Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
FEBS J ; 288(18): 5300-5310, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33305524

RESUMEN

The translocase of the outer mitochondrial membrane (TOM) complex is the main entry gate for most mitochondrial proteins. The TOM complex is a multisubunit membrane protein complex consisting of a ß-barrel protein Tom40 and six α-helical transmembrane (TM) proteins, receptor subunits Tom20, Tom22, and Tom70, and regulatory subunits Tom5, Tom6, and Tom7. Although nearly 30 years have passed since the main components of the TOM complex were identified and characterized, the structural details of the TOM complex remained poorly understood until recently. Thanks to the rapid development of the cryoelectron microscopy (EM) technology, high-resolution structures of the yeast TOM complex have become available. The identified structures showed a symmetric dimer containing five different subunits including Tom22. Biochemical and mutational analyses based on the TOM complex structure revealed the presence of different translocation paths within the Tom40 import channel for different classes of translocating precursor proteins. Previous studies including our cross-linking analyses indicated that the TOM complex in intact mitochondria is present as a mixture of the trimeric complex containing Tom22. Furthermore, the dimeric complex lacking Tom22, and the trimer and dimer may handle different sets of mitochondrial precursor proteins for translocation across the outer membrane. In this Structural Snapshot, we will discuss possible rearrangement of the subunit interactions upon dynamic conversion of the TOM complex between the different subunit assembly states, the Tom22-containing core dimer and trimer.


Asunto(s)
Proteínas Portadoras/ultraestructura , Proteínas de Transporte de Membrana Mitocondrial/ultraestructura , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/ultraestructura , Proteínas Portadoras/genética , Mitocondrias/genética , Mitocondrias/ultraestructura , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/ultraestructura , Complejos Multiproteicos/genética , Complejos Multiproteicos/ultraestructura , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta/genética , Transporte de Proteínas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética
2.
Cell Rep ; 33(10): 108486, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33296646

RESUMEN

The mitochondrial calcium uniporter is a multi-subunit Ca2+-activated Ca2+ channel, made up of the pore-forming MCU protein, a metazoan-specific EMRE subunit, and MICU1/MICU2, which mediate Ca2+ activation. It has been established that metazoan MCU requires EMRE binding to conduct Ca2+, but how EMRE promotes MCU opening remains unclear. Here, we demonstrate that EMRE controls MCU activity via its transmembrane helix, while using an N-terminal PKP motif to strengthen binding with MCU. Opening of MCU requires hydrophobic interactions mediated by MCU residues near the pore's luminal end. Enhancing these interactions by single mutation allows human MCU to transport Ca2+ without EMRE. We further show that EMRE may facilitate MCU opening by stabilizing the open state in a conserved MCU gating mechanism, present also in non-metazoan MCU homologs. These results provide insights into the evolution of the uniporter machinery and elucidate the mechanism underlying the physiologically crucial EMRE-dependent MCU activation process.


Asunto(s)
Canales de Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Calcio/metabolismo , Canales de Calcio/fisiología , Canales de Calcio/ultraestructura , Proteínas de Unión al Calcio/fisiología , Proteínas de Unión al Calcio/ultraestructura , Proteínas de Transporte de Catión/fisiología , Proteínas de Transporte de Catión/ultraestructura , Células HEK293 , Humanos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Proteínas de Transporte de Membrana Mitocondrial/ultraestructura , Membranas Mitocondriales/metabolismo
3.
Biochim Biophys Acta Mol Basis Dis ; 1866(5): 165664, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31926265

