Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.859
Filtrar
1.
Anim Sci J ; 95(1): e13951, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38703069

RESUMEN

Intramuscular fat (IMF) is a crucial determinant of meat quality and is influenced by various regulatory factors. Despite the growing recognition of the important role of long noncoding RNAs (lncRNAs) in IMF deposition, the mechanisms underlying buffalo IMF deposition remain poorly understood. In this study, we identified and characterized a lncRNA, lncFABP4, which is transcribed from the antisense strand of fatty acid-binding protein 4 (FABP4). lncFABP4 inhibited cell proliferation in buffalo intramuscular preadipocytes. Moreover, lncFABP4 significantly increased intramuscular preadipocyte differentiation, as indicated by an increase in the expression of the adipogenic markers peroxisome proliferator-activated receptor gamma (PPARG), CCAAT enhancer binding protein alpha (C/EBPα), and FABP4. Mechanistically, lncFABP4 was found to have the potential to regulate downstream gene expression by participating in protein-protein interaction pathways. These findings contribute to further understanding of the intricate mechanisms through which lncRNAs modulate intramuscular adipogenesis in buffaloes.


Asunto(s)
Adipocitos , Adipogénesis , Búfalos , Diferenciación Celular , Proliferación Celular , Proteínas de Unión a Ácidos Grasos , PPAR gamma , ARN Largo no Codificante , Animales , Búfalos/genética , Búfalos/metabolismo , Adipogénesis/genética , Adipocitos/metabolismo , Adipocitos/citología , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Diferenciación Celular/genética , PPAR gamma/metabolismo , PPAR gamma/genética , Expresión Génica , Células Cultivadas , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Proteína alfa Potenciadora de Unión a CCAAT/genética , Calidad de los Alimentos
2.
Molecules ; 29(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731411

RESUMEN

Fullerenes, particularly C60, exhibit unique properties that make them promising candidates for various applications, including drug delivery and nanomedicine. However, their interactions with biomolecules, especially proteins, remain not fully understood. This study implements both explicit and implicit C60 models into the UNRES coarse-grained force field, enabling the investigation of fullerene-protein interactions without the need for restraints to stabilize protein structures. The UNRES force field offers computational efficiency, allowing for longer timescale simulations while maintaining accuracy. Five model proteins were studied: FK506 binding protein, HIV-1 protease, intestinal fatty acid binding protein, PCB-binding protein, and hen egg-white lysozyme. Molecular dynamics simulations were performed with and without C60 to assess protein stability and investigate the impact of fullerene interactions. Analysis of contact probabilities reveals distinct interaction patterns for each protein. FK506 binding protein (1FKF) shows specific binding sites, while intestinal fatty acid binding protein (1ICN) and uteroglobin (1UTR) exhibit more generalized interactions. The explicit C60 model shows good agreement with all-atom simulations in predicting protein flexibility, the position of C60 in the binding pocket, and the estimation of effective binding energies. The integration of explicit and implicit C60 models into the UNRES force field, coupled with recent advances in coarse-grained modeling and multiscale approaches, provides a powerful framework for investigating protein-nanoparticle interactions at biologically relevant scales without the need to use restraints stabilizing the protein, thus allowing for large conformational changes to occur. These computational tools, in synergy with experimental techniques, can aid in understanding the mechanisms and consequences of nanoparticle-biomolecule interactions, guiding the design of nanomaterials for biomedical applications.


Asunto(s)
Fulerenos , Simulación de Dinámica Molecular , Muramidasa , Unión Proteica , Fulerenos/química , Muramidasa/química , Muramidasa/metabolismo , Sitios de Unión , Proteínas de Unión a Tacrolimus/química , Proteínas de Unión a Tacrolimus/metabolismo , Proteínas de Unión a Ácidos Grasos/química , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas/química , Proteínas/metabolismo , Proteasa del VIH
3.
Artículo en Inglés | MEDLINE | ID: mdl-38780272

RESUMEN

Sepsis-induced kidney injury (SAKI) has been frequently established as a prevailing complication of sepsis which is linked to unfavorable outcomes. Fatty acid-binding protein-4 (FABP4) has been proposed as a possible target for the treatment of SAKI. In the current work, we aimed to explore the role and underlying mechanism of FABP4 in lipopolysaccharide (LPS)-induced human renal tubular epithelial cell damage. In LPS-induced human kidney 2 (HK2) cells, FABP4 expression was tested by the reverse transcription-quantitative polymerase chain reaction and Western blot. Cell counting kit-8 method assayed cell viability. Inflammatory levels were detected using the enzyme-linked immunosorbent assay. Immunofluorescence staining measured the nuclear translocation of nuclear factor kappa B p65. Thiobarbituric acid-reactive substances assay and C11 BODIPY 581/591 probe were used to estimate the level of cellular lipid peroxidation. Fe2+ content was examined by the kit. In addition, the expression of proteins related to inflammation-, ferroptosis- and Janus kinase 2 (JAK2)/signal transducer, and activator of transcription 3 (STAT3) signaling was detected by the Western blot analysis. The results revealed that FABP4 was significantly upregulated in LPS-treated HK2 cells, the knockdown of which elevated the viability, whereas alleviated the inflammation and ferroptosis in HK2 cells challenged with LPS. In addition, down-regulation of FABP4 inactivated JAK2/STAT3 signaling. JAK2/STAT3 stimulator (colivelin) and ferroptosis activator (Erastin) partially restored the effects of FABP4 interference on LPS-triggered inflammation and ferroptosis in HK2 cells. Together, FABP4 knockdown inhibited ferroptosis to alleviate LPS-induced injury of renal tubular epithelial cells through suppressing JAK2/STAT3 signaling.


Asunto(s)
Células Epiteliales , Proteínas de Unión a Ácidos Grasos , Ferroptosis , Janus Quinasa 2 , Túbulos Renales , Lipopolisacáridos , Factor de Transcripción STAT3 , Transducción de Señal , Humanos , Lipopolisacáridos/toxicidad , Ferroptosis/efectos de los fármacos , Janus Quinasa 2/metabolismo , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Transducción de Señal/efectos de los fármacos , Línea Celular , Túbulos Renales/patología , Túbulos Renales/metabolismo , Túbulos Renales/efectos de los fármacos , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/genética , Lesión Renal Aguda/patología , Lesión Renal Aguda/inducido químicamente
4.
Nutrients ; 16(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38732509

RESUMEN

Isoeugenol (IEG), a natural component of clove oil, possesses antioxidant, anti-inflammatory, and antibacterial properties. However, the effects of IEG on adipogenesis have not yet been elucidated. Here, we showed that IEG blocks adipogenesis in 3T3-L1 cells at an early stage. IEG inhibits lipid accumulation in adipocytes in a concentration-dependent manner and reduces the expression of mature adipocyte-related factors including PPARγ, C/EBPα, and FABP4. IEG treatment at different stages of adipogenesis showed that IEG inhibited adipocyte differentiation by suppressing the early stage, as confirmed by lipid accumulation and adipocyte-related biomarkers. The early stage stimulates growth-arrested preadipocytes to enter mitotic clonal expansion (MCE) and initiates their differentiation into adipocytes by regulating cell cycle-related factors. IEG arrested 3T3-L1 preadipocytes in the G0/G1 phase of the cell cycle and attenuated cell cycle-related factors including cyclinD1, CDK6, CDK2, and cyclinB1 during the MCE stage. Furthermore, IEG suppresses reactive oxygen species (ROS) production during MCE and inhibits ROS-related antioxidant enzymes, including superoxide dismutase1 (SOD1) and catalase. The expression of cell proliferation-related biomarkers, including pAKT and pERK1/2, was attenuated by the IEG treatment of 3T3-L1 preadipocytes. These findings suggest that it is a potential therapeutic agent for the treatment of obesity.


Asunto(s)
Células 3T3-L1 , Adipocitos , Adipogénesis , Eugenol , Mitosis , Especies Reactivas de Oxígeno , Animales , Adipogénesis/efectos de los fármacos , Ratones , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Mitosis/efectos de los fármacos , Eugenol/farmacología , Eugenol/análogos & derivados , Especies Reactivas de Oxígeno/metabolismo , Diferenciación Celular/efectos de los fármacos , PPAR gamma/metabolismo , Proliferación Celular/efectos de los fármacos , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Metabolismo de los Lípidos/efectos de los fármacos , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Proteína alfa Potenciadora de Unión a CCAAT/genética , Antioxidantes/farmacología
5.
Nutrients ; 16(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38732573

RESUMEN

The role of selenium in the developmental process of esophageal cancer (EC) requires further investigation. To explore the relationship between selenium-related factors and EC through bioinformatic analysis, a case-control study was conducted to verify the results. Utilizing the GEPIA and TCGA databases, we delineated the differential expression of glutathione peroxidase 3 (GPx3) in EC and normal tissues, identified differentially expressed genes (DEGs), and a performed visualization analysis. Additionally, 100 pairs of dietary and plasma samples from esophageal precancerous lesions (EPLs) of esophageal squamous cancer (ESCC) cases and healthy controls from Huai'an district, Jiangsu, were screened. The levels of dietary selenium, plasma selenium, and related enzymes were analyzed using inductively coupled plasma mass spectrometry (ICP-MS) or ELISA kits. The results showed lower GPx3 expression in tumor tissues compared to normal tissues. Further analysis revealed that DEGs were mainly involved in the fat digestion and absorption pathway, and the core protein fatty acid binding protein 1 (FABP1) was significantly upregulated and negatively correlated with GPx3 expression. Our case-control study found that selenium itself was not associated with EPLs risk. However, both the decreased concentration of GPx3 and the increase in FABP1 were positively correlated with the EPLs risk (p for trend = 0.035 and 0.046, respectively). The different expressions of GPx3 and FABP1 reflect the potential of selenium for preventing ESCC at the EPLs stage. GPx3 may affect myocardial infarction through FABP1, which remains to be further studied.


Asunto(s)
Biología Computacional , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Proteínas de Unión a Ácidos Grasos , Glutatión Peroxidasa , Selenio , Humanos , Selenio/sangre , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Glutatión Peroxidasa/sangre , Estudios de Casos y Controles , Neoplasias Esofágicas/prevención & control , Neoplasias Esofágicas/genética , Biología Computacional/métodos , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Carcinoma de Células Escamosas de Esófago/prevención & control , Carcinoma de Células Escamosas de Esófago/genética , Femenino , Masculino , Persona de Mediana Edad , Regulación Neoplásica de la Expresión Génica , Anciano
6.
Curr Atheroscler Rep ; 26(5): 163-175, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38698167

RESUMEN

PURPOSE OF REVIEW: Fatty acid-binding protein 4 (FABP4) plays a role in lipid metabolism and cardiovascular health. In this paper, we cover FABP4 biology, its implications in atherosclerosis from observational studies, genetic factors affecting FABP4 serum levels, and ongoing drug development to target FABP4 and offer insights into future FABP4 research. RECENT FINDINGS: FABP4 impacts cells through JAK2/STAT2 and c-kit pathways, increasing inflammatory and adhesion-related proteins. In addition, FABP4 induces angiogenesis and vascular smooth muscle cell proliferation and migration. FABP4 is established as a reliable predictive biomarker for cardiovascular disease in specific at-risk groups. Genetic studies robustly link PPARG and FABP4 variants to FABP4 serum levels. Considering the potential effects on atherosclerotic lesion development, drug discovery programs have been initiated in search for potent inhibitors of FABP4. Elevated FABP4 levels indicate an increased cardiovascular risk and is causally related to acceleration of atherosclerotic disease, However, clinical trials for FABP4 inhibition are lacking, possibly due to concerns about available compounds' side effects. Further research on FABP4 genetics and its putative causal role in cardiovascular disease is needed, particularly in aging subgroups.


Asunto(s)
Envejecimiento , Enfermedades Cardiovasculares , Proteínas de Unión a Ácidos Grasos , Humanos , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/epidemiología , Envejecimiento/genética , Envejecimiento/fisiología , Aterosclerosis/genética , Aterosclerosis/metabolismo , Animales , Biomarcadores/sangre , Biomarcadores/metabolismo
7.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731797

RESUMEN

Adipocyte P2 (aP2), also known as FABP4, is an adipokine that adipose tissue produces and expresses in macrophages. Its primary role is to facilitate the transportation of fatty acids across cell membranes. Numerous studies have reported associations between FABP4 and the development of metabolic disorders. However, there is limited knowledge regarding FABP4 expression in diabetes and obesity, especially about different age groups, genders, and ethnicities. This study aims to investigate the association between FABP4 levels, diabetes mellitus, and obesity within various ethnic groups. We measured plasma FABP4 concentrations in a cohort of 2083 patients from the KDEP study and gathered anthropometric data. Additionally, we collected and analyzed clinical, biochemical, and glycemic markers using multivariate regression analysis. The average FABP4 concentration was significantly higher in female participants than in males (18.8 ng/mL vs. 14.4 ng/mL, p < 0.001, respectively), and in those over 50 years old compared to those under 50 years of age (19.3 ng/mL vs. 16.2 ng/mL, p < 0.001, respectively). In this study, significant positive associations were found between the plasma level of FABP4 and obesity markers: BMI (r = 0.496, p < 0.001), hip circumference (r = 0.463, p < 0.001), and waist circumference (WC) (r = 0.436, p < 0.001). Similar observations were also seen with glycemic markers, which included HbA1c (r = 0.126, p < 0.001), fasting blood glucose (FBG) (r = 0.184, p < 0.001), fasting insulin (r = 0.326, p < 0.001), and HOMA-IR (r = 0.333, p < 0.001). Importantly, these associations remained significant even after adjusting for age, gender, and ethnicity. Furthermore, FABP4 levels were negatively associated with male gender (ß: -3.85, 95% CI: -4.92, -2.77, p < 0.001), and positively associated with age (ß: 0.14, 95% CI: 0.096, 0.183, p < 0.001), BMI (ß: 0.74, 95% CI: 0.644, 0.836, p < 0.001), and fasting insulin (ß: 0.115, 95% CI: 0.091, 0.138, p < 0.001). In this study, plasma FABP4 levels were significantly higher in diabetic and obese participants, and they were strongly influenced by age, gender, and ethnicity. These findings suggest that FABP4 may serve as a valuable prognostic and diagnostic marker for obesity and diabetes, particularly among female patients, individuals over 50 years old, and specific ethnic groups.


Asunto(s)
Proteínas de Unión a Ácidos Grasos , Obesidad , Humanos , Proteínas de Unión a Ácidos Grasos/sangre , Proteínas de Unión a Ácidos Grasos/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Obesidad/sangre , Obesidad/metabolismo , Adulto , Estudios de Cohortes , Factores de Edad , Anciano , Etnicidad , Índice de Masa Corporal , Biomarcadores/sangre , Diabetes Mellitus/sangre , Diabetes Mellitus/metabolismo , Glucemia/metabolismo
8.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731803

RESUMEN

This study explores the effects of normobaric hypoxia and intermittent hypoxic training (IHT) on the physiological condition of the cardiac muscle in swimmers. Hypoxia has been reported to elicit both beneficial and adverse changes in the cardiovascular system, but its impact on the myocardium during acute exercise and altitude/hypoxic training remains less understood. We aimed to determine how a single bout of intense interval exercise and a four-week period of high-intensity endurance training under normobaric hypoxia affect cardiac marker activity in swimmers. Sixteen young male swimmers were divided into two groups: one undergoing training in hypoxia and the other in normoxia. Cardiac markers, including troponin I and T (cTnI and cTnT), heart-type fatty acid-binding protein (H-FABP), creatine kinase-MB isoenzyme (CK-MB), and myoglobin (Mb), were analyzed to assess the myocardium's response. We found no significant differences in the physiological response of the cardiac muscle to intense physical exertion between hypoxia and normoxia. Four weeks of IHT did not alter the resting levels of cTnT, cTnI, and H-FABP, but it resulted in a noteworthy decrease in the resting concentration of CK-MB, suggesting enhanced cardiac muscle adaptation to exercise. In contrast, a reduction in resting Mb levels was observed in the control group training in normoxia. These findings suggest that IHT at moderate altitudes does not adversely affect cardiac muscle condition and may support cardiac muscle adaptation, affirming the safety and efficacy of IHT as a training method for athletes.


Asunto(s)
Atletas , Biomarcadores , Hipoxia , Humanos , Masculino , Hipoxia/metabolismo , Proyectos Piloto , Natación/fisiología , Adulto Joven , Miocardio/metabolismo , Mioglobina/metabolismo , Troponina I/metabolismo , Proteína 3 de Unión a Ácidos Grasos/metabolismo , Adolescente , Proteínas de Unión a Ácidos Grasos/metabolismo , Resistencia Física/fisiología , Forma MB de la Creatina-Quinasa/sangre , Forma MB de la Creatina-Quinasa/metabolismo , Adaptación Fisiológica , Altitud
9.
Eur J Med Chem ; 270: 116358, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38574638

RESUMEN

The fatty acid-binding protein 1 (FABP1) is a fatty acid transporter protein that is considered as an emerging target for metabolic diseases. Despite forceful evidence that the inhibition of FABP1 is essential for ameliorating NASH, pharmacological control and validation of FABP1 are hindered by a lack of relevant inhibitors as pharmacological tool. Therefore, the development of effective FABP1 inhibitors is a current focus of research. Herein, we firstly reported the comprehensive structure-activity relationship (SAR) study of novel FABP1 inhibitors derived from high throughput screening of our in-house library, which resulting in the identification of the optimal compound 44 (IC50 = 4.46 ± 0.54 µM). Molecular docking studies revealed that 44 forms stable hydrogen bonds with amino acids around the active pocket of FABP1. Moreover, 44 alleviated the typical histological features of fatty liver in NASH mice, including steatosis, lobular inflammation, ballooning and fibrosis. Additionally, 44 has been demonstrated to have lipid metabolism regulating, anti-oxidative stress and hepatoprotective properties. This study might be provided a promising insight into the field of NASH and inspiration for the development of FABP1 inhibitors.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Metabolismo de los Lípidos , Fibrosis , Proteínas de Unión a Ácidos Grasos/metabolismo , Hígado/metabolismo
10.
Front Immunol ; 15: 1374763, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38596682

RESUMEN

Background: Psoriasis is an immune-mediated disorder influenced by environmental factors on a genetic basis. Despite advancements, challenges persist, including the diminishing efficacy of biologics and small-molecule targeted agents, alongside managing recurrence and psoriasis-related comorbidities. Unraveling the underlying pathogenesis and identifying valuable biomarkers remain pivotal for diagnosing and treating psoriasis. Methods: We employed a series of bioinformatics (including single-cell sequencing data analysis and machine learning techniques) and statistical methods to integrate and analyze multi-level data. We observed the cellular changes in psoriatic skin tissues, screened the key genes Fatty acid binding protein 5 (FABP5) and The killer cell lectin-like receptor B1 (KLRB1), evaluated the efficacy of six widely prescribed drugs on psoriasis treatment in modulating the dendritic cell-associated pathway, and assessed their overall efficacy. Finally, RT-qPCR, immunohistochemistry, and immunofluorescence assays were used to validate. Results: The regulatory influence of dendritic cells (DCs) on T cells through the CD70/CD27 signaling pathway may emerge as a significant facet of the inflammatory response in psoriasis. Notably, FABP5 and KLRB1 exhibited up-regulation and co-localization in psoriatic skin tissues and M5-induced HaCaT cells, serving as potential biomarkers influencing psoriasis development. Conclusion: Our study analyzed the impact of DC-T cell crosstalk in psoriasis, elucidated the characterization of two biomarkers, FABP5 and KLRB1, in psoriasis, and highlighted the promise and value of tofacitinib in psoriasis therapy targeting DCs.


Asunto(s)
Psoriasis , Humanos , Psoriasis/tratamiento farmacológico , Piel/patología , Queratinocitos/metabolismo , Biomarcadores/metabolismo , Células Dendríticas/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Subfamilia B de Receptores Similares a Lectina de Células NK/metabolismo
11.
Cell Rep ; 43(4): 114075, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38583151

RESUMEN

Diabetic kidney disease (DKD) is one of the most common complications of diabetes, and no specific drugs are clinically available. We have previously demonstrated that inhibiting microsomal prostaglandin E synthase-2 (mPGES-2) alleviated type 2 diabetes by enhancing ß cell function and promoting insulin production. However, the involvement of mPGES-2 in DKD remains unclear. Here, we aimed to analyze the association of enhanced mPGES-2 expression with impaired metabolic homeostasis of renal lipids and subsequent renal damage. Notably, global knockout or pharmacological blockage of mPGES-2 attenuated diabetic podocyte injury and tubulointerstitial fibrosis, thereby ameliorating lipid accumulation and lipotoxicity. These findings were further confirmed in podocyte- or tubule-specific mPGES-2-deficient mice. Mechanistically, mPGES-2 and Rev-Erbα competed for heme binding to regulate fatty acid binding protein 5 expression and lipid metabolism in the diabetic kidney. Our findings suggest a potential strategy for treating DKD via mPGES-2 inhibition.


Asunto(s)
Nefropatías Diabéticas , Metabolismo de los Lípidos , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares , Podocitos , Prostaglandina-E Sintasas , Transducción de Señal , Animales , Humanos , Masculino , Ratones , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/tratamiento farmacológico , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Fibrosis , Riñón/patología , Riñón/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Podocitos/metabolismo , Podocitos/patología , Podocitos/efectos de los fármacos , Prostaglandina-E Sintasas/metabolismo , Prostaglandina-E Sintasas/genética , Transducción de Señal/efectos de los fármacos
12.
Nat Metab ; 6(4): 741-763, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38664583

RESUMEN

Due to the rise in overnutrition, the incidence of obesity-induced hepatocellular carcinoma (HCC) will continue to escalate; however, our understanding of the obesity to HCC developmental axis is limited. We constructed a single-cell atlas to interrogate the dynamic transcriptomic changes during hepatocarcinogenesis in mice. Here we identify fatty acid binding protein 5 (FABP5) as a driver of obesity-induced HCC. Analysis of transformed cells reveals that FABP5 inhibition and silencing predispose cancer cells to lipid peroxidation and ferroptosis-induced cell death. Pharmacological inhibition and genetic ablation of FABP5 ameliorates the HCC burden in male mice, corresponding to enhanced ferroptosis in the tumour. Moreover, FABP5 inhibition induces a pro-inflammatory tumour microenvironment characterized by tumour-associated macrophages with increased expression of the co-stimulatory molecules CD80 and CD86 and increased CD8+ T cell activation. Our work unravels the dual functional role of FABP5 in diet-induced HCC, inducing the transformation of hepatocytes and an immunosuppressive phenotype of tumour-associated macrophages and illustrates FABP5 inhibition as a potential therapeutic approach.


Asunto(s)
Carcinoma Hepatocelular , Proteínas de Unión a Ácidos Grasos , Ferroptosis , Neoplasias Hepáticas , Proteínas de Neoplasias , Obesidad , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/etiología , Animales , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Ratones , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/etiología , Obesidad/complicaciones , Obesidad/metabolismo , Masculino , Microambiente Tumoral/inmunología , Humanos , Ratones Endogámicos C57BL , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/inmunología
13.
Mol Nutr Food Res ; 68(8): e2300840, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38593305

RESUMEN

Fatty acid binding proteins (FABPs), such as FABP4 (aP2, A-FABP), are essential for cellular lipid regulation, membrane-protein interactions, and the modulation of metabolic and inflammatory pathways. FABP4, primarily expressed in adipocytes, monocytes, and macrophages, is integrated into signaling networks that influence immune responses and insulin activity. It has been linked to obesity, inflammation, lipid metabolism, insulin resistance, diabetes, cardiovascular disease, and cancer. Inhibition of FABP4 is emerging as a promising strategy for treating obesity-related conditions, particularly insulin resistance and diabetes. Elevated FABP4 levels in individuals with a BMI above 30 underscore its association with obesity. Furthermore, FABP4 levels are higher not only in the tissues but also in the blood, promoting the onset and development of various cancers. Understanding its broader role reveals involvement in the mechanisms underlying metabolic syndrome, contributing to various metabolic and inflammatory responses. While blocking FABP4 offers an alternative therapeutic approach, a comprehensive understanding of potential side effects is crucial before clinical use. This review aims to provide concise insights into FABP4, elucidating its mechanisms and potential therapeutic applications in obesity and associated disorders, contributing to innovative interventions against metabolic syndrome and obesity.


Asunto(s)
Proteínas de Unión a Ácidos Grasos , Neoplasias , Obesidad , Proteínas de Unión a Ácidos Grasos/metabolismo , Humanos , Obesidad/metabolismo , Animales , Resistencia a la Insulina , Inflamación , Metabolismo de los Lípidos , Síndrome Metabólico/metabolismo , Adipocitos/metabolismo
14.
Mol Pharmacol ; 105(6): 395-410, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38580446

RESUMEN

Liver fatty acid binding protein 1 (FABP1) binds diverse endogenous lipids and is highly expressed in the human liver. Binding to FABP1 alters the metabolism and homeostasis of endogenous lipids in the liver. Drugs have also been shown to bind to rat FABP1, but limited data are available for human FABP1 (hFABP1). FABP1 has a large binding pocket, and up to two fatty acids can bind to FABP1 simultaneously. We hypothesized that drug binding to hFABP1 results in formation of ternary complexes and that FABP1 binding alters drug metabolism. To test these hypotheses, native protein mass spectrometry (MS) and fluorescent 11-(dansylamino)undecanoic acid (DAUDA) displacement assays were used to characterize drug binding to hFABP1, and diclofenac oxidation by cytochrome P450 2C9 (CYP2C9) was studied in the presence and absence of hFABP1. DAUDA binding to hFABP1 involved high (Kd,1 = 0.2 µM) and low (Kd,2 > 10 µM) affinity binding sites. Nine drugs bound to hFABP1 with equilibrium dissociation constant (Kd) values ranging from 1 to 20 µM. None of the tested drugs completely displaced DAUDA from hFABP1, and fluorescence spectra showed evidence of ternary complex formation. Formation of DAUDA-hFABP1-diclofenac ternary complex was verified with native MS. Docking predicted diclofenac binding in the portal region of FABP1 with DAUDA in the binding cavity. The catalytic rate constant of diclofenac hydroxylation by CYP2C9 was decreased by ∼50% (P < 0.01) in the presence of FABP1. Together, these results suggest that drugs form ternary complexes with hFABP1 and that hFABP1 binding in the liver will alter drug metabolism and clearance. SIGNIFICANCE STATEMENT: Many commonly prescribed drugs bind fatty acid binding protein 1 (FABP1), forming ternary complexes with FABP1 and the fluorescent fatty acid 11-(dansylamino)undecanoic acid. These findings suggest that drugs will bind to apo-FABP1 and fatty acid-bound FABP1 in the human liver. The high expression of FABP1 in the liver, together with drug binding to FABP1, may alter drug disposition processes in vivo.


Asunto(s)
Citocromo P-450 CYP2C9 , Diclofenaco , Proteínas de Unión a Ácidos Grasos , Unión Proteica , Proteínas de Unión a Ácidos Grasos/metabolismo , Humanos , Diclofenaco/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Sitios de Unión , Hígado/metabolismo , Oxidación-Reducción , Preparaciones Farmacéuticas/metabolismo
15.
Drug Discov Today ; 29(5): 103980, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38614160

RESUMEN

Fatty acid binding protein 7 (FABP7) is an intracellular protein involved in the uptake, transportation, metabolism, and storage of fatty acids (FAs). FABP7 is upregulated up to 20-fold in multiple cancers, usually correlated with poor prognosis. FABP7 silencing or pharmacological inhibition suggest FABP7 promotes cell growth, migration, invasion, colony and spheroid formation/increased size, lipid uptake, and lipid droplet formation. Xenograft studies show that suppression of FABP7 inhibits tumour formation and tumour growth, and improves host survival. The molecular mechanisms involve promotion of FA uptake, lipid droplets, signalling [focal adhesion kinase (FAK), proto-oncogene tyrosine-protein kinase Src (Src), mitogen-activated protein kinase kinase/p-extracellular signal-regulated kinase (MEK/ERK), and Wnt/ß-catenin], hypoxia-inducible factor 1-alpha (Hif1α), vascular endothelial growth factor A/prolyl 4-hydroxylase subunit alpha-1 (VEGFA/P4HA1), snail family zinc finger 1 (Snail1), and twist-related protein 1 (Twist1). The oncogenic capacity of FABP7 makes it a promising pharmacological target for future cancer treatments.


Asunto(s)
Proteína de Unión a los Ácidos Grasos 7 , Proteínas de Unión a Ácidos Grasos , Neoplasias , Proto-Oncogenes Mas , Proteínas Supresoras de Tumor , Humanos , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Animales , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas de Unión a Ácidos Grasos/genética
16.
Cell Death Dis ; 15(4): 286, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653992

RESUMEN

The progression of human degenerative and hypoxic/ischemic diseases is accompanied by widespread cell death. One death process linking iron-catalyzed reactive species with lipid peroxidation is ferroptosis, which shows hallmarks of both programmed and necrotic death in vitro. While evidence of ferroptosis in neurodegenerative disease is indicated by iron accumulation and involvement of lipids, a stable marker for ferroptosis has not been identified. Its prevalence is thus undetermined in human pathophysiology, impeding recognition of disease areas and clinical investigations with candidate drugs. Here, we identified ferroptosis marker antigens by analyzing surface protein dynamics and discovered a single protein, Fatty Acid-Binding Protein 5 (FABP5), which was stabilized at the cell surface and specifically elevated in ferroptotic cell death. Ectopic expression and lipidomics assays demonstrated that FABP5 drives redistribution of redox-sensitive lipids and ferroptosis sensitivity in a positive-feedback loop, indicating a role as a functional biomarker. Notably, immunodetection of FABP5 in mouse stroke penumbra and in hypoxic postmortem patients was distinctly associated with hypoxically damaged neurons. Retrospective cell death characterized here by the novel ferroptosis biomarker FABP5 thus provides first evidence for a long-hypothesized intrinsic ferroptosis in hypoxia and inaugurates a means for pathological detection of ferroptosis in tissue.


Asunto(s)
Biomarcadores , Proteínas de Unión a Ácidos Grasos , Ferroptosis , Proteínas de Neoplasias , Proteínas de Unión a Ácidos Grasos/metabolismo , Animales , Humanos , Biomarcadores/metabolismo , Ratones , Hipoxia Encefálica/metabolismo , Hipoxia Encefálica/patología , Ratones Endogámicos C57BL , Peroxidación de Lípido , Masculino
17.
Int J Mol Sci ; 25(6)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38542532

RESUMEN

The objective of the study was to assess the expression of proteins responsible for placental lipid transport in term pregnancies complicated by well-controlled gestational (GDM) and type 1 diabetes mellitus (PGDM). A total of 80 placental samples were obtained from patients diagnosed with PGDM (n = 20), GDM treated with diet (GDMG1, n = 20), GDM treated with diet and insulin (GDMG2, n = 20), and a non-diabetic control group (n = 20). Umbilical and uterine artery blood flows were assessed by means of ultrasound in the period prior to delivery and computer-assisted quantitative morphometry of immunostained placental sections was performed to determine the expression of selected proteins. The morphometric analysis performed for the vascular density-matched placental samples demonstrated a significant increase in the expression of fatty acid translocase (CD36), fatty acid binding proteins (FABP1, FABP4 and FABP5), as well as a decrease in the expression of endothelial lipase (EL) and fatty acid transport protein (FATP4) in the PGDM-complicated pregnancies as compared to the GDMG1 and control groups (p < 0.05). No significant differences with regard to the placental expression of lipoprotein lipase (LPL) and FATP6 protein between GDM/PGDM and non-diabetic patients were noted. Maternal pre-pregnancy weight, body mass index, placental weight as well as the expression of LPL and FABP4 were selected by the linear regression model as the strongest contributors to the fetal birth weight. To conclude, in placentas derived from pregnancies complicated by well-controlled PGDM, the expression of several lipid transporters, including EL, CD36, FATP4, FABP1, FABP4 and FABP5, is altered. Nonetheless, only LPL and FABP4 were significant predictors of the fetal birth weight.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Gestacional , Embarazo , Humanos , Femenino , Placenta/metabolismo , Diabetes Gestacional/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Peso al Nacer , Proteínas de Transporte de Ácidos Grasos/genética , Proteínas de Transporte de Ácidos Grasos/metabolismo , Peso Fetal , Lípidos , Proteínas de Unión a Ácidos Grasos/metabolismo
18.
J Cell Biol ; 223(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429999

RESUMEN

Cholesterol from low-density lipoprotein (LDL) can be transported to many organelle membranes by non-vesicular mechanisms involving sterol transfer proteins (STPs). Fatty acid-binding protein (FABP) 7 was identified in our previous study searching for new regulators of intracellular cholesterol trafficking. Whether FABP7 is a bona fide STP remains unknown. Here, we found that FABP7 deficiency resulted in the accumulation of LDL-derived cholesterol in lysosomes and reduced cholesterol levels on the plasma membrane. A crystal structure of human FABP7 protein in complex with cholesterol was resolved at 2.7 Å resolution. In vitro, FABP7 efficiently transported the cholesterol analog dehydroergosterol between the liposomes. Further, the silencing of FABP3 and 8, which belong to the same family as FABP7, caused robust cholesterol accumulation in lysosomes. These two FABP proteins could transport dehydroergosterol in vitro as well. Collectively, our results suggest that FABP3, 7, and 8 are a new class of STPs mediating cholesterol egress from lysosomes.


Asunto(s)
Colesterol , Proteínas de Unión a Ácidos Grasos , Lisosomas , Humanos , Membrana Celular/metabolismo , Colesterol/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Lisosomas/metabolismo , Esteroles/metabolismo
19.
J Ovarian Res ; 17(1): 44, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38373971

RESUMEN

BACKGROUND: Polycystic ovary syndrome (PCOS) is one of the most complex endocrine disorders in women of reproductive age. Abnormal proliferation of granulosa cells (GCs) is an important cause of PCOS. This study aimed to explore the role of fatty acid-binding protein 5 (FABP5) in granulosa cell (GC) proliferation in polycystic ovary syndrome (PCOS) patients. METHODS: The FABP5 gene, which is related to lipid metabolism, was identified through data analysis of the gene expression profiles of GSE138518 from the Gene Expression Omnibus (GEO) database. The expression levels of FABP5 were measured by quantitative real-time PCR (qRT‒PCR) and western blotting. Cell proliferation was evaluated with a cell counting kit-8 (CCK-8) assay. Western blotting was used to assess the expression of the proliferation marker PCNA, and immunofluorescence microscopy was used to detect Ki67 expression. Moreover, lipid droplet formation was detected with Nile red staining, and qRT‒PCR was used to analyze fatty acid storage-related gene expression. RESULTS: We found that FABP5 was upregulated in ovarian GCs obtained from PCOS patients and PCOS mice. FABP5 knockdown suppressed lipid droplet formation and proliferation in a human granulosa-like tumor cell line (KGN), whereas FABP5 overexpression significantly enhanced lipid droplet formation and KGN cell proliferation. Moreover, we determined that FABP5 knockdown inhibited PI3K-AKT signaling by suppressing AKT phosphorylation and that FABP5 overexpression activated PI3K-AKT signaling by facilitating AKT phosphorylation. Finally, we used the PI3K-AKT signaling pathway inhibitor LY294002 and found that the facilitation of KGN cell proliferation and lipid droplet formation induced by FABP5 overexpression was inhibited. In contrast, the PI3K-AKT signaling pathway agonist SC79 significantly rescued the suppression of KGN cell proliferation and lipid droplet formation caused by FABP5 knockdown. CONCLUSIONS: FABP5 promotes active fatty acid synthesis and excessive proliferation of GCs by activating PI3K-AKT signaling, suggesting that abnormally high expression of FABP5 in GCs may be a novel biomarker or a research target for PCOS treatment.


Asunto(s)
Proteínas de Unión a Ácidos Grasos , MicroARNs , Síndrome del Ovario Poliquístico , Animales , Femenino , Humanos , Ratones , Proliferación Celular/genética , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Células de la Granulosa/metabolismo , MicroARNs/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/metabolismo , Síndrome del Ovario Poliquístico/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo
20.
J Integr Neurosci ; 23(2): 44, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38419457

RESUMEN

BACKGROUND: Recently, the hypothesis that pathological α-Synuclein propagates from the gut to the brain has gained attention. Although results from animal studies support this hypothesis, the specific mechanism remains unclear. This study focused on the intestinal fatty acid-binding protein (FABP2), which is one of the subtypes of fatty acid binding proteins localizing in the gut, with the hypothesis that FABP2 is involved in the gut-to-brain propagation of α-synuclein. The aim of this study was to clarify the pathological significance of FABP2 in the pathogenesis and progression of synucleinopathy. METHODS: We examined the relationship between FABP2 and α-Synuclein in the uptake of α-Synuclein into enteric neurons using primary cultured neurons derived from mouse small intestinal myenteric plexus. We also quantified disease-related protein concentrations in the plasma of patients with synucleinopathy and related diseases, and analyzed the relationship between plasma FABP2 level and progression of the disease. RESULTS: Experiments on α-Synuclein uptake in primary cultured enteric neurons showed that following uptake, α-Synuclein was concentrated in areas where FABP2 was localized. Moreover, analysis of the plasma protein levels of patients with Parkinson's disease revealed that the plasma FABP2 and α-Synuclein levels fluctuate with disease duration. The FABP2/α-Synuclein ratio fluctuated more markedly than either FABP2 or α-Synuclein alone, depending on the duration of disease, indicating a higher discriminant ability of early Parkinson's disease patients from healthy patients. CONCLUSIONS: These results suggest that FABP2 potentially contributes to the pathogenesis and progression of α-synucleinopathies. Thus, FABP2 is an important molecule that has the potential to elucidate the consistent mechanisms that lead from the prodromal phase to the onset and subsequent progression of synucleinopathies.


Asunto(s)
Enfermedad de Parkinson , Sinucleinopatías , Animales , Humanos , Ratones , alfa-Sinucleína/metabolismo , Proteínas de Unión a Ácidos Grasos/metabolismo , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , Sinucleinopatías/metabolismo , Sinucleinopatías/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA