Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Neuropharmacology ; 161: 107496, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30641078

RESUMEN

Trafficking of glutamate, glutamine and GABA between astrocytes and neurons is essential to maintain proper neurotransmission. Chronic hyperammonemia alters neurotransmission and cognitive function. The aims of this work were to analyze in cerebellum of rats the effects of chronic hyperammonemia on: a) extracellular glutamate, glutamine and GABA concentrations; b) membrane expression of glutamate, glutamine and GABA transporters; c) how they are modulated by extracellular cGMP. Hyperammonemic rats show increased levels of extracellular glutamate, glutamine, GABA and citrulline in cerebellum in vivo. Hyperammonemic rats show: a) increased membrane expression of the astrocytic glutamine transporter SNAT3 and reduced membrane expression of the neuronal transporter SNAT1; b) reduced membrane expression of the neuronal GABA transporter GAT1 and increased membrane expression of the astrocytic GAT3 transporter; c) reduced membrane expression of the astrocytic glutamate transporters GLAST and GLT-1 and of the neuronal transporter EAAC1. Increasing extracellular cGMP normalizes membrane expression of SNAT3, GAT3, GAT1 and GLAST and extracellular glutamate, glutamine, GABA and citrulline hyperammonemic rats. Extracellular cGMP also modulates membrane expression of most transporters in control rats, reducing membrane expression of SNAT1, GLT-1 and EAAC1 and increasing that of GAT1 and GAT3. Modulation of SNAT3, SNAT1, GLT-1 and EAAC1 by extracellular cGMP would be mediated by inhibition of glycine receptors. These data suggest that, in pathological situations such as hyperammonemia, hepatic encephalopathy or Alzheimer's disease, reduced levels of extracellular cGMP contribute to alterations in membrane expression of glutamine, glutamate and GABA transporters, in the extracellular levels of glutamine, glutamate and GABA and in neurotransmission. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.


Asunto(s)
Membrana Celular/metabolismo , Cerebelo/metabolismo , GMP Cíclico/farmacología , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Hiperamonemia/metabolismo , Proteínas de Transporte de Neurotransmisores/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Citrulina/metabolismo , Espacio Extracelular , Masculino , Proteínas de Transporte de Neurotransmisores/fisiología , Ratas , Ratas Wistar , Transmisión Sináptica/genética , Transmisión Sináptica/fisiología
4.
Annu Rev Cell Dev Biol ; 30: 439-63, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25288116

RESUMEN

Astrocytes regulate multiple aspects of neuronal and synaptic function from development through to adulthood. Instead of addressing each function independently, this review provides a comprehensive overview of the different ways astrocytes modulate neuronal synaptic function throughout life, with a particular focus on recent findings in each area. It includes the emerging functions of astrocytes, such as a role in synapse formation, as well as more established roles, including the uptake and recycling of neurotransmitters. This broad approach covers the many ways astrocytes and neurons constantly interact to maintain the correct functioning of the brain. It is important to consider all of these diverse functions of astrocytes when investigating how astrocyte-neuron interactions regulate synaptic behavior to appreciate the complexity of these ongoing interactions.


Asunto(s)
Astrocitos/fisiología , Proteínas del Tejido Nervioso/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Animales , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Señalización del Calcio , Comunicación Celular , Ácido Glutámico/fisiología , Humanos , Transporte Iónico , Lípidos/biosíntesis , Neuronas/fisiología , Neurotransmisores/fisiología , Proteínas de Transporte de Neurotransmisores/fisiología , Potasio/metabolismo , Receptores de Neurotransmisores/fisiología
6.
Physiology (Bethesda) ; 28(1): 39-50, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23280356

RESUMEN

Vesicular storage and subsequent release of neurotransmitters are the key processes of chemical signal transmission. In this process, vesicular neurotransmitter transporters are responsible for loading the signaling molecules. The use of a "clean biochemical" approach with purified, recombinant transporters has helped in the identification of novel vesicular neurotransmitter transporters and in the analysis of the control of signal transmission.