RESUMEN

Neutrophils release neutrophil extracellular traps (NETs) in response to numerous pathogenic microbes as the last suicidal resource (NETosis) in the fight against infection. Apart from the host defense function, NETs play an essential role in the pathogenesis of various autoimmune and inflammatory diseases. Therefore, understanding the molecular mechanisms of NETosis is important for regulating aberrant NET release. The initiation of NETosis after the recognition of pathogens by specific receptors is mediated by an increase in intracellular Ca2+ concentration, therefore, the use of Ca2+ ionophore A23187 can be considered a semi-physiological model of NETosis. Induction of NETosis by various stimuli depends on reactive oxygen species (ROS) produced by NADPH oxidase, however, NETosis induced by Ca2+ ionophores was suggested to be mediated by ROS produced in mitochondria (mtROS). Using the mitochondria-targeted antioxidant SkQ1 and specific inhibitors of NADPH oxidase, we showed that both sources of ROS, mitochondria and NADPH oxidase, are involved in NETosis induced by A23187 in human neutrophils. In support of the critical role of mtROS, SkQ1-sensitive NETosis was demonstrated to be induced by A23187 in neutrophils from patients with chronic granulomatous disease (CGD). We assume that Ca2+-triggered mtROS production contributes to NETosis either directly (CGD neutrophils) or by stimulating NADPH oxidase. The opening of the mitochondrial permeability transition pore (mPTP) in neutrophils treated by A23187 was revealed using the electron transmission microscopy as a swelling of the mitochondrial matrix. Using specific inhibitors, we demonstrated that the mPTP is involved in mtROS production, NETosis, and the oxidative burst induced by A23187.


Asunto(s)
Trampas Extracelulares/metabolismo , Enfermedad Granulomatosa Crónica/patología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , NADPH Oxidasa 2/metabolismo , Neutrófilos/metabolismo , Estallido Respiratorio/fisiología , Adolescente , Calcimicina/farmacología , Calcio/metabolismo , Cationes Bivalentes/metabolismo , Células Cultivadas , Niño , Transporte de Electrón , Depuradores de Radicales Libres/farmacología , Enfermedad Granulomatosa Crónica/sangre , Voluntarios Sanos , Humanos , Mutación con Pérdida de Función , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/fisiología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Proteínas de Transporte de Membrana Mitocondrial/ultraestructura , Poro de Transición de la Permeabilidad Mitocondrial , NADPH Oxidasa 2/antagonistas & inhibidores , NADPH Oxidasa 2/genética , Neutrófilos/citología , Neutrófilos/efectos de los fármacos , Neutrófilos/ultraestructura , Oxidación-Reducción/efectos de los fármacos , Plastoquinona/análogos & derivados , Plastoquinona/farmacología , Cultivo Primario de Células , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Estallido Respiratorio/efectos de los fármacos
4.
Life Sci ; 247: 116942, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-31715185

RESUMEN

AIMS: The cardioprotective effects of preconditioning against ischemia-reperfusion (I/R) injury depend on the structural integrity of membrane caveolae and signaling through G protein-coupled receptors (GPCRs). However, the mechanisms underlying opioid preconditioning are not fully understood. Here, we examined whether caveolins transmitted opioid-GPCR signals to the mitochondria to mediate cardioprotection. MAIN METHODS: Mice were treated with pertussis toxin (PTX) or saline. Thirty-six hours later, mice from each group were randomly assigned to receive the δ-opioid receptor agonist SNC-121 or saline intraperitoneally 15 min before in vivo I/R. Infarct sizes in each group were compared, and immunoblot analysis was used to detect caveolin expression. The structures of caveolae and mitochondria were determined by electron microscopy (EM). The opening degree of the mitochondrial permeability transition pore (mPTP) was assessed by colorimetry, and mitochondrial respiratory function was assessed by Oxygraph-2k. KEY FINDINGS: Treatment with an opioid receptor agonist reduced the myocardial infarct size after I/R injury, increased caveolin expression, decreased mitochondrial mPTP opening, and improved mitochondrial respiratory function. EM analysis revealed that opioids induced caveolae formation in myocytes and tended to promote translocation to mitochondria. However, these protective effects were blocked by PTX. SIGNIFICANCE: Opioid-induced preconditioning depended on Gi signaling, which promoted caveolin translocation to mitochondria, supported their functional integrity, and enhanced cardiac stress adaption. Verification of this pathway will establish new targets for opioid agents in the field of cardiac protection.


Asunto(s)
Benzamidas/farmacología , Cardiotónicos/farmacología , Caveolinas/metabolismo , Mitocondrias Cardíacas/metabolismo , Piperazinas/farmacología , Receptores Opioides delta/agonistas , Receptores Opioides delta/metabolismo , Animales , Caveolas/metabolismo , Caveolas/ultraestructura , Masculino , Ratones , Mitocondrias Cardíacas/ultraestructura , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/ultraestructura , Poro de Transición de la Permeabilidad Mitocondrial , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/ultraestructura , Receptores Acoplados a Proteínas G/metabolismo
5.
Nat Struct Mol Biol ; 26(12): 1158-1166, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31740857

RESUMEN

Nearly all mitochondrial proteins are encoded by the nuclear genome and imported into mitochondria after synthesis on cytosolic ribosomes. These precursor proteins are translocated into mitochondria by the TOM complex, a protein-conducting channel in the mitochondrial outer membrane. We have determined high-resolution cryo-EM structures of the core TOM complex from Saccharomyces cerevisiae in dimeric and tetrameric forms. Dimeric TOM consists of two copies each of five proteins arranged in two-fold symmetry: pore-forming ß-barrel protein Tom40 and four auxiliary α-helical transmembrane proteins. The pore of each Tom40 has an overall negatively charged inner surface attributed to multiple functionally important acidic patches. The tetrameric complex is essentially a dimer of dimeric TOM, which may be capable of forming higher-order oligomers. Our study reveals the detailed molecular organization of the TOM complex and provides new insights about the mechanism of protein translocation into mitochondria.


Asunto(s)
Proteínas Portadoras/química , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Proteínas Portadoras/metabolismo , Proteínas Portadoras/ultraestructura , Microscopía por Crioelectrón , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/ultraestructura , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura
6.
Nature ; 575(7782): 395-401, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31600774

RESUMEN

The translocase of the outer mitochondrial membrane (TOM) is the main entry gate for proteins1-4. Here we use cryo-electron microscopy to report the structure of the yeast TOM core complex5-9 at 3.8-Å resolution. The structure reveals the high-resolution architecture of the translocator consisting of two Tom40 ß-barrel channels and α-helical transmembrane subunits, providing insight into critical features that are conserved in all eukaryotes1-3. Each Tom40 ß-barrel is surrounded by small TOM subunits, and tethered by two Tom22 subunits and one phospholipid. The N-terminal extension of Tom40 forms a helix inside the channel; mutational analysis reveals its dual role in early and late steps in the biogenesis of intermembrane-space proteins in cooperation with Tom5. Each Tom40 channel possesses two precursor exit sites. Tom22, Tom40 and Tom7 guide presequence-containing preproteins to the exit in the middle of the dimer, whereas Tom5 and the Tom40 N extension guide preproteins lacking a presequence to the exit at the periphery of the dimer.


Asunto(s)
Microscopía por Crioelectrón , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Mitocondrias/química , Proteínas de Transporte de Membrana Mitocondrial/ultraestructura , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Modelos Moleculares , Fosfolípidos/metabolismo , Multimerización de Proteína , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura
7.
Cell ; 176(3): 435-447.e15, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30611538

RESUMEN

Mitochondrial ADP/ATP carriers transport ADP into the mitochondrial matrix for ATP synthesis, and ATP out to fuel the cell, by cycling between cytoplasmic-open and matrix-open states. The structure of the cytoplasmic-open state is known, but it has proved difficult to understand the transport mechanism in the absence of a structure in the matrix-open state. Here, we describe the structure of the matrix-open state locked by bongkrekic acid bound in the ADP/ATP-binding site at the bottom of the central cavity. The cytoplasmic side of the carrier is closed by conserved hydrophobic residues, and a salt bridge network, braced by tyrosines. Glycine and small amino acid residues allow close-packing of helices on the matrix side. Uniquely, the carrier switches between states by rotation of its three domains about a fulcrum provided by the substrate-binding site. Because these features are highly conserved, this mechanism is likely to apply to the whole mitochondrial carrier family. VIDEO ABSTRACT.


Asunto(s)
Mitocondrias/metabolismo , Translocasas Mitocondriales de ADP y ATP/metabolismo , Translocasas Mitocondriales de ADP y ATP/ultraestructura , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Transporte Biológico , Ácido Bongcréquico/metabolismo , Citoplasma/metabolismo , Mitocondrias/fisiología , Translocasas Mitocondriales de ADP y ATP/fisiología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Proteínas de Transporte de Membrana Mitocondrial/ultraestructura , Modelos Moleculares , Conformación Proteica , Estructura Secundaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Anal Biochem ; 552: 38-44, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28693989

RESUMEN

Mitochondrial permeability transition (PT) is a phenomenon of an increase of the inner membrane permeability in response to an excessive matrix calcium accumulation. PTP is caused by the opening of the large weakly selective channel. Molecular composition and regulation of permeability transition pore (PTP) are not well understood. Here we used isolated mitochondria to investigate dependence of PTP activation on the osmotic pressure. We found that in low osmotic strength solution calcium-induced PTP is significantly inhibited. We propose that this effect is linked to the changes in the curvature of the mitochondrial inner membrane. This interpretation is consistent with the idea about the importance of ATP synthase dimerization in modulation of the PTP activity.


Asunto(s)
Luz , Microscopía Electrónica/métodos , Microscopía Fluorescente/métodos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Presión Osmótica , Dispersión de Radiación , Dimerización , Proteínas de Transporte de Membrana Mitocondrial/ultraestructura , Poro de Transición de la Permeabilidad Mitocondrial , ATPasas de Translocación de Protón/metabolismo
9.
Cell ; 170(4): 693-700.e7, 2017 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-28802041

RESUMEN

The TOM complex is the main entry gate for protein precursors from the cytosol into mitochondria. We have determined the structure of the TOM core complex by cryoelectron microscopy (cryo-EM). The complex is a 148 kDa symmetrical dimer of ten membrane protein subunits that create a shallow funnel on the cytoplasmic membrane surface. In the core of the dimer, the ß-barrels of the Tom40 pore form two identical preprotein conduits. Each Tom40 pore is surrounded by the transmembrane segments of the α-helical subunits Tom5, Tom6, and Tom7. Tom22, the central preprotein receptor, connects the two Tom40 pores at the dimer interface. Our structure offers detailed insights into the molecular architecture of the mitochondrial preprotein import machinery.


Asunto(s)
Proteínas Portadoras/química , Proteínas Fúngicas/química , Neurospora crassa/enzimología , Sistemas de Translocación de Proteínas/química , Secuencia de Aminoácidos , Proteínas Portadoras/genética , Proteínas Portadoras/ultraestructura , Microscopía por Crioelectrón , Proteínas Fúngicas/genética , Proteínas Fúngicas/ultraestructura , Espectrometría de Masas , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/ultraestructura , Membranas Mitocondriales/enzimología , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Modelos Moleculares , Conformación Proteica en Lámina beta , Sistemas de Translocación de Proteínas/genética , Sistemas de Translocación de Proteínas/ultraestructura , Proteínas de Saccharomyces cerevisiae/química
10.
Int J Radiat Biol ; 93(5): 470-476, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28110593

RESUMEN

PURPOSE: To investigate alterations of mitochondria in irradiated endothelial cells to further elucidate the mechanism underlying radiation-induced heart disease. MATERIALS AND METHODS: Experiments were performed using human umbilical vein endothelial cells (HUVECs). HUVECs were irradiated with single gamma ray dose of 0, 5, 10 and 20 Gy, respectively. Apoptosis was assessed by flow cytometry at 24, 48 and 72 h post-irradiation, respectively. The intracellular reactive oxygen species (ROS) was measured with 2',7'-dichlorofluorescein-diacetate (DCFH-DA) at 24 h post-irradiation. Mitochondrial membrane potential (ΔΨm) by JC-1 and the opening of mitochondrial permeability transition pore (mPTP) by a calcein-cobalt quenching method were detected at 24 h post-irradiation in order to measure changes of mitochondria induced by gamma ray irradiation. RESULTS: Gamma ray irradiation increased HUVECs apoptosis in a dose-dependent and time-dependent manner. Irradiation also promoted ROS production in HUVECs in a dose-dependent manner. At 24 h post-irradiation, the results showed that irradiation decreases ΔΨm, however, paradoxically, flow cytometry showed green fluorescence instensity higher in irradiated HUVECs than in control HUVECs in an irradiation dose-dependent manner which indicated gamma ray irradiation inhibited mPTP opening in HUVECs. CONCLUSIONS: Gamma ray irradiation induces apoptosis and ROS production of endothelial cells, and decreases ΔΨm meanwhile contradictorily inhibiting the opening of mPTP.


Asunto(s)
Apoptosis/fisiología , Células Endoteliales/fisiología , Rayos gamma , Potencial de la Membrana Mitocondrial/fisiología , Mitocondrias/fisiología , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Apoptosis/efectos de la radiación , Células Cultivadas , Relación Dosis-Respuesta en la Radiación , Células Endoteliales/efectos de la radiación , Células Endoteliales/ultraestructura , Humanos , Potencial de la Membrana Mitocondrial/efectos de la radiación , Mitocondrias/efectos de la radiación , Mitocondrias/ultraestructura , Proteínas de Transporte de Membrana Mitocondrial/efectos de la radiación , Proteínas de Transporte de Membrana Mitocondrial/ultraestructura , Poro de Transición de la Permeabilidad Mitocondrial , Dosis de Radiación , Especies Reactivas de Oxígeno/metabolismo
11.
Arch Biochem Biophys ; 579: 1-7, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26014136

RESUMEN

Mia40 participates in oxidative protein folding within the mitochondrial intermembrane space (IMS) by mediating the transfer of reducing equivalents from client proteins to FAD-linked oxidoreductases of the Erv1 family (lfALR in mammals). Here we investigate the specificity of the human Mia40/lfALR system towards non-cognate unfolded protein substrates to assess whether the efficient introduction of disulfides requires a particular amino acid sequence context or the presence of an IMS targeting signal. Reduced pancreatic ribonuclease A (rRNase), avian lysozyme, and riboflavin binding protein are all competent substrates of the Mia40/lfALR system, although they lack those sequence features previously thought to direct disulfide bond formation in cognate IMS substrates. The oxidation of rRNase by Mia40 does not limit overall turnover of unfolded substrate by the Mia40/lfALR system. Mia40 is an ineffective protein disulfide isomerase when its ability to restore enzymatic activity from scrambled RNase is compared to that of protein disulfide isomerase. Mia40's ability to bind amphipathic peptides is evident by avid binding to the isolated B-chain during the insulin reductase assay. In aggregate these data suggest that the Mia40/lfALR system has a broad sequence specificity and that potential substrates may be protected from adventitious oxidation by kinetic sequestration within the mitochondrial IMS.


Asunto(s)
Reductasas del Citocromo/química , Reductasas del Citocromo/ultraestructura , Isomerasas/química , Isomerasas/ultraestructura , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/ultraestructura , Secuencia de Aminoácidos , Sitios de Unión , Simulación por Computador , Activación Enzimática , Humanos , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Modelos Químicos , Modelos Moleculares , Datos de Secuencia Molecular , Oxidantes/química , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Relación Estructura-Actividad
12.
J Membr Biol ; 248(4): 727-40, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25758230

RESUMEN

Quantum dots (QDs) are increasingly applied in sensing, drug delivery, biomedical imaging, electronics industries, etc. Consequently, it is urgently required to examine their potential threat to humans and the environment. In the present work, the toxicity of CdTe QDs with nearly identical maximum emission wavelength but modified with two different ligands (MPA and BSA) to mitochondria was investigated using flow cytometry, spectroscopic, and microscopic methods. The results showed that QDs induced mitochondrial permeability transition (MPT), which resulted in mitochondrial swelling, collapse of the membrane potential, inner membrane permeability to H(+) and K(+), the increase of membrane fluidity, depression of respiration, alterations of ultrastructure, and the release of cytochrome c. Furthermore, the protective effects of CsA and EDTA confirmed QDs might be able to induce MPT via a Ca(2+)-dependent domain. However, the difference between the influence of CdTe QDs and that of Cd(2+) on mitochondrial membrane fluidity indicated the release of Cd(2+) was not the sole reason that QDs induced mitochondrial dysfunction, which might be related to the nanoscale effect of QDs. Compared with MPA-CdTe QDs, BSA-CdTe QDs had a greater effect on the mitochondrial swelling, membrane fluidity, and permeabilization to H(+) and K(+) by mitochondrial inner membrane, which was caused the fact that BSA was more lipophilic than MPA. This study provides an important basis for understanding the mechanism of the toxicity of CdTe QDs to mitochondria, and valuable information for safe use of QDs in the future.


Asunto(s)
Compuestos de Cadmio/química , Mitocondrias Hepáticas/metabolismo , Membranas Mitocondriales/metabolismo , Puntos Cuánticos/química , Telurio/química , Animales , Mitocondrias Hepáticas/ultraestructura , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/ultraestructura , Membranas Mitocondriales/ultraestructura , Poro de Transición de la Permeabilidad Mitocondrial , Fenilacetatos/química , Ratas , Ratas Wistar , Albúmina Sérica Bovina/química
13.
Methods Mol Biol ; 1254: 87-97, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25431059

RESUMEN

Maintenance of mitochondrial membrane integrity is essential for mitochondrial function and neuronal viability. Apoptotic stimulus or calcium overload leads to mitochondrial permeability transition pore (mPTP ) opening and induces mitochondrial swelling, a common feature of mitochondrial membrane permeabilization. The first phenomenon can be evaluated in cells loaded with the dye calcein -AM quenched by cobalt, and mitochondrial swelling can be detected by electron microscopy through the analysis of mitochondrial membrane integrity. Here, we describe a live cell imaging assay to detect mitochondrial permeability transition and the development of a detailed analysis of morphological and ultrastructural changes that mitochondria undergo during this process.


Asunto(s)
Microscopía Electrónica , Proteínas de Transporte de Membrana Mitocondrial/ultraestructura , Membranas Mitocondriales/ultraestructura , Neuronas/ultraestructura , Calcio/metabolismo , Mitocondrias/ultraestructura , Poro de Transición de la Permeabilidad Mitocondrial , Dilatación Mitocondrial , Biología Molecular/métodos , Neuronas/metabolismo , Permeabilidad
14.
J Immunol ; 193(3): 1080-9, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24965775

RESUMEN

Ammonia levels are often elevated in patients with cirrhosis or tumors. Patients with these diseases are immunocompromised. In this study, we investigated the effects of ammonia on a member of the immune cell family, the dendritic cells (DCs). Our results demonstrated that ammonia diminished cell count, phagocytosis, and lymphocyte stimulation of DCs. Ammonia also induced DC swelling, excessive reactive oxygen species production, and mitochondrial damage, which may constitute the underlying mechanism of ammonia-induced DC dysfunction. In ammonium chloride (NH4Cl)-loaded mice, DCs exhibited lowered phagocytosis and a weakened immune response to the chicken OVA vaccine. DCs from patients with cirrhosis or ammonia-treated healthy human blood both exhibited diminished phagocytosis. Moreover, tumor cell conditioned medium drove DCs into dysfunction, which could be reversed by ammonia elimination. In a murine colon carcinoma model, we found that ammonia could regulate tumor growth involving DCs and their related immune response. These findings reveal that ammonia could drive DCs into dysfunction, which contributes to the immunocompromised state of patients with cirrhosis or tumors.


Asunto(s)
Cloruro de Amonio/toxicidad , Células Dendríticas/efectos de los fármacos , Células Dendríticas/patología , Animales , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/patología , Células de la Médula Ósea/ultraestructura , Recuento de Células , Línea Celular Tumoral , Técnicas de Cocultivo , Células Dendríticas/ultraestructura , Humanos , Cirrosis Hepática/inmunología , Cirrosis Hepática/patología , Prueba de Cultivo Mixto de Linfocitos/métodos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Persona de Mediana Edad , Proteínas de Transporte de Membrana Mitocondrial/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/ultraestructura , Poro de Transición de la Permeabilidad Mitocondrial , Fagocitosis/efectos de los fármacos , Fagocitosis/inmunología , Cultivo Primario de Células
15.
Mol Biol Cell ; 23(20): 3936-47, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22933571

RESUMEN

The TOM40 complex is a protein translocator in the mitochondrial outer membrane and consists of several different subunits. Among them, Tom40 is a central subunit that constitutes a protein-conducting channel by forming a ß-barrel structure. To probe the nature of the assembly process of Tom40 in the outer membrane, we attached various mitochondrial presequences to Tom40 that possess sorting information for the intermembrane space (IMS), inner membrane, and matrix and would compete with the inherent Tom40 assembly process. We analyzed the mitochondrial import of those fusion proteins in vitro. Tom40 crossed the outer membrane and/or inner membrane even in the presence of various sorting signals. N-terminal anchorage of the attached presequence to the inner membrane did not prevent Tom40 from associating with the TOB/SAM complex, although it impaired its efficient release from the TOB complex in vitro but not in vivo. The IMS or matrix-targeting presequence attached to Tom40 was effective in substituting for the requirement for small Tim proteins in the IMS for the translocation of Tom40 across the outer membrane. These results provide insight into the mechanism responsible for the precise delivery of ß-barrel proteins to the outer mitochondrial membrane.


Asunto(s)
Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Señales de Clasificación de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Potencial de la Membrana Mitocondrial , Mitocondrias/ultraestructura , Proteínas de Transporte de Membrana Mitocondrial/ultraestructura , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/ultraestructura , Modelos Biológicos , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/ultraestructura
16.
Acta Cardiol ; 63(3): 377-87, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18664030

RESUMEN

OBJECTIVE: The effect of inhibiting mitochondrial permeability transition (MPT) on cardioprotection induced by ischaemic postconditioning remains debatable. The aim of the present study was to investigate whether ischaemic postconditioning attenuates cardiomyocyte ultrastructure injury and apoptosis by blocking MPT. METHODS AND RESULTS: Sprague-Dawley rats were randomly allocated to eight groups (n = 12) including sham without ischaemia (I), control given 30 min 1 and 5 min or 120 min reperfusion (R), postconditioning (Post) treated the same as control and 3 cycles of 10 s R and 10 s I before R, preconditioning (Pre) treated the same as control and 3 cycles of 5 min 1 and 5 min R before 30 min 1, and other groups treated the same as control or Post and given cyclosporin A (CsA) or atractyloside (Atr). Infarct size was evaluated by TTC, ultrastructure by electron microscope, MPT by spectrophotometry, and apoptosis by TUNEL. Compared with the control treatment, the Post, CsA and Pre treatments had smaller infarct size, less reduction in optical density at 540 nm (OD540) for MPT (20.2% +/- 2.3% versus 12.1% +/- 1.8%, 11.2% +/- 3.3% and 12.1% +/- 5.6%, P < 0.01, respectively), lower mitochondrial score (2.09 +/- 0.27 versus 1.27 +/- 0.27, 0.97 +/- 0.26 and 1.28 +/- 0.32, P < 0.01, respectively) and percentage of apoptosis (34.9% +/- 2.6% versus 17.5% +/- 1.7%, 17.6% +/- 2.1% and 17.2% +/- 2.1%, P < 0.01, respectively). Post-induced cardioprotection was abrogated by Atr and failed to be enhanced by CsA. CONCLUSIONS: Blockage of MPT may be involved in attenuation of ultrastructure injury and apoptosis by ischaemic postconditioning.


Asunto(s)
Apoptosis , Precondicionamiento Isquémico Miocárdico/métodos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/ultraestructura , Animales , Modelos Animales de Enfermedad , Etiquetado Corte-Fin in Situ , Masculino , Microscopía Electrónica , Proteínas de Transporte de Membrana Mitocondrial/ultraestructura , Poro de Transición de la Permeabilidad Mitocondrial , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/terapia , Miocitos Cardíacos/metabolismo , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Espectrofotometría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA