Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 314
Filtrar
1.
Biochemistry ; 63(10): 1322-1334, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38696389

RESUMEN

Periplasmic solute-binding proteins (SBPs) are key ligand recognition components of bacterial ATP-binding cassette (ABC) transporters that allow bacteria to import nutrients and metabolic precursors from the environment. Periplasmic SBPs comprise a large and diverse family of proteins, of which only a small number have been empirically characterized. In this work, we identify a set of 610 unique uncharacterized proteins within the SBP_bac_5 family that are found in conserved operons comprising genes encoding (i) ABC transport systems and (ii) putative amidases from the FmdA_AmdA family. From these uncharacterized SBP_bac_5 proteins, we characterize a representative periplasmic SBP from Mesorhizobium sp. A09 (MeAmi_SBP) and show that MeAmi_SBP binds l-amino acid amides but not the corresponding l-amino acids. An X-ray crystal structure of MeAmi_SBP bound to l-serinamide highlights the residues that impart distinct specificity for l-amino acid amides and reveals a structural Ca2+ binding site within one of the lobes of the protein. We show that the residues involved in ligand and Ca2+ binding are conserved among the 610 SBPs from experimentally uncharacterized FmdA_AmdA amidase-associated ABC transporter systems, suggesting these homologous systems are also likely to be involved in the sensing, uptake, and metabolism of l-amino acid amides across many Gram-negative nitrogen-fixing soil bacteria. We propose that MeAmi_SBP is involved in the uptake of such solutes to supplement pathways such as the citric acid cycle and the glutamine synthetase-glutamate synthase pathway. This work expands our currently limited understanding of microbial interactions with l-amino acid amides and bacterial nitrogen utilization.


Asunto(s)
Amidas , Proteínas de Unión Periplasmáticas , Amidas/metabolismo , Amidas/química , Cristalografía por Rayos X , Proteínas de Unión Periplasmáticas/metabolismo , Proteínas de Unión Periplasmáticas/química , Proteínas de Unión Periplasmáticas/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Aminoácidos/metabolismo , Mesorhizobium/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Modelos Moleculares , Amidohidrolasas/metabolismo , Amidohidrolasas/química , Calcio/metabolismo , Unión Proteica
2.
Protein Eng Des Sel ; 372024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38302088

RESUMEN

We developed fluorescent protein sensors for nicotine with improved sensitivity. For iNicSnFR12 at pH 7.4, the proportionality constant for ∆F/F0vs [nicotine] (δ-slope, 2.7 µM-1) is 6.1-fold higher than the previously reported iNicSnFR3a. The activated state of iNicSnFR12 has a fluorescence quantum yield of at least 0.6. We measured similar dose-response relations for the nicotine-induced absorbance increase and fluorescence increase, suggesting that the absorbance increase leads to the fluorescence increase via the previously described nicotine-induced conformational change, the 'candle snuffer' mechanism. Molecular dynamics (MD) simulations identified a binding pose for nicotine, previously indeterminate from experimental data. MD simulations also showed that Helix 4 of the periplasmic binding protein (PBP) domain appears tilted in iNicSnFR12 relative to iNicSnFR3a, likely altering allosteric network(s) that link the ligand binding site to the fluorophore. In thermal melt experiments, nicotine stabilized the PBP of the tested iNicSnFR variants. iNicSnFR12 resolved nicotine in diluted mouse and human serum at 100 nM, the peak [nicotine] that occurs during smoking or vaping, and possibly at the decreasing levels during intervals between sessions. NicSnFR12 was also partially activated by unidentified endogenous ligand(s) in biofluids. Improved iNicSnFR12 variants could become the molecular sensors in continuous nicotine monitors for animal and human biofluids.