Asunto(s)
Proteínas de Transporte de Neurotransmisores/fisiología , Transducción de Señal/fisiología , Transmisión Sináptica/fisiología , Vesículas Sinápticas/fisiología , Animales , Proteínas de Transporte de Anión/fisiología , Humanos , Proteínas de Transporte Vesicular de Glutamato/fisiología , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/fisiología , Proteínas de Transporte Vesicular de Monoaminas/fisiología
7.
Dent Clin North Am ; 56(2): 319-30, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22480805

RESUMEN

Sleep can be defined as a complex reversible state characterized by behavioral quiescence, diminished responsiveness to external stimuli, and a stereotypical species-specific posture. Both components of sleep, non-rapid eye movement and rapid eye movement, are generated and maintained by central nervous system networks that use specific neurotransmitters located in specific areas of the brain. Widespread changes in physiologic processes occur during sleep, and these changes may influence the presentation and severity of specific medical disorders.


Asunto(s)
Sueño/fisiología , Sistema Nervioso Central/fisiología , Ritmo Circadiano/fisiología , Electroencefalografía , Humanos , Proteínas de Transporte de Neurotransmisores/fisiología , Polisomnografía , Fases del Sueño/fisiología , Núcleos Talámicos/fisiología
8.
Brain Nerve ; 63(7): 641-8, 2011 Jul.
Artículo en Japonés | MEDLINE | ID: mdl-21747133

RESUMEN

Our higher brain functions such as learning and memory, emotion, and consciousness depend on the precise regulation of complicated neural networks in the brain. Neurons communicate with each other through the synapse, which comprise 3 regions: the presynapse, synaptic cleft, and postsynapse. The active zone (AZ) beneath the presynaptic membrane is the principal site for Ca2+ -dependent neurotransmitter release: AZ is involved in determining the site for docking and synaptic vesicle fusion. Presently, the full molecular composition of AZ is unclear, but it is known to contain several AZ-specific proteins, including cytomatrix of the active zone-associated protein (CAST)/ERC2, ELKS, RIM1, Munc13-1, Piccolo/Aczonin, and Bassoon. CAST and ELKS are novel active zone proteins that directly bind to Rab3-interacting molecules (RIMs), Bassoon, and Piccolo, and are thought to play a role in neurotransmitter release by binding these to AZ proteins. In this review, current advances in studies on AZ structure and function have been summarized, and the focus is mainly on protein-protein interactions among the AZ proteins.


Asunto(s)
Terminales Presinápticos/química , Terminales Presinápticos/fisiología , Canales de Calcio/fisiología , Humanos , Proteínas del Tejido Nervioso/fisiología , Proteínas de Transporte de Neurotransmisores/fisiología
9.
PLoS One ; 6(1): e16275, 2011 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-21298005

RESUMEN

The SLC6 class of membrane transporters, known primarily as neurotransmitter transporters, is increasingly appreciated for its roles in nutritional uptake of amino acids and other developmentally specific functions. A Drosophila SLC6 gene, Neurotransmitter transporter-like (Ntl), is expressed only in the male germline. Mobilization of a transposon inserted near the 3' end of the Ntl coding region yields male-sterile mutants defining a single complementation group. Germline transformation with Ntl cDNAs under control of male germline-specific control elements restores Ntl/Ntl homozygotes to normal fertility, indicating that Ntl is required only in the germ cells. In mutant males, sperm morphogenesis appears normal, with elongated, individualized and coiled spermiogenic cysts accumulating at the base of the testes. However, no sperm are transferred to the seminal vesicle. The level of polyglycylation of Ntl mutant sperm tubulin appears to be significantly lower than that of wild type controls. Glycine transporters are the most closely related SLC6 transporters to Ntl, suggesting that Ntl functions as a glycine transporter in developing sperm, where augmentation of the cytosolic pool of glycine may be required for the polyglycylation of the massive amounts of tubulin in the fly's giant sperm. The male-sterile phenotype of Ntl mutants may provide a powerful genetic system for studying the function of an SLC6 transporter family in a model organism.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila melanogaster/fisiología , Proteínas de Transporte de Neurotransmisores/fisiología , Espermatogénesis , Espermatozoides/química , Animales , Drosophila melanogaster/citología , Fertilidad , Proteínas de Transporte de Glicina en la Membrana Plasmática/fisiología , Masculino , Fenotipo , Espermatozoides/metabolismo
10.
J Neurosci ; 31(4): 1284-91, 2011 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-21273413

RESUMEN

Because insulin acutely enhances the function of dopamine transporters, the tyrosine kinase receptors activated by this hormone may modulate transporter-dependent neurochemical and behavioral effects of psychoactive drugs. In this respect, we examined the effects of insulin on exocytotic monoamine release and the efficacy of the monoamine transporter blocker cocaine in rat nucleus accumbens. Whereas insulin reduced electrically evoked exocytotic [(3)H]dopamine release in nucleus accumbens slices, the hormone potentiated the release-enhancing effect of cocaine thereon. The phosphatidylinositol 3-kinase inhibitor LY294002 abolished these effects, indicating the involvement of insulin receptors. Similar insulin effects were observed on the release of [(3)H]norepinephrine in nucleus accumbens slices, but not on that of [(3)H]serotonin, and were also apparent in medial prefrontal cortex slices. As might then be expected, insulin also potentiated the dopamine and norepinephrine release-enhancing effects of the selective monoamine uptake inhibitors GBR12909 and desmethylimipramine, respectively. In subsequent behavioral experiments, we investigated the role of insulin in motor impulsivity that depends on monoamine neurotransmission in the nucleus accumbens. Intracranial administration of insulin in the nucleus accumbens alone reduced premature responses in the five-choice serial reaction time task and enhanced the stimulatory effect of peripheral cocaine administration on impulsivity, resembling the observed neurochemical effects of the hormone. In contrast, cocaine-induced locomotor activity remained unchanged by intra-accumbal insulin application. These data reveal that insulin presynaptically regulates cocaine-sensitive monoamine transporter function in the nucleus accumbens and, as a consequence, impulsivity. Therefore, insulin signaling proteins may represent targets for the treatment of inhibitory control deficits such as addictive behaviors.


Asunto(s)
Monoaminas Biogénicas/metabolismo , Cocaína/farmacología , Conducta Impulsiva/psicología , Insulina/fisiología , Proteínas de Transporte de Neurotransmisores/antagonistas & inhibidores , Animales , Dopamina/metabolismo , Conducta Impulsiva/fisiopatología , Técnicas In Vitro , Insulina/farmacología , Masculino , Actividad Motora/efectos de los fármacos , Inhibición Neural/efectos de los fármacos , Proteínas de Transporte de Neurotransmisores/fisiología , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Ratas , Ratas Wistar
12.
PLoS Comput Biol ; 6(8)2010 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-20865057

RESUMEN

The leucine transporter (LeuT) has recently commanded exceptional attention due mainly to two distinctions; it provides the only crystal structures available for a protein homologous to the pharmacologically relevant neurotransmitter: sodium symporters (NSS), and, it exhibits a hallmark 5-TM inverted repeat ("LeuT-fold"), a fold recently discovered to also exist in several secondary transporter families, underscoring its general role in transporter function. Constructing the transport cycle of "LeuT-fold" transporters requires detailed structural and dynamic descriptions of the outward-facing (OF) and inward-facing (IF) states, as well as the intermediate states. To this end, we have modeled the structurally unknown IF state of LeuT, based on the known crystal structures of the OF state of LeuT and the IF state of vSGLT, a "LeuT-fold" transporter. The detailed methodology developed for the study combines structure-based alignment, threading, targeted MD and equilibrium MD, and can be applied to other proteins. The resulting IF-state models maintain the secondary structural features of LeuT. Water penetration and solvent accessibility calculations show that TM1, TM3, TM6 and TM8 line the substrate binding/unbinding pathway with TM10 and its pseudosymmetric partner, TM5, participating in the extracellular and intracellular halves of the lumen, respectively. We report conformational hotspots where notable changes in interactions occur between the IF and OF states. We observe Na2 exiting the LeuT-substrate- complex in the IF state, mainly due to TM1 bending. Inducing a transition in only one of the two pseudosymmetric domains, while allowing the second to respond dynamically, is found to be sufficient to induce the formation of the IF state. We also propose that TM2 and TM7 may be facilitators of TM1 and TM6 motion. Thus, this study not only presents a novel modeling methodology applied to obtain the IF state of LeuT, but also describes structural elements involved in a possibly general transport mechanism in transporters adopting the "LeuT-fold".


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/fisiología , Leucina/metabolismo , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/fisiología , Sitios de Unión , Modelos Biológicos , Modelos Moleculares , Simulación de Dinámica Molecular , Proteínas de Transporte de Neurotransmisores/fisiología , Estructura Secundaria de Proteína
13.
Ann N Y Acad Sci ; 1187: 218-46, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20201856

RESUMEN

The first transgenic models used to study addiction were based upon a priori assumptions about the importance of particular genes in addiction, including the main target molecules of morphine, amphetamine, and cocaine. This consequently emphasized the importance of monoamine transporters, opioid receptors, and monoamine receptors in addiction. Although the effects of opiates were largely eliminated by mu opioid receptor gene knockout, the case for psychostimulants was much more complex. Research using transgenic models supported the idea of a polygenic basis for psychostimulant effects and has associated particular genes with different behavioral consequences of psychostimulants. Phenotypic analysis of transgenic mice, especially gene knockout mice, has been instrumental in identifying the role of specific molecular targets of addictive drugs in their actions. In this article, we summarize studies that have provided insight into the polygenic determination of drug addiction phenotypes in ways that are not possible with other methods, emphasizing research into the effects of psychostimulant drugs in gene knockouts of the monoamine transporters and monoamine receptors.


Asunto(s)
Estimulantes del Sistema Nervioso Central/toxicidad , Trastornos Relacionados con Sustancias/genética , Trastornos Relacionados con Anfetaminas/genética , Trastornos Relacionados con Anfetaminas/fisiopatología , Trastornos Relacionados con Anfetaminas/psicología , Anfetaminas/toxicidad , Animales , Conducta Animal/efectos de los fármacos , Cocaína/toxicidad , Trastornos Relacionados con Cocaína/genética , Trastornos Relacionados con Cocaína/fisiopatología , Trastornos Relacionados con Cocaína/psicología , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas de Transporte de Neurotransmisores/deficiencia , Proteínas de Transporte de Neurotransmisores/genética , Proteínas de Transporte de Neurotransmisores/fisiología , Fenotipo , Trastornos Relacionados con Sustancias/fisiopatología , Trastornos Relacionados con Sustancias/psicología
14.
Pharmacol Ther ; 121(1): 89-99, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19022290

RESUMEN

Biogenic amine transporters for serotonin, norepinephrine and dopamine (SERT, NET and DAT respectively), are the key players terminating transmission of these amines in the central nervous system by their high-affinity uptake. They are also major targets for many antidepressant drugs. Interestingly however, drugs targeted to a specific transporter do not appear to be as clinically efficacious as those that block two or all three of these transporters. A growing body of literature, reviewed here, supports the idea that promiscuity among these transporters (the uptake of multiple amines in addition to their "native" transmitter) may account for improved therapeutic effects of dual and triple uptake blockers. However, even these drugs do not provide effective treatment outcomes for all individuals. An emerging literature suggests that "non-traditional" transporters such as organic cation transporters (OCT) and the plasma membrane monoamine transporter (PMAT) may contribute to the less than hoped for efficacy of currently prescribed uptake inhibitors. OCT and PMAT are capable of clearing biogenic amines from extracellular fluid and may serve to buffer the effects of frontline antidepressants, such as selective serotonin reuptake inhibitors. In addition, polymorphisms that occur in the genes encoding the transporters can lead to variation in transporter expression and function (e.g. the serotonin transporter linked polymorphic region; 5-HTTLPR) and can have profound effects on treatment outcome. This may be accounted for, in part, by compensatory adaptations in other transporters. This review synthesizes the existing literature, focusing on serotonin to illustrate and revive a model for the rationale design of improved antidepressants.


Asunto(s)
Antidepresivos/farmacología , Proteínas de Transporte de Nucleósido Equilibrativas/fisiología , Proteínas de Transporte de Catión Orgánico/fisiología , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/fisiología , Animales , Antidepresivos/uso terapéutico , Depresión/tratamiento farmacológico , Depresión/fisiopatología , Descubrimiento de Drogas , Proteínas de Transporte de Nucleósido Equilibrativas/metabolismo , Humanos , Ratones , Ratones Noqueados/metabolismo , Proteínas de Transporte de Neurotransmisores/efectos de los fármacos , Proteínas de Transporte de Neurotransmisores/genética , Proteínas de Transporte de Neurotransmisores/metabolismo , Proteínas de Transporte de Neurotransmisores/fisiología , Proteínas de Transporte de Catión Orgánico/metabolismo , Serotonina/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología
15.
Horm Behav ; 54(1): 7-17, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17927990

RESUMEN

Recognition memory and anxiety were examined in nulliparous (NP: 0 litters) and multiparous (MP: 5-6 litters) middle-aged female rats (12 months old) to assess possible enduring effects of multiparity at least 3 months after the last litter was weaned. MP females performed significantly better than NP females on the non-spatial memory task, object recognition, and the spatial memory task, object placement. Anxiety as measured on the elevated plus maze did not differ between groups. Monoaminergic activity and levels were measured in prefrontal cortex, CA1 hippocampus, CA3 hippocampus, and olfactory bulb (OB). NP and MP females differed in monoamine concentrations in the OB only, with MP females having significantly greater concentrations of dopamine and metabolite DOPAC, norepinephrine and metabolite MHPG, and the serotonin metabolite 5-HIAA, as compared to NP females. These results indicate a long-term change in OB neurochemistry as a result of multiparity. Brain-derived neurotrophic factor (BDNF) was also measured in hippocampus (CA1, CA3, dentate gyrus) and septum. MP females had higher BDNF levels in both CA1 and septum; as these regions are implicated in memory performance, elevated BDNF may underlie the observed memory task differences. Thus, MP females (experiencing multiple bouts of pregnancy, birth, and pup rearing during the first year of life) displayed enhanced memory task performance but equal anxiety responses, as compared to NP females. These results are consistent with previous studies showing long-term changes in behavioral function in MP, as compared to NP, rats and suggest that alterations in monoamines and a neurotrophin, BDNF, may contribute to the observed behavioral changes.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Memoria/fisiología , Proteínas de Transporte de Neurotransmisores/fisiología , Paridad/fisiología , Patrones de Reconocimiento Fisiológico/fisiología , Animales , Conducta Animal/fisiología , Monoaminas Biogénicas/metabolismo , Femenino , Hormonas Esteroides Gonadales/sangre , Hipocampo/metabolismo , Aprendizaje por Laberinto/fisiología , Proteínas de Transporte de Neurotransmisores/metabolismo , Embarazo , Ratas , Ratas Endogámicas F344 , Ratas Sprague-Dawley , Tabique del Cerebro/metabolismo
16.
Handb Exp Pharmacol ; (184): 107-27, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18064413

RESUMEN

Members of the Rab, SM- and SNARE-protein families play key roles in all intracellular membrane trafficking steps. While SM- and SNARE-proteins become directly involved in the fusion reaction at a late stage, Rabs and their effectors mediate upstream steps such as vesicle budding, delivery, tethering, and transport. Exocytosis of synaptic vesicles and regulated secretory granules are among the best-studied fusion events and involve the Rab3 isoforms Rab3A-D, the SM protein munc18-1, and the SNAREs syntaxin 1A, SNAP-25, and synaptobrevin 2. According to the current view, syntaxin 1A and SNAP-25 at the presynaptic membrane form a complex with synaptic vesicle-associated synaptobrevin 2. As complex formation proceeds, the opposed membranes are pulled tightly together, enforcing the fusion reaction. Munc18-1 is essential for regulated exocytosis and interacts with syntaxin 1A alone or with SNARE complexes, suggesting a role for munc18-1 in controlling the SNARE-assembly reaction. Compared to other intracellular fusion steps, special adaptations evolved in the synapse to allow for the tight regulation and high membrane turnover rates required for synaptic transmission. Synaptic vesicle fusion is triggered by the intracellular second messenger calcium, with members of the synaptotagmin protein family being prime candidates for linking calcium influx to fusion in the fast phase of exocytosis. To compensate for the massive incorporation of synaptic vesicles into the plasma membrane during exocytosis, special adaptations to endocytic mechanisms have evolved at the synapse to allow for efficient vesicle recycling.


Asunto(s)
Proteínas de Transporte de Neurotransmisores/fisiología , Vesículas Secretoras/fisiología , Animales , Endocitosis/efectos de los fármacos , Endocitosis/fisiología , Exocitosis/efectos de los fármacos , Humanos , Proteínas de Transporte de Neurotransmisores/metabolismo , Proteínas SNARE/metabolismo , Vesículas Secretoras/metabolismo , Sinaptotagminas/metabolismo , Sinaptotagminas/fisiología , Vesículas Transportadoras/efectos de los fármacos , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/fisiología
18.
Curr Opin Neurobiol ; 17(3): 304-12, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17509873

RESUMEN

Neurotransmitters are rapidly removed from the extracellular space primarily through the actions of plasma membrane transporters. This uptake process is not only essential in the termination of neurotransmission but also serves to replenish intracellular levels of transmitter for further release. Neurotransmitter transporters couple the inward movement of substrate to the movement of Na(+) down a concentration gradient and, in addition to their transport function, some carriers also display channel-like activities. Five Na(+)/K(+)-dependent glutamate transporter subtypes belong to the solute carrier 1 (SLC1) family and a second family, SLC6, encompasses the Na(+)/Cl(-)-dependent transporters for dopamine, 5-hydroxytryptamine (serotonin), noradrenaline, GABA and glycine. Recent advances, including high-resolution structures from both families, are now providing new insights into the molecular determinants that contribute to substrate translocation and ion channel activities. Other influential studies have explored how cellular regulatory mechanisms modulate transporter function, and how the different functions of the carrier shape the patterns of neurotransmitter signaling. This review focuses on recent studies of glutamate and monoamine transporters as prototypes of the two carrier families.


Asunto(s)
Ácido Glutámico/metabolismo , Proteínas de Transporte de Neurotransmisores/fisiología , Sinapsis/metabolismo , Animales , Modelos Biológicos , Estructura Molecular , Proteínas de Transporte de Neurotransmisores/química , Estructura Cuaternaria de Proteína
19.
Trends Pharmacol Sci ; 28(3): 122-7, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17275930

RESUMEN

5-Hydroxytryptamine (5-HT), dopamine and norepinephrine are important monoamine neurotransmitters implicated in multiple brain mechanisms and regulated by high-affinity transmembrane monoamine transporters. Although knockout mice lacking 5-HT, dopamine or norepinephrine transporters are widely used to assess brain monoamine processes, these models have several methodological limitations. There is mounting evidence that heterozygous mutant mice with reduced (but not abolished) monoamine transporter functions could provide models with greater relevance to the genetics of human disorders, which only rarely involve complete loss-of-function mutations. Here, we discuss why heterozygous mouse models, in addition to knockout mice, might be useful for brain monoamine transporter research.


Asunto(s)
Monoaminas Biogénicas/metabolismo , Encéfalo/metabolismo , Proteínas de Transporte de Neurotransmisores/genética , Animales , Heterocigoto , Humanos , Ratones , Ratones Mutantes , Modelos Animales , Proteínas de Transporte de Neurotransmisores/fisiología
20.
Neurotherapeutics ; 4(1): 18-61, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17199015

RESUMEN

This review considers how recent advances in the physiology of ion channels and other potential molecular targets, in conjunction with new information on the genetics of idiopathic epilepsies, can be applied to the search for improved antiepileptic drugs (AEDs). Marketed AEDs predominantly target voltage-gated cation channels (the alpha subunits of voltage-gated Na+ channels and also T-type voltage-gated Ca2+ channels) or influence GABA-mediated inhibition. Recently, alpha2-delta voltage-gated Ca2+ channel subunits and the SV2A synaptic vesicle protein have been recognized as likely targets. Genetic studies of familial idiopathic epilepsies have identified numerous genes associated with diverse epilepsy syndromes, including genes encoding Na+ channels and GABA(A) receptors, which are known AED targets. A strategy based on genes associated with epilepsy in animal models and humans suggests other potential AED targets, including various voltage-gated Ca2+ channel subunits and auxiliary proteins, A- or M-type voltage-gated K+ channels, and ionotropic glutamate receptors. Recent progress in ion channel research brought about by molecular cloning of the channel subunit proteins and studies in epilepsy models suggest additional targets, including G-protein-coupled receptors, such as GABA(B) and metabotropic glutamate receptors; hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channel subunits, responsible for hyperpolarization-activated current Ih; connexins, which make up gap junctions; and neurotransmitter transporters, particularly plasma membrane and vesicular transporters for GABA and glutamate. New information from the structural characterization of ion channels, along with better understanding of ion channel function, may allow for more selective targeting. For example, Na+ channels underlying persistent Na+ currents or GABA(A) receptor isoforms responsible for tonic (extrasynaptic) currents represent attractive targets. The growing understanding of the pathophysiology of epilepsy and the structural and functional characterization of the molecular targets provide many opportunities to create improved epilepsy therapies.


Asunto(s)
Anticonvulsivantes/farmacología , Encéfalo/efectos de los fármacos , Diseño de Fármacos , Epilepsia/tratamiento farmacológico , Canales Iónicos/efectos de los fármacos , Animales , Humanos , Canales Iónicos/química , Canales Iónicos/fisiología , Proteínas de Transporte de Neurotransmisores/química , Proteínas de Transporte de Neurotransmisores/efectos de los fármacos , Proteínas de Transporte de Neurotransmisores/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...