Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Atherosclerosis ; 278: 286-298, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30347344

RESUMEN

The cholesteryl ester transfer protein (CETP) system moves cholesteryl esters (CE) from high density lipoproteins (HDL) to lower density lipoproteins, i.e. very low-density lipoprotein (VLDL) and low-density lipoprotein (LDL) in exchange for triglycerides (TGs). This shuttle process will ultimately form complexes facilitating a bidirectional exchange of CE and TGs, the end process being CE delivery to catabolic sites. The CETP system is generally characteristic of higher animal species; lower species, not provided with this system, have higher and enlarged HDL enriched with apo E, suitable for tissue receptor interaction. Discovery of the CETP system has led to the development of agents interfering with CETP, thus elevating HDL-C and potentially preventing cardiovascular (CV) disease. Activation of CETP leads instead to reduced HDL-C levels, but also to an enhanced removal of CE from tissues. CETP antagonists are mainly small molecules (torcetrapib, anacetrapib, evacetrapib, dalcetrapib) and have provided convincing evidence of a HDL-C raising activity, but disappointing results in trials of CV prevention. In contrast, the CETP agonist probucol leads to HDL-C lowering followed by an increment of tissue cholesterol removal (reduction of xanthomas, xanthelasmas) and positive findings in secondary prevention trials. The drug has an impressive anti-inflammatory profile (markedly reduced interleukin-1ß expression). Newer agents, some of natural origin, have additional valuable pharmacodynamic properties. The pharmacological approach to the CETP system remains enigmatic, although the failure of CETP antagonists has dampened enthusiasm. Studies on the system, a crossroad for any investigation on cholesterol metabolism, have however provided crucial contributions and will still be confronting any scientist working on CV prevention.


Asunto(s)
Anticolesterolemiantes/farmacología , Proteínas de Transferencia de Ésteres de Colesterol/agonistas , Proteínas de Transferencia de Ésteres de Colesterol/antagonistas & inhibidores , Amidas , Animales , Benzodiazepinas/farmacología , Enfermedades Cardiovasculares/metabolismo , Colesterol/metabolismo , Proteínas de Transferencia de Ésteres de Colesterol/fisiología , HDL-Colesterol/metabolismo , Ésteres , Humanos , Lignanos/farmacología , Lipoproteínas HDL/metabolismo , Lipoproteínas VLDL/metabolismo , Oxazolidinonas/farmacología , Probucol/farmacología , Quinolinas/farmacología , Compuestos de Sulfhidrilo/farmacología , Triglicéridos/metabolismo
2.
Toxicol In Vitro ; 47: 249-258, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29197506

RESUMEN

Cadmium (Cd) is a heavy metal with several toxicities that have destructive effect on most organ systems. However, its toxic effects on human lipoproteins are largely remained unknown especially in hyperlipidemic zebrafish model. Treatment of human high-density lipoprotein (HDL) with cadmium chloride (CdCl2, final 12 and 24µM) caused spontaneous formation of multimeric apoA-I as well as increased production of glycated extent products. Cd-HDL3 accelerated uptake of oxidized LDL (oxLDL) into macrophages and induced severe senescence in human dermal fibroblast (HDF) cells. Microinjection of Cd-HDL3 into zebrafish embryos resulted in acute embryonic toxicity with high mortality. Exposure of zebrafish embryos to water containing CdCl2 (final 12 and 24µM) caused early embryonic death along with increased production of oxidized products and impairment of skeletal development. Consumption of CdCl2 (12 and 24µM) by zebrafish for 4weeks resulted in severe elevation of plasma total cholesterol (TC) and triglyceride (TG) levels as well as cholesteryl ester (CE) transfer activity. Furthermore, consumption of CdCl2 resulted in acceleration of fatty liver changes and increased production of reactive oxygen species (ROS). In conclusion, CdCl2 caused structural modification of HDL3 and impaired the beneficial functions of HDL3, including anti-oxidation, anti-atherosclerosis, and anti-senescence effects. Consumption of CdCl2 also resulted in exacerbated hyperlipidemia and fatty liver changes in zebrafish via enhancement of cholesteryl ester transfer protein (CETP) activity.


Asunto(s)
Cadmio/toxicidad , Proteínas de Transferencia de Ésteres de Colesterol/agonistas , Hiperlipidemias/etiología , Lipoproteínas HDL/metabolismo , Hígado/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/etiología , Contaminantes del Agua/toxicidad , Animales , Apolipoproteína A-I/química , Apolipoproteína A-I/metabolismo , Células Cultivadas , Proteínas de Transferencia de Ésteres de Colesterol/sangre , Proteínas de Transferencia de Ésteres de Colesterol/metabolismo , Dieta Alta en Grasa/efectos adversos , Desarrollo Embrionario/efectos de los fármacos , Femenino , Glicosilación/efectos de los fármacos , Humanos , Hiperlipidemias/metabolismo , Hiperlipidemias/patología , Hiperlipidemias/fisiopatología , Lipoproteínas HDL/sangre , Lipoproteínas HDL/química , Hígado/metabolismo , Hígado/patología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Microinyecciones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/fisiopatología , Fagocitosis/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Especies Reactivas de Oxígeno/agonistas , Especies Reactivas de Oxígeno/metabolismo , Piel/citología , Piel/efectos de los fármacos , Piel/metabolismo , Pez Cebra , Proteínas de Pez Cebra/agonistas , Proteínas de Pez Cebra/sangre , Proteínas de Pez Cebra/metabolismo
3.
J Nutr Biochem ; 25(6): 669-74, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24746832

RESUMEN

Cholesteryl ester transfer protein (CETP) is a plasma protein that reduces high density lipoprotein (HDL)-cholesterol (chol) levels and may increase atherosclerosis risk. n-3 and n-6 polyunsaturated fatty acids (PUFAs) are natural ligands, and fibrates are synthetic ligands for peroxisome proliferator activated receptor-alpha (PPARα), a transcription factor that modulates lipid metabolism. In this study, we investigated the effects of PUFA oils and fibrates on CETP expression. Hypertriglyceridemic CETP transgenic mice were treated with gemfibrozil, fenofibrate, bezafibrate or vehicle (control), and normolipidemic CETP transgenic mice were treated with fenofibrate or with fish oil (FO; n-3 PUFA rich), corn oil (CO, n-6 PUFA rich) or saline. Compared with the control treatment, only fenofibrate significantly diminished triglyceridemia (50%), whereas all fibrates decreased the HDL-chol level. Elevation of the CETP liver mRNA levels and plasma activity was observed in the fenofibrate (53%) and gemfibrozil (75%) groups. Compared with saline, FO reduced the plasma levels of nonesterified fatty acid (26%), total chol (15%) and HDL-chol (20%). Neither of the oil treatments affected the plasma triglyceride levels. Compared with saline, FO increased the plasma adiponectin level and reduced plasma leptin levels, whereas CO increased the leptin levels. FO, but not CO, significantly increased the plasma CETP mass (90%) and activity (23%) as well as increased the liver level of CETP mRNA (28%). In conclusion, fibrates and FO, but not CO, up-regulated CETP expression at both the mRNA and protein levels. We propose that these effects are mediated by the activation of PPARα, which acts on a putative PPAR response element in the CETP gene.


Asunto(s)
Proteínas de Transferencia de Ésteres de Colesterol/agonistas , Ácidos Fíbricos/uso terapéutico , Aceites de Pescado/uso terapéutico , Hipertrigliceridemia/tratamiento farmacológico , Hipolipemiantes/uso terapéutico , Hígado/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Animales , Bezafibrato/uso terapéutico , Proteínas de Transferencia de Ésteres de Colesterol/sangre , Proteínas de Transferencia de Ésteres de Colesterol/genética , Proteínas de Transferencia de Ésteres de Colesterol/metabolismo , Terapia Combinada , Aceite de Maíz/uso terapéutico , Cruzamientos Genéticos , Suplementos Dietéticos , Femenino , Fenofibrato/uso terapéutico , Gemfibrozilo/uso terapéutico , Hipertrigliceridemia/sangre , Hipertrigliceridemia/metabolismo , Hipertrigliceridemia/prevención & control , Hígado/metabolismo , Masculino , Ratones Transgénicos , ARN Mensajero/metabolismo , Distribución Aleatoria
4.
Herz ; 37(1): 51-5, 2012 Feb.
Artículo en Alemán | MEDLINE | ID: mdl-22258137

RESUMEN

The risk for myocardial infarction can be reduced by almost 50% solely by lowering LDL cholesterol. Despite success reducing LDL and cholesterol, atherosclerosis and myocardial infarction remain significant challenges. However, mechanisms of the reverse cholesterol transport system might be used more effectively in the foreseeable future. Although the benefit of high HDL cholesterol appears to be obvious, most clinical trials aimed at increasing HDL cholesterol failed to generate convincing results. Therefore, the question arises as to whether indeed only HDL level or perhaps rather more HDL function is of considerable therapeutic relevance. If function is the crucial issue drugs such as CETP (cholesteryl ester transfer protein) activators or SR-B1 (scavenger receptor type B-1) upregulators could be beneficial. These types of drugs could improve HDL metabolism and might have beneficial effects despite the fact that they lower HDL levels. Ongoing studies on next generation CETP inhibitors and nicotinic acid will clarify this question and might help in our struggle against atherosclerosis.


Asunto(s)
Aterosclerosis/prevención & control , HDL-Colesterol/sangre , Infarto del Miocardio/prevención & control , Anticolesterolemiantes/efectos adversos , Anticolesterolemiantes/uso terapéutico , Aterosclerosis/sangre , Atorvastatina , Proteínas de Transferencia de Ésteres de Colesterol/agonistas , Proteínas de Transferencia de Ésteres de Colesterol/antagonistas & inhibidores , Proteínas de Transferencia de Ésteres de Colesterol/fisiología , LDL-Colesterol/sangre , Ensayos Clínicos como Asunto , Quimioterapia Combinada , Terminación Anticipada de los Ensayos Clínicos , Femenino , Fluorobencenos/efectos adversos , Fluorobencenos/uso terapéutico , Ácidos Heptanoicos/efectos adversos , Ácidos Heptanoicos/uso terapéutico , Humanos , Masculino , Proteínas de Transporte de Membrana/fisiología , Infarto del Miocardio/sangre , Infarto del Miocardio/mortalidad , Niacina/efectos adversos , Niacina/uso terapéutico , Pirimidinas/efectos adversos , Pirimidinas/uso terapéutico , Pirroles/efectos adversos , Pirroles/uso terapéutico , Quinolinas/efectos adversos , Quinolinas/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto , Valores de Referencia , Rosuvastatina Cálcica , Receptores Depuradores de Clase B/fisiología , Sulfonamidas/efectos adversos , Sulfonamidas/uso terapéutico , Tasa de Supervivencia , Regulación hacia Arriba/fisiología
5.
Atherosclerosis ; 219(1): 109-15, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21820657

RESUMEN

OBJECTIVE: Cholesteryl ester transfer protein (CETP) plays a central role in the metabolism of high-density lipoprotein particles. Therefore, we searched for new drugs that bind to CETP and modulate its activity. METHODS: A preliminary pharmacophore-based parallel screening approach indicated that leoligin, a major lignan of Edelweiss (Leontopodium alpinum Cass.), might bind to CETP. Therefore we incubated leoligin ex vivo at different concentrations with human (n=20) and rabbit plasma (n=3), and quantified the CETP activity by fluorimeter. Probucol served as positive control. Furthermore, we dosed CETP transgenic mice with leoligin and vehicle control by oral gavage for 7 days and measured subsequently the in vivo modulation of CETP activity (n=5 for each treatment group). RESULTS: In vitro, leoligin significantly activated CETP in human plasma at 100 pM (p=0.023) and 1 nM (p=0.042), respectively, whereas leoligin concentrations of 1 mM inhibited CETP activity (p=0.012). The observed CETP activation was not species specific, as it was similar in magnitude for rabbit CETP. In vivo, there was also a higher CETP activity after oral dosage of CETP transgenic mice with leoligin (p=0.015). There was no short-term toxicity apparent in mice treated with leoligin. CONCLUSION: CETP agonism by leoligin appears to be safe and effective, and may prove to be a useful modality to alter high-density lipoprotein metabolism.


Asunto(s)
Proteínas de Transferencia de Ésteres de Colesterol/agonistas , Lignanos/farmacología , Animales , Humanos , Lignanos/administración & dosificación , Ratones , Ratones Transgénicos , Simulación de Dinámica Molecular , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...