Asunto(s)
Técnicas Biosensibles , Proteínas de Unión Periplasmáticas , Humanos , Animales , Ratones , Nicotina , Proteínas de Unión Periplasmáticas/química , Proteínas de Unión Periplasmáticas/metabolismo , Ligandos , Sitios de Unión
3.
Protein Sci ; 32(11): e4793, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37788980

RESUMEN

Investigating the evolution of structural features in modern multidomain proteins helps to understand their immense diversity and functional versatility. The class of periplasmic binding proteins (PBPs) offers an opportunity to interrogate one of the main processes driving diversification: the duplication and fusion of protein sequences to generate new architectures. The symmetry of their two-lobed topology, their mechanism of binding, and the organization of their operon structure led to the hypothesis that PBPs arose through a duplication and fusion event of a single common ancestor. To investigate this claim, we set out to reverse the evolutionary process and recreate the structural equivalent of a single-lobed progenitor using ribose-binding protein (RBP) as our model. We found that this modern PBP can be deconstructed into its lobes, producing two proteins that represent possible progenitor halves. The isolated halves of RBP are well folded and monomeric proteins, albeit with a lower thermostability, and do not retain the original binding function. However, the two entities readily form a heterodimer in vitro and in-cell. The x-ray structure of the heterodimer closely resembles the parental protein. Moreover, the binding function is fully regained upon formation of the heterodimer with a ligand affinity similar to that observed in the modern RBP. This highlights how a duplication event could have given rise to a stable and functional PBP-like fold and provides insights into how more complex functional structures can evolve from simpler molecular components.


Asunto(s)
Proteínas de Unión Periplasmáticas , Proteínas de Unión Periplasmáticas/química , Proteínas de Unión Periplasmáticas/metabolismo , Proteínas Portadoras/química , Secuencia de Aminoácidos , Ligandos , Unión Proteica , Evolución Molecular
4.
Acta Crystallogr D Struct Biol ; 79(Pt 8): 694-705, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37428843

RESUMEN

Siderophore-binding proteins from two thermophilic bacteria, Geobacillus stearothermophilus and Parageobacillus thermoglucosidasius, were identified from a search of sequence databases, cloned and overexpressed. They are homologues of the well characterized protein CjCeuE from Campylobacter jejuni. The iron-binding histidine and tyrosine residues are conserved in both thermophiles. Crystal structures were determined of the apo proteins and of their complexes with iron(III)-azotochelin and its analogue iron(III)-5-LICAM. The thermostability of both homologues was shown to be about 20°C higher than that of CjCeuE. Similarly, the tolerance of the homologues to the organic solvent dimethylformamide (DMF) was enhanced, as reflected by the respective binding constants for these ligands measured in aqueous buffer at pH 7.5 in the absence and presence of 10% and 20% DMF. Consequently, these thermophilic homologues offer advantages in the development of artificial metalloenzymes using the CeuE family.


Asunto(s)
Proteínas de Unión Periplasmáticas , Sideróforos , Sideróforos/metabolismo , Proteínas de Unión Periplasmáticas/química , Geobacillus stearothermophilus/metabolismo , Compuestos Férricos/metabolismo , Hierro/metabolismo
5.
Acta Crystallogr D Struct Biol ; 79(Pt 1): 40-49, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36601806

RESUMEN

Periplasmic binding proteins (PBPs) are a class of proteins that participate in the cellular transport of various ligands. They have been used as model systems to study mechanisms in protein evolution, such as duplication, recombination and domain swapping. It has been suggested that PBPs evolved from precursors half their size. Here, the crystal structures of two permuted halves of a modern ribose-binding protein (RBP) from Thermotoga maritima are reported. The overexpressed proteins are well folded and show a monomer-dimer equilibrium in solution. Their crystal structures show partially noncanonical PBP-like fold type I conformations with structural deviations from modern RBPs. One of the half variants forms a dimer via segment swapping, suggesting a high degree of malleability. The structural findings on these permuted halves support the evolutionary hypothesis that PBPs arose via a duplication event of a flavodoxin-like protein and further support a domain-swapping step that might have occurred during the evolution of the PBP-like fold, a process that is necessary to generate the characteristic motion of PBPs essential to perform their functions.


Asunto(s)
Proteínas Portadoras , Proteínas de Unión Periplasmáticas , Proteínas Portadoras/química , Ribosa , Proteínas/metabolismo , Proteínas de Unión Periplasmáticas/química , Conformación Molecular , Proteínas Bacterianas/química
6.
Proc Natl Acad Sci U S A ; 119(36): e2208662119, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36037338

RESUMEN

In gram-negative bacteria, lipoproteins are vital structural components of the outer membrane (OM) and crucial elements of machineries central to the physiology of the cell envelope. A dedicated apparatus, the Lol system, is required for the correct localization of OM lipoproteins and is essential for viability. The periplasmic chaperone LolA is central to this trafficking pathway, accepting triacylated lipoproteins from the inner membrane transporter LolCDE, before carrying them across the periplasm to the OM receptor LolB. Here, we report a crystal structure of liganded LolA, generated in vivo, revealing the molecular details of lipoprotein association. The structure highlights how LolA, initially primed to receive lipoprotein by interaction with LolC, further opens to accommodate the three ligand acyl chains in a precise conformation within its cavity. LolA forms extensive interactions with the acyl chains but not with any residue of the cargo, explaining the chaperone's ability to transport structurally diverse lipoproteins. Structural characterization of a ligandedLolA variant incapable of lipoprotein release reveals aberrant association, demonstrating the importance of the LolCDE-coordinated, sequential opening of LolA for inserting lipoprotein in a manner productive for subsequent trafficking. Comparison with existing structures of LolA in complex with LolC or LolCDE reveals substantial overlap of the lipoprotein and LolC binding sites within the LolA cavity, demonstrating that insertion of lipoprotein acyl chains physically disengages the chaperone protein from the transporter by perturbing interaction with LolC. Taken together, our data provide a key step toward a complete understanding of a fundamentally important trafficking pathway.


Asunto(s)
Proteínas de Escherichia coli , Proteínas de Unión Periplasmáticas , Transporte de Proteínas , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Portadoras/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ligandos , Lipoproteínas/metabolismo , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Periplasma/metabolismo , Proteínas de Unión Periplasmáticas/química , Proteínas de Unión Periplasmáticas/genética , Proteínas de Unión Periplasmáticas/metabolismo , Estructura Terciaria de Proteína , Transporte de Proteínas/genética
7.
Commun Biol ; 4(1): 1383, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34887516

RESUMEN

As one of the most elegant biological processes developed in bacteria, the siderophore-mediated iron uptake demands the action of specific ATP-binding cassette (ABC) importers. Although extensive studies have been done on various ABC importers, the molecular basis of these iron-chelated-siderophore importers are still not fully understood. Here, we report the structure of a ferrichrome importer FhuCDB from Escherichia coli at 3.4 Å resolution determined by cryo electron microscopy. The structure revealed a monomeric membrane subunit of FhuB with a substrate translocation pathway in the middle. In the pathway, there were unique arrangements of residues, especially layers of methionines. Important residues found in the structure were interrogated by mutagenesis and functional studies. Surprisingly, the importer's ATPase activity was decreased upon FhuD binding, which deviated from the current understanding about bacterial ABC importers. In summary, to the best of our knowledge, these studies not only reveal a new structural twist in the type II ABC importer subfamily, but also provide biological insights in the transport of iron-chelated siderophores.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Ferricromo/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Unión Periplasmáticas/química , Transportadoras de Casetes de Unión a ATP/genética , Transporte Biológico , Microscopía por Crioelectrón , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Unión Periplasmáticas/genética , Sideróforos/metabolismo
8.
J Biol Chem ; 297(6): 101419, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34801550

RESUMEN

A profound understanding of the molecular interactions between receptors and ligands is important throughout diverse research, such as protein design, drug discovery, or neuroscience. What determines specificity and how do proteins discriminate against similar ligands? In this study, we analyzed factors that determine binding in two homologs belonging to the well-known superfamily of periplasmic binding proteins, PotF and PotD. Building on a previously designed construct, modes of polyamine binding were swapped. This change of specificity was approached by analyzing local differences in the binding pocket as well as overall conformational changes in the protein. Throughout the study, protein variants were generated and characterized structurally and thermodynamically, leading to a specificity swap and improvement in affinity. This dataset not only enriches our knowledge applicable to rational protein design but also our results can further lay groundwork for engineering of specific biosensors as well as help to explain the adaptability of pathogenic bacteria.


Asunto(s)
Escherichia coli K12/química , Proteínas de Escherichia coli/química , Proteínas de Unión Periplasmáticas/química , Receptores de Amina Biogénica/química , Espermidina/química , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Unión Periplasmáticas/genética , Proteínas de Unión Periplasmáticas/metabolismo , Unión Proteica , Receptores de Amina Biogénica/genética , Receptores de Amina Biogénica/metabolismo , Espermidina/metabolismo
9.
J Biol Chem ; 297(3): 101046, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34358566

RESUMEN

Bacteria require high-efficiency uptake systems to survive and proliferate in nutrient-limiting environments, such as those found in host organisms. ABC transporters in the bacterial plasma membrane provide a mechanism for transport of many substrates. In this study, we examine an operon containing a periplasmic binding protein in Actinobacillus for its potential role in nutrient acquisition. The electron density map of 1.76 Å resolution obtained from the crystal structure of the periplasmic binding protein was best fit with a molecular model containing a pyridoxal-5'-phosphate (P5P/pyridoxal phosphate/the active form of vitamin B6) ligand within the protein's binding site. The identity of the P5P bound to this periplasmic binding protein was verified by isothermal titration calorimetry, microscale thermophoresis, and mass spectrometry, leading us to name the protein P5PA and the operon P5PAB. To illustrate the functional utility of this uptake system, we introduced the P5PAB operon from Actinobacillus pleuropneumoniae into an Escherichia coli K-12 strain that was devoid of a key enzyme required for P5P synthesis. The growth of this strain at low levels of P5P supports the functional role of this operon in P5P uptake. This is the first report of a dedicated P5P bacterial uptake system, but through bioinformatics, we discovered homologs mainly within pathogenic representatives of the Pasteurellaceae family, suggesting that this operon exists more widely outside the Actinobacillus genus.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Actinobacillus pleuropneumoniae/metabolismo , Proteínas Bacterianas/metabolismo , Vitamina B 6/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Actinobacillus pleuropneumoniae/química , Actinobacillus pleuropneumoniae/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Transporte Biológico , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Moleculares , Operón , Proteínas de Unión Periplasmáticas/química , Proteínas de Unión Periplasmáticas/genética , Proteínas de Unión Periplasmáticas/metabolismo , Fosfato de Piridoxal/química , Fosfato de Piridoxal/metabolismo , Vitamina B 6/química
10.
Int J Biol Macromol ; 187: 350-360, 2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34303738

RESUMEN

The periplasmic binding protein (PBP) BtuF plays a key role in transporting vitamin B12 from periplasm to the ATP-binding cassette (ABC) transporter BtuCD. Conformational changes of BtuF during transport can hardly be captured by traditional biophysical methods and the exact mechanism regarding B12 and BtuF recognition is still under debate. In the present work, conformational changes of BtuF upon B12 binding and release were investigated using hybrid approaches including collision-induced unfolding (CIU), hydrogen deuterium exchange mass spectrometry (HDX-MS) and molecular dynamics (MD) simulation. It was found that B12 binding increased the stability of BtuF. In addition, fast exchange regions of BtuF were localized. Most importantly, midpoint of hinge helix in BtuF was found highly flexible, and binding of B12 proceed in a manner similar to the Venus flytrap mechanism. Our study therefore delineates a clear view of BtuF delivering B12, and demonstrated a hybrid approach encompassing MS and computer based methods that holds great potential to the probing of conformational dynamics of proteins in action.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Simulación de Dinámica Molecular , Proteínas de Unión Periplasmáticas/metabolismo , Vitamina B 12/metabolismo , Sitios de Unión , Transporte Biológico , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Unión Periplasmáticas/química , Proteínas de Unión Periplasmáticas/genética , Unión Proteica , Conformación Proteica , Estabilidad Proteica , Desplegamiento Proteico , Relación Estructura-Actividad , Vitamina B 12/química
11.
J Mol Biol ; 433(15): 167036, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-33957147

RESUMEN

Our understanding of what determines ligand affinity of proteins is poor, even with high-resolution structures available. Both the non-covalent ligand-protein interactions and the relative free energies of available conformations contribute to the affinity of a protein for a ligand. Distant, non-binding site residues can influence the ligand affinity by altering the free energy difference between a ligand-free and ligand-bound conformation. Our hypothesis is that when different ligands induce distinct ligand-bound conformations, it should be possible to tweak their affinities by changing the free energies of the available conformations. We tested this idea for the maltose-binding protein (MBP) from Escherichia coli. We used single-molecule Förster resonance energy transfer (smFRET) to distinguish several unique ligand-bound conformations of MBP. We engineered mutations, distant from the binding site, to affect the stabilities of different ligand-bound conformations. We show that ligand affinity can indeed be altered in a conformation-dependent manner. Our studies provide a framework for the tuning of ligand affinity, apart from modifying binding site residues.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Mutación , Proteínas de Unión Periplasmáticas/química , Proteínas de Unión Periplasmáticas/metabolismo , Sitios de Unión , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Transferencia Resonante de Energía de Fluorescencia , Ligandos , Modelos Moleculares , Proteínas de Unión Periplasmáticas/genética , Unión Proteica , Conformación Proteica , Estabilidad Proteica , Imagen Individual de Molécula
12.
Biophys Chem ; 272: 106577, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33756269

RESUMEN

The human gastric pathogen Helicobacter pylori relies on the uptake of host-provided nutrients for its proliferation and pathogenicity. ABC transporters that mediate import of small molecules into the cytoplasm of H. pylori employ their cognate periplasmic substrate-binding proteins (SBPs) for ligand capture in the periplasm. The genome of the mouse-adapted strain SS1 of H. pylori encodes eight ABC transporter-associated SBPs, but little is known about their specificity or structure. In this study, we demonstrated that the SBP annotated as ModA binds molybdate (MoO42-, KD = 3.8 nM) and tungstate (WO42-, KD = 7.8 nM). In addition, we showed that MetQ binds D-methionine (KD = 9.5 µM), but not L-methionine, which suggests the existence of as yet unknown pathway for L-methionine uptake. Homology modelling has led to identification of the ligand-binding residues.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Biología Computacional , Helicobacter pylori/química , Proteínas de Unión Periplasmáticas/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Helicobacter pylori/metabolismo , Proteínas de Unión Periplasmáticas/química
13.
Biochemistry ; 60(6): 465-476, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33538578

RESUMEN

The anaerobic bacterium Chrysiogenes arsenatis respires using the oxyanion arsenate (AsO43-) as the terminal electron acceptor, where it is reduced to arsenite (AsO33-) while concomitantly oxidizing various organic (e.g., acetate) electron donors. This respiratory activity is catalyzed in the periplasm of the bacterium by the enzyme arsenate reductase (Arr), with expression of the enzyme controlled by a sensor histidine kinase (ArrS) and a periplasmic-binding protein (PBP), ArrX. Here, we report for the first time, the molecular structure of ArrX in the absence and presence of bound ligand arsenate. Comparison of the ligand-bound structure of ArrX with other PBPs shows a high level of conservation of critical residues for ligand binding by these proteins; however, this suite of PBPs shows different structural alterations upon ligand binding. For ArrX and its homologue AioX (from Rhizobium sp. str. NT-26), which specifically binds arsenite, the structures of the substrate-binding sites in the vicinity of a conserved and critical cysteine residue contribute to the discrimination of binding for these chemically similar ligands.


Asunto(s)
Arseniato Reductasas/química , Bacterias/metabolismo , Secuencia de Aminoácidos/genética , Arseniato Reductasas/metabolismo , Arseniatos/química , Arseniatos/metabolismo , Bacterias/química , Composición de Base/genética , Sitios de Unión , Catálisis , Cristalografía por Rayos X/métodos , Histidina Quinasa/metabolismo , Oxidorreductasas/metabolismo , Periplasma/metabolismo , Proteínas de Unión Periplasmáticas/química , Proteínas de Unión Periplasmáticas/metabolismo , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN/métodos
14.
Structure ; 29(5): 444-456.e2, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33577754

RESUMEN

The periplasm of Gram-negative bacteria is a complex, highly crowded molecular environment. Little is known about how antibiotics move across the periplasm and the interactions they experience. Here, atomistic molecular dynamics simulations are used to study the antibiotic polymyxin B1 within models of the periplasm, which are crowded to different extents. We show that PMB1 is likely to be able to "hitchhike" within the periplasm by binding to lipoprotein carriers-a previously unreported passive transport route. The simulations reveal that PMB1 forms both transient and long-lived interactions with proteins, osmolytes, lipids of the outer membrane, and the cell wall, and is rarely uncomplexed when in the periplasm. Furthermore, it can interfere in the conformational dynamics of native proteins. These are important considerations for interpreting its mechanism of action and are likely to also hold for other antibiotics that rely on diffusion to cross the periplasm.


Asunto(s)
Antibacterianos/farmacología , Membrana Externa Bacteriana/efectos de los fármacos , Proteínas de Escherichia coli/química , Proteínas de Unión Periplasmáticas/química , Polimixinas/análogos & derivados , Antibacterianos/química , Membrana Externa Bacteriana/química , Membrana Externa Bacteriana/metabolismo , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Simulación de Dinámica Molecular , Periplasma/metabolismo , Proteínas de Unión Periplasmáticas/metabolismo , Polimixinas/química , Polimixinas/farmacología
15.
Structure ; 29(5): 433-443.e4, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33406388

RESUMEN

Periplasmic binding proteins (PBPs) are ubiquitous receptors in gram-negative bacteria. They sense solutes and play key roles in nutrient uptake. Escherichia coli's putrescine receptor PotF has been reported to bind putrescine and spermidine. We reveal that several similar biogenic polyamines are recognized by PotF. Using isothermal titration calorimetry paired with X-ray crystallography of the different complexes, we unveil PotF's binding modes in detail. The binding site for PBPs is located between two lobes that undergo a large conformational change upon ligand recognition. Hence, analyzing the influence of ligands on complex formation is crucial. Therefore, we solved crystal structures of an open and closed apo state and used them as a basis for molecular dynamics simulations. In addition, we accessed structural behavior in solution for all complexes by 1H-15N HSQC NMR spectroscopy. This combined analysis provides a robust framework for understanding ligand binding for future developments in drug design and protein engineering.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Unión Periplasmáticas/química , Receptores de Amina Biogénica/química , Sitios de Unión , Proteínas de Escherichia coli/metabolismo , Ligandos , Proteínas de Unión Periplasmáticas/metabolismo , Poliaminas/química , Poliaminas/metabolismo , Unión Proteica , Receptores de Amina Biogénica/metabolismo
16.
Nanomedicine ; 31: 102305, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32992017

RESUMEN

A mediator-free, non-enzymatic electrochemical biosensor was constructed by covalent immobilization of a genetically engineered periplasmic glutamate binding protein onto gold nanoparticle-modified, screen-printed carbon electrodes (GluBP/AuNP/SPCE) for the purpose of direct measurement of glutamate levels. Glutamate serves as the predominant excitatory neurotransmitter in the central nervous system. As high levels of glutamate are an indicator of many neurologic disorders, there is a need for advancements in glutamate detection technologies. The biosensor was evaluated for glutamate detection by cyclic voltammetry. Binding of glutamate to the immobilized glutamate binding protein results in a conformational change of the latter that alters the microenvironment on the surface of the sensor, which is manifested as a change in signal. Dose-response plots correlating the electrochemical signal to glutamate concentration revealed a detection limit of 0.15 µM with a linear range of 0.1-0.8 µM. Selectivity studies confirmed a strong preferential response of the biosensor for glutamate against common interfering compounds.


Asunto(s)
Técnicas Biosensibles/métodos , Oro/química , Nanopartículas del Metal/química , Técnicas Electroquímicas/métodos , Proteínas de Unión Periplasmáticas/química , Proteínas de Unión Periplasmáticas/metabolismo
17.
Anal Chem ; 92(19): 12817-12824, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32897053

RESUMEN

Dysregulation of cellular ribose uptake can be indicative of metabolic abnormalities or tumorigenesis. However, analytical methods are currently limited for quantifying ribose concentration in complex biological samples. Here, we utilize the highly specific recognition of ribose by ribose-binding protein (RBP) to develop a single-protein ribose sensor detectable via a sensitive NMR technique known as hyperpolarized 129Xe chemical exchange saturation transfer (hyper-CEST). We demonstrate that RBP, with a tunable ribose-binding site and further engineered to bind xenon, enables the quantitation of ribose over a wide concentration range (nM to mM). Ribose binding induces the RBP "closed" conformation, which slows Xe exchange to a rate detectable by hyper-CEST. Such detection is remarkably specific for ribose, with the minimal background signal from endogenous sugars of similar size and structure, for example, glucose or ribose-6-phosphate. Ribose concentration was measured for mammalian cell lysate and serum, which led to estimates of low-mM ribose in a HeLa cell line. This highlights the potential for using genetically encoded periplasmic binding proteins such as RBP to measure metabolites in different biological fluids, tissues, and physiologic states.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Unión Periplasmáticas/química , Ribosa/análisis , Proteínas de Escherichia coli/aislamiento & purificación , Proteínas de Escherichia coli/metabolismo , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Proteínas de Unión Periplasmáticas/aislamiento & purificación , Proteínas de Unión Periplasmáticas/metabolismo , Ribosa/metabolismo , Isótopos de Xenón
18.
Int J Biol Macromol ; 162: 903-912, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32593757

RESUMEN

L-glutamate (Glu) is the major excitatory transmitter in mammalian brain. Inadequate concentration of Glu in the brain correlates to mood disorder. In industry, Glu is used as a flavour enhancer in food and in foodstuff processing. A high concentration of Glu has several effects on human health such as hypersensitive effects, headache and stomach pain. The presence of Glu in food can be detected by different analytical methods based on chromatography, or capillary electrophoresis or amperometric techniques. We have isolated and characterized a glutamate-binding protein (GluB) from the Gram-positive bacteria Corynebacterium glutamicum. Together with GluC protein, GluD protein and the cytoplasmic protein GluA, GluB permits the transport of Glu in/out of cell. In this study, we have investigated the binding features of GluB as well as the effect of temperature on its structure both in the absence and in the presence of Glu. The results have showed that GluB has a high affinity and selectivity versus Glu (nanomolar range) and the presence of the ligand induces a higher thermal stability of the protein structure.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Corynebacterium glutamicum/química , Glutamina/química , Proteínas de Unión Periplasmáticas/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Corynebacterium glutamicum/metabolismo , Glutamina/metabolismo , Proteínas de Unión Periplasmáticas/metabolismo
19.
Structure ; 28(4): 475-487.e3, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32053772

RESUMEN

Escherichia coli lipoprotein precursors at the inner membrane undergo three maturation stages before transport by the Lol system to the outer membrane. Here, we develop a pipeline to simulate the membrane association of bacterial lipoproteins in their four maturation states. This has enabled us to model and simulate 81 of the predicted 114 E. coli lipoproteins and reveal their interactions with the host lipid membrane. As part of this set we characterize the membrane contacts of LolB, the lipoprotein involved in periplasmic translocation. We also consider the means and bioenergetics for lipoprotein localization. Our calculations uncover a preference for LolB over LolA and therefore indicate how a lipoprotein may be favorably transferred from the inner to outer membrane. Finally, we reveal that LolC has a role in membrane destabilization, thereby promoting lipoprotein transfer to LolA.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Membrana Externa Bacteriana/metabolismo , Proteínas de Escherichia coli/química , Chaperonas Moleculares/química , Simulación de Dinámica Molecular , Proteínas de Unión Periplasmáticas/química , Membrana Externa Bacteriana/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Periplasma/metabolismo , Proteínas de Unión Periplasmáticas/metabolismo , Unión Proteica , Transporte de Proteínas
20.
Biochim Biophys Acta Biomembr ; 1862(12): 183175, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31923412

RESUMEN

The vesicular glutamate transporters (VGLUTs) bind and move glutamate (Glu) from the cytosol into the lumen of synaptic vesicles using a H+-electrochemical gradient (ΔpH and Δψ) generated by the vesicular H+-ATPase. VGLUTs show very low Glu binding and to date, no three-dimensional structure has been elucidated. Prior studies have attempted to identify the key residues involved in binding VGLUT substrates and inhibitors using homology models and docking experiments. Recently, the inward and outward oriented crystal structures of d-galactonate transporter (DgoT) emerged as possible structure templates for VGLUT. In this review, a new homology model for VGLUT2 based on DgoT has been developed and used to conduct docking experiments to identify and differentiate residues and binding orientations involved in ligand interactions. This review describes small molecule-ligand interactions including docking using a VGLUT2 homology model derived from DgoT.


Asunto(s)
Simulación del Acoplamiento Molecular , Proteínas de Transporte Vesicular de Glutamato/metabolismo , Sitios de Unión , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/metabolismo , Ácido Glutámico/análogos & derivados , Ácido Glutámico/metabolismo , Humanos , Proteínas de Transporte de Monosacáridos/química , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas de Unión Periplasmáticas/química , Proteínas de Unión Periplasmáticas/metabolismo , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Especificidad por Sustrato , Termodinámica , Proteínas de Transporte Vesicular de Glutamato/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA