces/fisiología , Ciclo Celular , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Longevidad , Nutrientes/metabolismo
14.
Curr Genet ; 67(5): 715-721, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33791858

RESUMEN

Mitogen-activated protein kinase (MAPK) signalling pathways regulate multiple cellular functions in eukaryotic organisms in response to environmental cues, including the dynamic remodeling of the actin cytoskeleton. The fission yeast S. pombe is an optimal model to investigate the conserved regulatory mechanisms of cytokinesis, which relies in an actomyosin-based contractile ring (CAR) that prompts the physical separation of daughter cells during cellular division. Our group has recently shown that p38 MAPK ortholog Sty1, the core component of the stress-activated pathway (SAPK), negatively modulates CAR assembly and integrity in S. pombe during actin cytoskeletal damage induced with Latrunculin A and in response to environmental stress. This response involves downregulation of protein levels of the formin For3, which assembles actin filaments for cables and the CAR, likely through an ubiquitin-mediated degradation mechanism. Contrariwise, Sty1 function positively reinforces CAR assembly during stress in the close relative dimorphic fission yeast S. japonicus. The opposite effect of SAPK signaling on CAR integrity may represent an evolutionary refined adaptation to cope with the marked differences in cytokinesis onset in both fission yeast species.


Asunto(s)
Citocinesis/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Estrés Fisiológico/fisiología , Animales , Humanos , Schizosaccharomyces/fisiología , Proteínas de Schizosaccharomyces pombe/fisiología
15.
Nucleic Acids Res ; 49(4): 1914-1934, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33511417

RESUMEN

During homologous recombination, Dbl2 protein is required for localisation of Fbh1, an F-box helicase that efficiently dismantles Rad51-DNA filaments. RNA-seq analysis of dbl2Δ transcriptome showed that the dbl2 deletion results in upregulation of more than 500 loci in Schizosaccharomyces pombe. Compared with the loci with no change in expression, the misregulated loci in dbl2Δ are closer to long terminal and long tandem repeats. Furthermore, the misregulated loci overlap with antisense transcripts, retrotransposons, meiotic genes and genes located in subtelomeric regions. A comparison of the expression profiles revealed that Dbl2 represses the same type of genes as the HIRA histone chaperone complex. Although dbl2 deletion does not alleviate centromeric or telomeric silencing, it suppresses the silencing defect at the outer centromere caused by deletion of hip1 and slm9 genes encoding subunits of the HIRA complex. Moreover, our analyses revealed that cells lacking dbl2 show a slight increase of nucleosomes at transcription start sites and increased levels of methylated histone H3 (H3K9me2) at centromeres, subtelomeres, rDNA regions and long terminal repeats. Finally, we show that other proteins involved in homologous recombination, such as Fbh1, Rad51, Mus81 and Rad54, participate in the same gene repression pathway.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Regulación Fúngica de la Expresión Génica , Silenciador del Gen , Recombinación Homóloga , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiología , Factores de Transcripción/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Centrómero , Código de Histonas , Nucleosomas/metabolismo , Proteínas Represoras/fisiología , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/antagonistas & inhibidores , Factores de Transcripción/antagonistas & inhibidores
16.
PLoS Biol ; 19(1): e3001067, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33406066

RESUMEN

To ensure genome stability, sexually reproducing organisms require that mating brings together exactly 2 haploid gametes and that meiosis occurs only in diploid zygotes. In the fission yeast Schizosaccharomyces pombe, fertilization triggers the Mei3-Pat1-Mei2 signaling cascade, which represses subsequent mating and initiates meiosis. Here, we establish a degron system to specifically degrade proteins postfusion and demonstrate that mating blocks not only safeguard zygote ploidy but also prevent lysis caused by aberrant fusion attempts. Using long-term imaging and flow-cytometry approaches, we identify previously unrecognized and independent roles for Mei3 and Mei2 in zygotes. We show that Mei3 promotes premeiotic S-phase independently of Mei2 and that cell cycle progression is both necessary and sufficient to reduce zygotic mating behaviors. Mei2 not only imposes the meiotic program and promotes the meiotic cycle, but also blocks mating behaviors independently of Mei3 and cell cycle progression. Thus, we find that fungi preserve zygote ploidy and survival by at least 2 mechanisms where the zygotic fate imposed by Mei2 and the cell cycle reentry triggered by Mei3 synergize to prevent zygotic mating.


Asunto(s)
Ciclo Celular/fisiología , Factor de Apareamiento/fisiología , Meiosis/fisiología , Cigoto/fisiología , Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiología , Proteínas Fúngicas/fisiología , Genes Fúngicos/fisiología , Factor de Apareamiento/genética , Factor de Apareamiento/metabolismo , Meiosis/genética , Organismos Modificados Genéticamente , Ploidias , Proteínas de Unión al ARN/fisiología , Recombinación Genética/fisiología , Schizosaccharomyces/fisiología , Proteínas de Schizosaccharomyces pombe/fisiología , Cigoto/crecimiento & desarrollo , Cigoto/metabolismo
17.
Cell Rep ; 33(13): 108561, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33378674

RESUMEN

One key aspect of epigenetic inheritance is that chromatin structures can be stably inherited through generations after the removal of the signals that establish such structures. In fission yeast, the RNA interference (RNAi) pathway is critical for the targeting of histone methyltransferase Clr4 to pericentric repeats to establish heterochromatin. However, pericentric heterochromatin cannot be properly inherited in the absence of RNAi, suggesting the existence of mechanisms that counteract chromatin structure inheritance. Here, we show that mutations of components of the INO80 chromatin-remodeling complex allow pericentric heterochromatin inheritance in RNAi mutants. The ability of INO80 to counter heterochromatin inheritance is attributed to one subunit, Iec5, which promotes histone turnover at heterochromatin but has little effects on nucleosome positioning at heterochromatin, gene expression, or the DNA damage response. These analyses demonstrate the importance of the INO80 chromatin-remodeling complex in controlling heterochromatin inheritance and maintaining the proper heterochromatin landscape of the genome.


Asunto(s)
Proteínas de Ciclo Celular/genética , Epigénesis Genética , Heterocromatina/genética , Heterocromatina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Interferencia de ARN , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/fisiología , Schizosaccharomyces/fisiología , Factores de Transcripción/fisiología , Ensamble y Desensamble de Cromatina , Replicación del ADN , Epigenómica , Histonas/metabolismo , Mutación
18.
Nucleic Acids Res ; 48(19): 10998-11015, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33045725

RESUMEN

G-quadruplex (G4) structures are stable non-canonical DNA structures that are implicated in the regulation of many cellular pathways. We show here that the G4-stabilizing compound PhenDC3 causes growth defects in Schizosaccharomyces pombe cells, especially during S-phase in synchronized cultures. By visualizing individual DNA molecules, we observed shorter DNA fragments of newly replicated DNA in the PhenDC3-treated cells, suggesting that PhenDC3 impedes replication fork progression. Furthermore, a novel single DNA molecule damage assay revealed increased single-strand DNA lesions in the PhenDC3-treated cells. Moreover, chromatin immunoprecipitation showed enrichment of the leading-strand DNA polymerase at sites of predicted G4 structures, suggesting that these structures impede DNA replication. We tested a subset of these sites and showed that they form G4 structures, that they stall DNA synthesis in vitro and that they can be resolved by the breast cancer-associated Pif1 family helicases. Our results thus suggest that G4 structures occur in S. pombe and that stabilized/unresolved G4 structures are obstacles for the replication machinery. The increased levels of DNA damage might further highlight the association of the human Pif1 helicase with familial breast cancer and the onset of other human diseases connected to unresolved G4 structures.


Asunto(s)
Roturas del ADN de Cadena Simple , Replicación del ADN , ADN de Hongos/química , G-Cuádruplex , Schizosaccharomyces/genética , ADN Helicasas/fisiología , Compuestos de Anillos Fusionados/farmacología , Fase S , Proteínas de Schizosaccharomyces pombe/fisiología
19.
Mol Biol Cell ; 31(17): 1846-1856, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32520628

RESUMEN

Microtubules of the mitotic spindle direct cytokinesis in metazoans but this has not been documented in fungi. We report evidence that microtubule nucleators at the spindle pole body help coordinate cytokinetic furrow formation in fission yeast. The temperature-sensitive cps1-191 strain (Liu et al., 1999) with a D277N substitution in ß-glucan synthase 1 (Cps1/Bgs1) was reported to arrest with an unconstricted contractile ring. We discovered that contractile rings in cps1-191 cells constrict slowly and that an mto2S338N mutation is required with the bgs1D277Nmutation to reproduce the cps1-191 phenotype. Complexes of Mto2 and Mto1 with γ-tubulin regulate microtubule assembly. Deletion of Mto1 along with the bgs1D277N mutation also gives the cps1-191 phenotype, which is not observed in mto2S338N or mto1Δ cells expressing bgs1+. Both mto2S338N and mto1Δ cells nucleate fewer astral microtubules than normal and have higher levels of Rho1-GTP at the division site than wild-type cells. We report multiple conditions that sensitize mto1Δ and mto2S338N cells to furrow ingression phenotypes.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas Portadoras/fisiología , Citocinesis/fisiología , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/fisiología , Centro Organizador de los Microtúbulos , Microtúbulos/fisiología , Fenotipo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/fisiología , Huso Acromático , Tubulina (Proteína)/genética
20.
PLoS Pathog ; 16(5): e1008190, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32413071

RESUMEN

DNA replication protein Cdc45 is an integral part of the eukaryotic replicative helicase whose other components are the Mcm2-7 core, and GINS. We identified a PIP box motif in Leishmania donovani Cdc45. This motif is typically linked to interaction with the eukaryotic clamp proliferating cell nuclear antigen (PCNA). The homotrimeric PCNA can potentially bind upto three different proteins simultaneously via a loop region present in each monomer. Multiple binding partners have been identified from among the replication machinery in other eukaryotes, and the concerted /sequential binding of these partners are central to the fidelity of the replication process. Though conserved in Cdc45 across Leishmania species and Trypanosoma cruzi, the PIP box is absent in Trypanosoma brucei Cdc45. Here we investigate the possibility of Cdc45-PCNA interaction and the role of such an interaction in the in vivo context. Having confirmed the importance of Cdc45 in Leishmania DNA replication we establish that Cdc45 and PCNA interact stably in whole cell extracts, also interacting with each other directly in vitro. The interaction is mediated via the Cdc45 PIP box. This PIP box is essential for Leishmania survival. The importance of the Cdc45 PIP box is also examined in Schizosaccharomyces pombe, and it is found to be essential for cell survival here as well. Our results implicate a role for the Leishmania Cdc45 PIP box in recruiting or stabilizing PCNA on chromatin. The Cdc45-PCNA interaction might help tether PCNA and associated replicative DNA polymerase to the DNA template, thus facilitating replication fork elongation. Though multiple replication proteins that associate with PCNA have been identified in other eukaryotes, this is the first report demonstrating a direct interaction between Cdc45 and PCNA, and while our analysis suggests the interaction may not occur in human cells, it indicates that it may not be confined to trypanosomatids.


Asunto(s)
Leishmania donovani/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiología , Cromatina/genética , ADN Helicasas/metabolismo , Replicación del ADN/fisiología , Leishmania donovani/genética , Proteínas Nucleares/genética , Proteínas Nucleares/fisiología , Nucleotidiltransferasas/genética , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , Dominios Proteicos , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/fisiología , Análisis de Secuencia de Proteína/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA