Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.129
Filtrar
1.
J Phys Chem B ; 128(27): 6449-6462, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38941243

RESUMEN

Microscopic understanding of protein-RNA interactions is important for different biological activities, such as RNA transport, translation, splicing, silencing, etc. Polyadenine (Poly(A)) binding proteins (PABPs) make up a class of regulatory proteins that play critical roles in protecting the poly(A) tails of cellular mRNAs from nuclease degradation. In this work, we performed molecular dynamics simulations to investigate the conformational modifications of human PABP protein and poly(A) RNA that occur during complexation. It is demonstrated that the intermediate linker domain of the protein transforms from a disordered coil-like structure to a helical form during the recognition process, leading to the formation of the complex. On the other hand, disordered collapsed coil-like RNA on complexation has been found to transform into a rigid extended conformation. Importantly, the binding free energy calculation showed that the thermodynamic stability of the complex is primarily guided by favorable hydrophobic interactions between the protein and the RNA.


Asunto(s)
Simulación de Dinámica Molecular , Poli A , Proteínas de Unión a Poli(A) , Termodinámica , Humanos , Poli A/química , Poli A/metabolismo , Proteínas de Unión a Poli(A)/química , Proteínas de Unión a Poli(A)/metabolismo , Conformación Proteica , Unión Proteica , Interacciones Hidrofóbicas e Hidrofílicas , ARN/química , ARN/metabolismo
2.
Mol Cell ; 84(11): 2119-2134.e5, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38848691

RESUMEN

Protein synthesis is metabolically costly and must be tightly coordinated with changing cellular needs and nutrient availability. The cap-binding protein eIF4E makes the earliest contact between mRNAs and the translation machinery, offering a key regulatory nexus. We acutely depleted this essential protein and found surprisingly modest effects on cell growth and recovery of protein synthesis. Paradoxically, impaired protein biosynthesis upregulated genes involved in the catabolism of aromatic amino acids simultaneously with the induction of the amino acid biosynthetic regulon driven by the integrated stress response factor GCN4. We further identified the translational control of Pho85 cyclin 5 (PCL5), a negative regulator of Gcn4, that provides a consistent protein-to-mRNA ratio under varied translation environments. This regulation depended in part on a uniquely long poly(A) tract in the PCL5 5' UTR and poly(A) binding protein. Collectively, these results highlight how eIF4E connects protein synthesis to metabolic gene regulation, uncovering mechanisms controlling translation during environmental challenges.


Asunto(s)
Aminoácidos , Factor 4E Eucariótico de Iniciación , Regulación Fúngica de la Expresión Génica , Biosíntesis de Proteínas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Factor 4E Eucariótico de Iniciación/metabolismo , Factor 4E Eucariótico de Iniciación/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Aminoácidos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética , Regiones no Traducidas 5' , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Ciclinas/genética , Ciclinas/metabolismo , Proteínas de Unión a Poli(A)/metabolismo , Proteínas de Unión a Poli(A)/genética
3.
Reproduction ; 168(2)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38819377

RESUMEN

In brief: Ovarian aging results in reactive oxygen species accumulation and mitochondrial deterioration. During the aging process, GRSF1 deficiency attenuates mitochondrial function in aging granulosa cells. Abstract: Ovarian aging critically influences reproductive potential, with a marked decrease in oocyte quality and quantity and an increase in oxidative stress and mitochondrial dysfunction. This study elucidates the role of guanine-rich RNA sequence binding factor 1 (GRSF1) in the aging of ovarian granulosa cells (GCs). We observed a significant reduction in GRSF1 within GCs correlating with patient age, utilizing clinical samples from IVF patients. Using an siRNA-mediated knockdown technique, we established that diminished GRSF1 expression exacerbates mitochondrial dysfunction, elevates reactive oxygen species, and impairs ATP production. Furthermore, RNA immunoprecipitation revealed GRSF1's interaction with superoxide dismutase 2 (SOD2) mRNA, a key antioxidant enzyme, suggesting a mechanism whereby GRSF1 modulates oxidative stress. Downregulation of SOD2 reversed the protective effects of GRSF1 overexpression on mitochondrial function. These insights into the role of GRSF1 in ovarian aging may guide the development of interventions to improve fertility outcomes in advanced age.


Asunto(s)
Envejecimiento , Senescencia Celular , Células de la Granulosa , Mitocondrias , Estrés Oxidativo , Especies Reactivas de Oxígeno , Femenino , Células de la Granulosa/metabolismo , Humanos , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Envejecimiento/metabolismo , Adulto , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/genética , Células Cultivadas , Proteínas de Unión a Poli(A)
4.
PLoS Genet ; 20(5): e1011251, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38768217

RESUMEN

Ataxin-2 (ATXN2) is a gene implicated in spinocerebellar ataxia type II (SCA2), amyotrophic lateral sclerosis (ALS) and Parkinsonism. The encoded protein is a therapeutic target for ALS and related conditions. ATXN2 (or Atx2 in insects) can function in translational activation, translational repression, mRNA stability and in the assembly of mRNP-granules, a process mediated by intrinsically disordered regions (IDRs). Previous work has shown that the LSm (Like-Sm) domain of Atx2, which can help stimulate mRNA translation, antagonizes mRNP-granule assembly. Here we advance these findings through a series of experiments on Drosophila and human Ataxin-2 proteins. Results of Targets of RNA Binding Proteins Identified by Editing (TRIBE), co-localization and immunoprecipitation experiments indicate that a polyA-binding protein (PABP) interacting, PAM2 motif of Ataxin-2 may be a major determinant of the mRNA and protein content of Ataxin-2 mRNP granules. Experiments with transgenic Drosophila indicate that while the Atx2-LSm domain may protect against neurodegeneration, structured PAM2- and unstructured IDR- interactions both support Atx2-induced cytotoxicity. Taken together, the data lead to a proposal for how Ataxin-2 interactions are remodelled during translational control and how structured and non-structured interactions contribute differently to the specificity and efficiency of RNP granule condensation as well as to neurodegeneration.


Asunto(s)
Ataxina-2 , Proteínas de Drosophila , Drosophila melanogaster , ARN Mensajero , Ribonucleoproteínas , Ataxina-2/genética , Ataxina-2/metabolismo , Animales , Humanos , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión a Poli(A)/metabolismo , Proteínas de Unión a Poli(A)/genética , Animales Modificados Genéticamente , Gránulos Citoplasmáticos/metabolismo , Gránulos Citoplasmáticos/genética , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Biosíntesis de Proteínas , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión al ADN
5.
PLoS One ; 19(5): e0300287, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38696388

RESUMEN

The phosphorylation of eukaryotic translational initiation factors has been shown to play a significant role in controlling the synthesis of protein. Viral infection, environmental stress, and growth circumstances cause phosphorylation or dephosphorylation of plant initiation factors. Our findings indicate that casein kinase 2 can phosphorylate recombinant wheat eIFiso4E and eIFiso4G generated from E. coli in vitro. For wheat eIFiso4E, Ser-207 was found to be the in vitro phosphorylation site. eIFiso4E lacks an amino acid that can be phosphorylated at the position corresponding to Ser-209, the phosphorylation site in mammalian eIF4E, yet phosphorylation of eIFiso4E has effects on VPg binding affinity that are similar to those of phosphorylation of mammalian eIF4E. The addition of VPg and phosphorylated eIFiso4F to depleted wheat germ extract (WGE) leads to enhancement of translation of both uncapped and capped viral mRNA. The addition of PABP together with eIFiso4Fp and eIF4B to depleted WGE increases both uncapped and capped mRNA translation. However, it exhibits a translational advantage specifically for uncapped mRNA, implying that the phosphorylation of eIFiso4F hinders cap binding while promoting VPg binding, thereby facilitating uncapped translation. These findings indicate TEV virus mediates VPg-dependent translation by engaging a mechanism entailing phosphorylated eIFiso4Fp and PABP. To elucidate the molecular mechanisms underlying these observed effects, we studied the impact of PABP and/or eIF4B on the binding of VPg with eIFiso4Fp. The inclusion of PABP and eIF4B with eIFiso4Fp resulted in about 2-fold increase in affinity for VPg (Kd = 24 ± 1.7 nM), as compared to the affinity of eIFiso4Fp alone (Kd = 41.0 ± 3.1 nM). The interactions between VPg and eIFiso4Fp were determined to be both enthalpically and entropically favorable, with the enthalpic contribution accounting for 76-97% of the ΔG at 25°C, indicating a substantial role of hydrogen bonding in enhancing the stability of the complex. The binding of PABP to eIFiso4Fp·4B resulted in a conformational alteration, leading to a significant enhancement in the binding affinity to VPg. These observations suggest PABP enhances the affinity between eIFiso4Fp and VPg, leading to an overall conformational change that provides a stable platform for efficient viral translation.


Asunto(s)
Factores Eucarióticos de Iniciación , Proteínas de Unión a Poli(A) , Potyvirus , Unión Proteica , Biosíntesis de Proteínas , Triticum , Fosforilación , Potyvirus/metabolismo , Potyvirus/genética , Triticum/virología , Triticum/metabolismo , Triticum/genética , Factores Eucarióticos de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/genética , Proteínas de Unión a Poli(A)/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas Virales/metabolismo , Proteínas Virales/genética , Quinasa de la Caseína II/metabolismo , Quinasa de la Caseína II/genética
6.
Nat Commun ; 15(1): 3127, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605014

RESUMEN

Cells must sense and respond to sudden maladaptive environmental changes-stresses-to survive and thrive. Across eukaryotes, stresses such as heat shock trigger conserved responses: growth arrest, a specific transcriptional response, and biomolecular condensation of protein and mRNA into structures known as stress granules under severe stress. The composition, formation mechanism, adaptive significance, and even evolutionary conservation of these condensed structures remain enigmatic. Here we provide a remarkable view into stress-triggered condensation, its evolutionary conservation and tuning, and its integration into other well-studied aspects of the stress response. Using three morphologically near-identical budding yeast species adapted to different thermal environments and diverged by up to 100 million years, we show that proteome-scale biomolecular condensation is tuned to species-specific thermal niches, closely tracking corresponding growth and transcriptional responses. In each species, poly(A)-binding protein-a core marker of stress granules-condenses in isolation at species-specific temperatures, with conserved molecular features and conformational changes modulating condensation. From the ecological to the molecular scale, our results reveal previously unappreciated levels of evolutionary selection in the eukaryotic stress response, while establishing a rich, tractable system for further inquiry.


Asunto(s)
Respuesta al Choque Térmico , Estrés Fisiológico , Respuesta al Choque Térmico/genética , Estrés Fisiológico/genética , Evolución Biológica , Proteínas de Unión a Poli(A)/genética
7.
Proc Natl Acad Sci U S A ; 121(13): e2321606121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38513106

RESUMEN

Eukaryotic cells form condensates to sense and adapt to their environment [S. F. Banani, H. O. Lee, A. A. Hyman, M. K. Rosen, Nat. Rev. Mol. Cell Biol. 18, 285-298 (2017), H. Yoo, C. Triandafillou, D. A. Drummond, J. Biol. Chem. 294, 7151-7159 (2019)]. Poly(A)-binding protein (Pab1), a canonical stress granule marker, condenses upon heat shock or starvation, promoting adaptation [J. A. Riback et al., Cell 168, 1028-1040.e19 (2017)]. The molecular basis of condensation has remained elusive due to a dearth of techniques to probe structure directly in condensates. We apply hydrogen-deuterium exchange/mass spectrometry to investigate the mechanism of Pab1's condensation. Pab1's four RNA recognition motifs (RRMs) undergo different levels of partial unfolding upon condensation, and the changes are similar for thermal and pH stresses. Although structural heterogeneity is observed, the ability of MS to describe populations allows us to identify which regions contribute to the condensate's interaction network. Our data yield a picture of Pab1's stress-triggered condensation, which we term sequential activation (Fig. 1A), wherein each RRM becomes activated at a temperature where it partially unfolds and associates with other likewise activated RRMs to form the condensate. Subsequent association is dictated more by the underlying free energy surface than specific interactions, an effect we refer to as thermodynamic specificity. Our study represents an advance for elucidating the interactions that drive condensation. Furthermore, our findings demonstrate how condensation can use thermodynamic specificity to perform an acute response to multiple stresses, a potentially general mechanism for stress-responsive proteins.


Asunto(s)
Proteínas de Choque Térmico , Proteínas de Unión a Poli(A) , Proteínas de Unión a Poli(A)/genética , Temperatura , Proteínas de Choque Térmico/metabolismo , Termodinámica , Respuesta al Choque Térmico , Medición de Intercambio de Deuterio/métodos
8.
Mol Cell ; 84(9): 1727-1741.e12, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38547866

RESUMEN

Heat-shocked cells prioritize the translation of heat shock (HS) mRNAs, but the underlying mechanism is unclear. We report that HS in budding yeast induces the disassembly of the eIF4F complex, where eIF4G and eIF4E assemble into translationally arrested mRNA ribonucleoprotein particles (mRNPs) and HS granules (HSGs), whereas eIF4A promotes HS translation. Using in vitro reconstitution biochemistry, we show that a conformational rearrangement of the thermo-sensing eIF4A-binding domain of eIF4G dissociates eIF4A and promotes the assembly with mRNA into HS-mRNPs, which recruit additional translation factors, including Pab1p and eIF4E, to form multi-component condensates. Using extracts and cellular experiments, we demonstrate that HS-mRNPs and condensates repress the translation of associated mRNA and deplete translation factors that are required for housekeeping translation, whereas HS mRNAs can be efficiently translated by eIF4A. We conclude that the eIF4F complex is a thermo-sensing node that regulates translation during HS.


Asunto(s)
Factor 4F Eucariótico de Iniciación , Factor 4G Eucariótico de Iniciación , Respuesta al Choque Térmico , Proteínas de Unión a Poli(A) , Biosíntesis de Proteínas , ARN Mensajero , Ribonucleoproteínas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Respuesta al Choque Térmico/genética , Factor 4F Eucariótico de Iniciación/metabolismo , Factor 4F Eucariótico de Iniciación/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/genética , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Factor 4E Eucariótico de Iniciación/genética , Factor 4A Eucariótico de Iniciación/metabolismo , Factor 4A Eucariótico de Iniciación/genética , Regulación Fúngica de la Expresión Génica , Unión Proteica , ARN de Hongos/metabolismo , ARN de Hongos/genética
9.
Adv Sci (Weinh) ; 11(14): e2308496, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38308190

RESUMEN

During maternal-to-zygotic transition (MZT) in the embryo, mRNA undergoes complex post-transcriptional regulatory processes. However, it is unclear whether and how alternative splicing plays a functional role in MZT. By analyzing transcriptome changes in mouse and human early embryos, dynamic changes in alternative splicing during MZT are observed and a previously unnoticed process of zygotic splicing activation (ZSA) following embryonic transcriptional activation is described. As the underlying mechanism of RNA splicing, splicing factors undergo dramatic maternal-to-zygotic conversion. This conversion relies on the key maternal factors BTG4 and PABPN1L and is zygotic-transcription-dependent. CDK11-dependent phosphorylation of the key splicing factor, SF3B1, and its aggregation with SRSF2 in the subnuclear domains of 2-cell embryos are prerequisites for ZSA. Isoforms generated by erroneous splicing, such as full-length Dppa4, hinder normal embryonic development. Moreover, alternative splicing regulates the conversion of early embryonic blastomeres from totipotency to pluripotency, thereby affecting embryonic lineage differentiation. ZSA is an essential post-transcriptional process of MZT and has physiological significance in generating new life. In addition to transcriptional activation, appropriate expression of transcript isoforms is also necessary for preimplantation embryonic development.


Asunto(s)
Transcriptoma , Cigoto , Humanos , Animales , Ratones , Transcriptoma/genética , Cigoto/metabolismo , Desarrollo Embrionario/genética , Empalme del ARN , Isoformas de Proteínas/genética , Proteínas de Unión a Poli(A)/genética , Proteínas de Unión a Poli(A)/metabolismo , Proteínas Nucleares/genética
11.
Biol Reprod ; 110(4): 834-847, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38281153

RESUMEN

Besides ubiquitous poly(A)-binding protein, cytoplasmic 1 (PABPC1), testis-specific PABPC2/PABPt (in humans, referred to as PABPC3), and female and male germline-specific PABPC1L/ePAB, have been reported in the mouse testis. Recent in silico analysis additionally identified testis-specific Pabpc6 in the mouse. In this study, we characterized PABPC6 and its mutant mice. PABPC6 was initially detectable in the cytoplasm of pachytene spermatocytes, increased in abundance in round spermatids, and decreased in elongating spermatids. PABPC6 was capable of binding to poly(A) tails of various mRNAs and interacting with translation-associated factors, including EIF4G, PAIP1, and PAIP2. Noteworthy was that PABPC6, unlike PABPC1, was barely associated with translationally active polysomes and enriched in chromatoid bodies of round spermatids. Despite these unique characteristics, neither synthesis of testicular proteins nor spermatogenesis was affected in the mutant mice lacking PABPC6, suggesting that PABPC6 is functionally redundant with other co-existing PABPC proteins during spermatogenesis.


Asunto(s)
Espermatogénesis , Testículo , Humanos , Masculino , Ratones , Femenino , Animales , Testículo/metabolismo , Espermatogénesis/genética , Espermátides/metabolismo , Proteínas de Unión a Poli(A)/genética , Proteínas de Unión a Poli(A)/metabolismo , Citoplasma/metabolismo , ARN Mensajero/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
12.
Cell Death Dis ; 14(11): 717, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37923734

RESUMEN

Age-associated hypercoagulability is accompanied by the increase of plasma levels of some coagulation factors including fibrinogen which may contribute to the increased risk of cardiovascular, cerebrovascular, and thrombotic diseases in elderly people. However, the underlying mechanism of increased plasma fibrinogen concentration during aging is still elusive. GRSF1 belongs to the heterogeneous nuclear ribonucleoproteins F/H (hnRNP F/H) subfamily. Here, we report that GRSF1 attenuates hypercoagulability via negative modulation of fibrinogen expression. We demonstrated that GRSF1 negatively regulated fibrinogen expression at both mRNA and protein levels. GRSF1 directly interacted with the coding region (CDS) of FGA, FGB, and FGG mRNAs, and decreased their stability thus mitigating fibrinogen expression. We further identified that only a few G-tracts within the Fib C domain of FGA, FGB, and FGG CDS and the qRRM2 domain of GRSF1 were required for their interaction. Moreover, we confirmed hypercoagulability and the decrease of GRSF1 expression level during mice aging. Functionally, GRSF1 overexpression in old mice liver decreased fibrinogen plasma level, reduced hypercoagulability, and mitigated blood coagulation activity, whereas GRSF1 knockdown in young mice liver increased fibrinogen plasma level and promoted blood coagulation activity. Collectively, our findings unveil a novel posttranscriptional regulation of fibrinogen by GRSF1 and uncover a critical role of GRSF1 in regulating blood coagulation activity.


Asunto(s)
Fibrinógeno , Trombofilia , Anciano , Animales , Humanos , Ratones , Fibrinógeno/genética , Fibrinógeno/metabolismo , Regulación de la Expresión Génica , Proteínas de Unión a Poli(A)/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
13.
EMBO Rep ; 24(12): e57741, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38009565

RESUMEN

N6-methyladenosine (m6 A) in mRNA is key to eukaryotic gene regulation. Many m6 A functions involve RNA-binding proteins that recognize m6 A via a YT521-B Homology (YTH) domain. YTH domain proteins contain long intrinsically disordered regions (IDRs) that may mediate phase separation and interaction with protein partners, but whose precise biochemical functions remain largely unknown. The Arabidopsis thaliana YTH domain proteins ECT2, ECT3, and ECT4 accelerate organogenesis through stimulation of cell division in organ primordia. Here, we use ECT2 to reveal molecular underpinnings of this function. We show that stimulation of leaf formation requires the long N-terminal IDR, and we identify two short IDR elements required for ECT2-mediated organogenesis. Of these two, a 19-amino acid region containing a tyrosine-rich motif conserved in both plant and metazoan YTHDF proteins is necessary for binding to the major cytoplasmic poly(A)-binding proteins PAB2, PAB4, and PAB8. Remarkably, overexpression of PAB4 in leaf primordia partially rescues the delayed leaf formation in ect2 ect3 ect4 mutants, suggesting that the ECT2-PAB2/4/8 interaction on target mRNAs of organogenesis-related genes may overcome limiting PAB concentrations in primordial cells.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión a Poli(A)/genética , Proteínas de Unión a Poli(A)/metabolismo , ARN Mensajero/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo
14.
RNA ; 29(12): 1870-1880, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37699651

RESUMEN

The conserved TREX complex has multiple functions in gene expression such as transcription elongation, 3' end processing, mRNP assembly and nuclear mRNA export as well as the maintenance of genomic stability. In Saccharomyces cerevisiae, TREX is composed of the pentameric THO complex, the DEAD-box RNA helicase Sub2, the nuclear mRNA export adaptor Yra1, and the SR-like proteins Gbp2 and Hrb1. Here, we present the structural analysis of the endogenous TREX complex of S. cerevisiae purified from its native environment. To this end, we used cross-linking mass spectrometry to gain structural information on regions of the complex that are not accessible to classical structural biology techniques. We also used negative-stain electron microscopy to investigate the organization of the cross-linked complex used for XL-MS by comparing our endogenous TREX complex with recently published structural models of recombinant THO-Sub2 complexes. According to our analysis, the endogenous yeast TREX complex preferentially assembles into a dimer.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ARN Mensajero/genética , Transporte de ARN , Transcripción Genética , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Unión a Poli(A)/genética
15.
Genes Dev ; 37(15-16): 760-777, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37704377

RESUMEN

The mRNA 3' poly(A) tail plays a critical role in regulating both mRNA translation and turnover. It is bound by the cytoplasmic poly(A) binding protein (PABPC), an evolutionarily conserved protein that can interact with translation factors and mRNA decay machineries to regulate gene expression. Mammalian PABPC1, the prototypical PABPC, is expressed in most tissues and interacts with eukaryotic translation initiation factor 4G (eIF4G) to stimulate translation in specific contexts. In this study, we uncovered a new mammalian PABPC, which we named neural PABP (neuPABP), as it is predominantly expressed in the brain. neuPABP maintains a unique architecture as compared with other PABPCs, containing only two RNA recognition motifs (RRMs) and maintaining a unique N-terminal domain of unknown function. neuPABP expression is activated in neurons as they mature during synaptogenesis, where neuPABP localizes to the soma and postsynaptic densities. neuPABP interacts with the noncoding RNA BC1, as well as mRNAs coding for ribosomal and mitochondrial proteins. However, in contrast to PABPC1, neuPABP does not associate with actively translating mRNAs in the brain. In keeping with this, we show that neuPABP has evolved such that it does not bind eIF4G and as a result fails to support protein synthesis in vitro. Taken together, these results indicate that mammals have expanded their PABPC repertoire in the brain and propose that neuPABP may support the translational repression of select mRNAs.


Asunto(s)
Factor 4G Eucariótico de Iniciación , Proteínas de Unión a Poli(A) , Animales , Proteínas de Unión a Poli(A)/genética , Neuronas , Encéfalo , Mamíferos
16.
J Biol Chem ; 299(8): 104959, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37356722

RESUMEN

Nuclear mRNA metabolism is regulated by multiple proteins, which either directly bind to RNA or form multiprotein complexes. The RNA-binding protein ZC3H11A is involved in nuclear mRNA export, NF-κB signaling, and is essential during mouse embryo development. Furthermore, previous studies have shown that ZC3H11A is important for nuclear-replicating viruses. However, detailed biochemical characterization of the ZC3H11A protein has been lacking. In this study, we established the ZC3H11A protein interactome in human and mouse cells. We demonstrate that the nuclear poly(A)-binding protein PABPN1 interacts specifically with the ZC3H11A protein and controls ZC3H11A localization into nuclear speckles. We report that ZC3H11A specifically interacts with the human adenovirus type 5 (HAdV-5) capsid mRNA in a PABPN1-dependent manner. Notably, ZC3H11A uses the same zinc finger motifs to interact with PABPN1 and viral mRNA. Further, we demonstrate that the lack of ZC3H11A alters the polyadenylation of HAdV-5 capsid mRNA. Taken together, our results suggest that the ZC3H11A protein may act as a novel regulator of polyadenylation of nuclear mRNA.


Asunto(s)
Proteína I de Unión a Poli(A) , Poliadenilación , Animales , Humanos , Ratones , Proteína I de Unión a Poli(A)/genética , Proteína I de Unión a Poli(A)/metabolismo , Proteínas de Unión a Poli(A)/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
17.
Eur J Cancer Prev ; 32(3): 229-237, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37010104

RESUMEN

OBJECTIVE: Esophageal squamous cell carcinoma (ESCC) has high mortality worldwide, but its early diagnosis and prognosis are very difficult. Cytoplasmic poly(A)-binding protein 1 (PABPC1) plays an important role in regulating most cellular processes, resulting in a close relationship to tumor genesis and malignant development. Therefore, this work aimed to evaluate the clinical value of PABPC1 as a biomarker for the early diagnosis and prognosis of ESCC in endoscopic patients. METHODS: A total of 185 patients with lesions found by endoscopy were involved in this study, including 116 finally diagnosed with ESCCs and 69 with nonmalignant lesions. Biopsy fragments and surgical specimens were collected to assess PABPC1 expression by immunohistochemistry, and the association between the expression and survival was analyzed and compared in both samples. RESULTS: The average ratio of positive tumor cells to total tumor cells in the biopsy fragments was lower than that in surgical specimens, leading to a cutoff value of only 10% for the former in ROC analysis (AOC = 0.808, P < 0.001). However, PABPC1 high expression (PABPC1-HE) in both biopsy fragments and surgical specimens was associated with poor survival. When PABPC1 expression was used as a biomarker to diagnose ESCC in biopsy fragments, sensitivity, specificity, positive predictive value, and negative predictive value reached 44.8, 100.0, 100.0, and 51.9%, respectively. Among the 116 ESCC patients, 32 received postoperative concurrent chemoradiotherapy. Postoperative treatment increased the overall survival (OS) but not disease-free survival in lymph node-positive patients (P = 0.007 and 0.957, respectively). Nevertheless, PABPC1-HE predicted shorter OS regardless of the postoperative treatment in both endoscopic biopsy samples and surgical specimens. CONCLUSION: PABPC1 expression can be used as a biomarker to detect ESCC from endoscopic lesions. At the same time, PABPC1-HE is a predictor of poor survival regardless of postoperative chemoradiotherapy in endoscopic biopsy samples of ESCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas de Esófago/diagnóstico , Carcinoma de Células Escamosas/patología , Pronóstico , Biopsia , Biomarcadores de Tumor/metabolismo , Diagnóstico Precoz , Proteínas de Unión a Poli(A)
18.
Genome Biol ; 24(1): 103, 2023 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-37122016

RESUMEN

BACKGROUND: RNA N6-methyladenosine (m6A) modification is critical for plant growth and crop yield. m6A reader proteins can recognize m6A modifications to facilitate the functions of m6A in gene regulation. ECT2, ECT3, and ECT4 are m6A readers that are known to redundantly regulate trichome branching and leaf growth, but their molecular functions remain unclear. RESULTS: Here, we show that ECT2, ECT3, and ECT4 directly interact with each other in the cytoplasm and perform genetically redundant functions in abscisic acid (ABA) response regulation during seed germination and post-germination growth. We reveal that ECT2/ECT3/ECT4 promote the stabilization of their targeted m6A-modified mRNAs, but have no function in alternative polyadenylation and translation. We find that ECT2 directly interacts with the poly(A) binding proteins, PAB2 and PAB4, and maintains the stabilization of m6A-modified mRNAs. Disruption of ECT2/ECT3/ECT4 destabilizes mRNAs of ABA signaling-related genes, thereby promoting the accumulation of ABI5 and leading to ABA hypersensitivity. CONCLUSION: Our study reveals a unified functional model of m6A mediated by m6A readers in plants. In this model, ECT2/ECT3/ECT4 promote stabilization of their target mRNAs in the cytoplasm.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Ácido Abscísico , Germinación/genética , Estabilidad del ARN , Proteínas de Unión a Poli(A)/genética , Proteínas de Unión a Poli(A)/metabolismo , Semillas/genética , Regulación de la Expresión Génica de las Plantas , Péptidos y Proteínas de Señalización Intracelular/genética
19.
J Assist Reprod Genet ; 40(4): 929-941, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36823316

RESUMEN

Expression of the embryonic poly(A)-binding protein (EPAB) in frog, mouse, and human oocytes and early-stage embryos is maintained at high levels until embryonic genome activation (EGA) after which a significant decrease occurs in EPAB levels. Studies on the vertebrate oocytes and early embryos revealed that EPAB plays key roles in the translational regulation, stabilization, and protection of maternal mRNAs during oocyte maturation and early embryogenesis. However, it remains elusive whether EPAB interacts with other cellular proteins and undergoes phosphorylation to perform these roles. For this purpose, we identified a group of Epab-interacting proteins and its phosphorylation status in mouse germinal vesicle (GV)- and metaphase II (MII)-stage oocytes, and in 1-cell, 2-cell, and 4-cell preimplantation embryos. In the oocytes and early preimplantation embryos, Epab-interacting proteins were found to play roles in the translation and transcription processes, intracellular signaling and transport, maintenance of structural integrity, metabolism, posttranslational modifications, and chromatin remodeling. Moreover, we discovered that Epab undergoes phosphorylation on the serine, threonine, and tyrosine residues, which are localized in the RNA recognition motifs 2, 3, and 4 or C-terminal. Conclusively, these findings suggest that Epab not only functions in the translational control of maternal mRNAs through binding to their poly(A) tails but also participates in various cellular events through interacting with certain group proteins. Most likely, Epab undergoes a dynamic phosphorylation during the oocyte maturation and the early embryo development to carry out these functions.


Asunto(s)
Serina , Tirosina , Humanos , Animales , Ratones , Fosforilación , Tirosina/metabolismo , Serina/metabolismo , Treonina/metabolismo , Oocitos , Proteínas de Unión a Poli(A)/genética , Proteínas de Unión a Poli(A)/metabolismo
20.
BMC Cancer ; 23(1): 169, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36803974

RESUMEN

BACKGROUND: Nasopharyngeal carcinoma (NPC), especially the nonkeratinizing type, is a malignant tumor primarily occurring in southern China and Southeast Asia. Chemotherapy (CT) and combined radiotherapy (RT) is used to treat NPC. However, the mortality rate is high in recurrent and metastatic NPC. We developed a molecular marker, analyzed its correlation with clinical characteristics, and assessed the prognostic value among NPC patients with or without chemoradiotherapy. METHODS: A total of 157 NPC patients were included in this study, with 120 undergoing treatment and 37 without treatment. EBER1/2 expression was investigated using in situ hybridization (ISH). Expression of PABPC1, Ki-67, and p53 was detected with immunohistochemistry. The correlations of EBER1/2 and the expression of the three proteins having clinical features and prognosis were evaluated. RESULTS: The expression of PABPC1 was associated with age, recurrence, and treatment but not with gender, TNM classification, or the expression of Ki-67, p53, or EBER. High expression of PABPC1 was associated with poor overall survival (OS) and disease-free survival (DFS) and was an independent predictor depending on multivariate analysis. Comparatively, no significant correlation was observed between the expression of p53, Ki-67, and EBER and survival. In this study, 120 patients received treatments and revealed significantly better OS and DFS than the untreated 37 patients. PABPC1 high expression was an independent predictor of shorter OS in the treated (HR = 4.012 (1.238-13.522), 95% CI, p = 0.021) and the untreated groups (HR = 5.473 (1.051-28.508), 95% CI, p = 0.044). However, it was not an independent predictor of shorter DFS in either the treated or the untreated groups. No significant survival difference was observed between patients with docetaxel-based induction chemotherapy (IC) + concurrent chemoradiotherapy (CCRT) and those with paclitaxel-based IC + CCRT. However, when combined with treatment and PABPC1 expression, patients with paclitaxel-added chemoradiotherapy plus PABPC1 low expression had significantly better OS than those who underwent chemoradiotherapy (p = 0.036). CONCLUSIONS: High expression of PABPC1 is associated with poorer OS and DFS among NPC patients. Patients with PABPC1 having low expression revealed good survival irrespective of the treatment received, indicating that PABPC1 could be a potential biomarker for triaging NPC patients.


Asunto(s)
Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Proteína I de Unión a Poli(A) , Humanos , Quimioradioterapia , Quimioterapia de Inducción , Antígeno Ki-67 , Carcinoma Nasofaríngeo/diagnóstico , Carcinoma Nasofaríngeo/terapia , Neoplasias Nasofaríngeas/diagnóstico , Neoplasias Nasofaríngeas/terapia , Paclitaxel/uso terapéutico , Proteínas de Unión a Poli(A) , Pronóstico , Proteína p53 Supresora de Tumor , Proteína I de Unión a Poli(A)/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...