RESUMEN
Telomere biology disorders, largely characterized by telomere lengths below the first centile for age, are caused by variants in genes associated with telomere replication, structure, or function. One of these genes, ACD, which encodes the shelterin protein TPP1, is associated with both autosomal dominantly and autosomal recessively inherited telomere biology disorders. TPP1 recruits telomerase to telomeres and stimulates telomerase processivity. Several studies probing the effect of various synthetic or patient-derived variants have mapped specific residues and regions of TPP1 that are important for interaction with TERT, the catalytic component of telomerase. However, these studies have come to differing conclusions regarding ACD haploinsufficiency. Here, we report a proband with compound heterozygous novel variants in ACD (NM_001082486.1)-c.505_507delGAG, p.(Glu169del); and c.619delG, p.(Asp207Thrfs*22)-and a second proband with a heterozygous chromosomal deletion encompassing ACD: arr[hg19] 16q22.1(67,628,846-67,813,408)x1. Clinical data, including symptoms and telomere length within the pedigrees, suggested that loss of one ACD allele was insufficient to induce telomere shortening or confer clinical features. Further analyses of lymphoblastoid cell lines showed decreased nascent ACD RNA and steady-state mRNA, but normal TPP1 protein levels, in cells containing heterozygous ACD c.619delG, p.(Asp207Thrfs*22), or the ACD-encompassing chromosomal deletion compared to controls. Based on our results, we conclude that cells are able to compensate for loss of one ACD allele by activating a mechanism to maintain TPP1 protein levels, thus maintaining normal telomere length.
Asunto(s)
Células Germinativas/metabolismo , Serina Proteasas/genética , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/aislamiento & purificación , Telómero/metabolismo , Linfocitos B , Línea Celular , Preescolar , Femenino , Eliminación de Gen , Humanos , Leucoplasia Bucal/genética , Microcefalia/genética , Uñas , Linaje , Receptor EphB2 , Análisis de Secuencia de ADN , Complejo Shelterina , Pigmentación de la Piel , Telomerasa/genética , Telomerasa/metabolismoRESUMEN
Rif1 is a conserved protein regulating replication timing and binds preferentially to the vicinity of late-firing/dormant origins in fission yeast. The Rif1 binding sites on the fission yeast genome have an intrinsic potential to generate G-quadruplex (G4) structures to which purified Rif1 preferentially binds. We previously proposed that Rif1 generates chromatin architecture that may determine replication timing by facilitating the chromatin loop formation. Here, we conducted detailed biochemical analyses on Rif1 and its G4 binding. Rif1 prefers sequences containing long stretches of guanines and binds preferentially to the multimeric G4 of parallel or hybrid/mix topology. Rif1 forms oligomers and binds simultaneously to multiple G4. We present a model on how Rif1 may facilitate the formation of chromatin architecture through its G4 binding and oligomerization properties.
Asunto(s)
G-Cuádruplex , Multimerización de Proteína , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Secuencia de Bases , Cromatina/metabolismo , ADN de Hongos/metabolismo , Modelos Biológicos , Oligonucleótidos/metabolismo , Péptidos/metabolismo , Unión Proteica , Proteínas de Schizosaccharomyces pombe/aislamiento & purificación , Telómero/metabolismo , Proteínas de Unión a Telómeros/aislamiento & purificaciónRESUMEN
Rap1-interacting protein 1 (Rif1) regulates telomere length in budding yeast. We previously reported that, in metazoans and fission yeast, Rif1 also plays pivotal roles in controlling genome-wide DNA replication timing. We proposed that Rif1 may assemble chromatin compartments that contain specific replication-timing domains by promoting chromatin loop formation. Rif1 also is involved in DNA lesion repair, restart after replication fork collapse, anti-apoptosis activities, replicative senescence, and transcriptional regulation. Although multiple physiological functions of Rif1 have been characterized, biochemical and structural information on mammalian Rif1 is limited, mainly because of difficulties in purifying the full-length protein. Here, we expressed and purified the 2418-amino-acid-long, full-length murine Rif1 as well as its partially truncated variants in human 293T cells. Hydrodynamic analyses indicated that Rif1 forms elongated or extended homo-oligomers in solution, consistent with the presence of a HEAT-type helical repeat segment known to adopt an elongated shape. We also observed that the purified murine Rif1 bound G-quadruplex (G4) DNA with high specificity and affinity, as was previously shown for Rif1 from fission yeast. Both the N-terminal (HEAT-repeat) and C-terminal segments were involved in oligomer formation and specifically bound G4 DNA, and the central intrinsically disordered polypeptide segment increased the affinity for G4. Of note, pulldown assays revealed that Rif1 simultaneously binds multiple G4 molecules. Our findings support a model in which Rif1 modulates chromatin loop structures through binding to multiple G4 assemblies and by holding chromatin fibers together.
Asunto(s)
G-Cuádruplex , Modelos Moleculares , Proteínas de Unión a Telómeros/metabolismo , Animales , Sitios de Unión , Cromatografía en Gel , Dimerización , Células HEK293 , Humanos , Inmunoprecipitación , Cinética , Ratones , Conformación de Ácido Nucleico , Tamaño de la Partícula , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/aislamiento & purificación , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas de Unión a Telómeros/química , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/aislamiento & purificaciónRESUMEN
Telomeric shelterin complex caps chromosome ends and plays a crucial role in telomere maintenance and protection. In the fission yeast Schizosaccharomyces pombe, shelterin is composed of telomeric single- and double-stranded DNA-binding protein subcomplexes Pot1-Tpz1 and Taz1-Rap1, which are bridged by their interacting protein Poz1. However, the structure of Poz1 and how Poz1 functions as an interaction hub in the shelterin complex remain unclear. Here we report the crystal structure of Poz1 in complex with Poz1-binding motifs of Tpz1 and Rap1. The crystal structure shows that Poz1 employs two different binding surfaces to interact with Tpz1 and Rap1. Unexpectedly, the structure also reveals that Poz1 adopts a dimeric conformation. Mutational analyses suggest that proper interactions between Tpz1, Poz1, and Rap1 in the shelterin core complex are required for telomere length homeostasis and heterochromatin structure maintenance at telomeres. Structural resemblance between Poz1 and the TRFH domains of other shelterin proteins in fission yeast and humans suggests a model for the evolution of shelterin proteins.
Asunto(s)
Proteínas Portadoras/química , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/química , Proteínas de Unión a Telómeros/química , Telómero/química , Proteínas Portadoras/genética , Proteínas Portadoras/aislamiento & purificación , Proteínas de Unión al ADN , Conformación Proteica , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/aislamiento & purificación , Complejo Shelterina , Telómero/genética , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/aislamiento & purificaciónRESUMEN
Telomeres are nucleoprotein complexes that play essential roles in protecting chromosome ends. Mammalian telomeres consist of repetitive DNA sequences bound by the shelterin complex. In this complex, the POT1-TPP1 heterodimer binds to single-stranded telomeric DNAs, while TRF1 and TRF2-RAP1 interact with double-stranded telomeric DNAs. TIN2, the linchpin of this complex, simultaneously interacts with TRF1, TRF2, and TPP1 to mediate the stable assembly of the shelterin complex. However, the molecular mechanism by which TIN2 interacts with these proteins to orchestrate telomere protection remains poorly understood. Here, we report the crystal structure of the N-terminal domain of TIN2 in complex with TIN2-binding motifs from TPP1 and TRF2, revealing how TIN2 interacts cooperatively with TPP1 and TRF2. Unexpectedly, TIN2 contains a telomeric repeat factor homology (TRFH)-like domain that functions as a protein-protein interaction platform. Structure-based mutagenesis analyses suggest that TIN2 plays an important role in maintaining the stable shelterin complex required for proper telomere end protection.
Asunto(s)
Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Serina Proteasas/metabolismo , Complejo Shelterina/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Telómero/química , Telómero/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Animales , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/química , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/aislamiento & purificación , Humanos , Ratones , Conformación Proteica , Serina Proteasas/química , Serina Proteasas/aislamiento & purificación , Proteínas de Unión a Telómeros/química , Proteínas de Unión a Telómeros/aislamiento & purificación , Proteína 2 de Unión a Repeticiones Teloméricas/química , Proteína 2 de Unión a Repeticiones Teloméricas/aislamiento & purificaciónRESUMEN
Coccidiosis is considered to be a major problem for the poultry industry, and coccidiosis control is yet urgent. Due to the roles in telomere length regulation and end protection, telomere-binding proteins have been considered as a good target for drug design. In this work, a putative Gbp1p that is similar to telomeric DNA-binding protein Gbp (G-strand binding protein) of Cryptosporidium parvum, was searched in the database of Eimeria tenella. Sequence analysis indicated E.tenella Gbp1p (EtGbp1p) has significant sequence similarity to other eukaryotic Gbps in their RNA recognition motif (RRM) domains. Electrophoretic mobility shift assays (EMSAs) demonstrated recombinant EtGbp1p bound G-rich telomeric DNA, but not C-rich or double-stranded telomeric DNA sequences. Competition and antibody supershift assays confirmed the interaction of DNA-protein complex. Chromatin immunoprecipitation assays confirmed that EtGbp1p interacted with telomeric DNA in vivo. Collectively, these evidences suggest that EtGbp1p represents a G-rich single-stranded telomeric DNA-binding protein in E.tenella.
Asunto(s)
Eimeria tenella/genética , Proteínas Protozoarias/aislamiento & purificación , Proteínas de Unión a Telómeros/aislamiento & purificación , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Alineación de Secuencia , Proteínas de Unión a Telómeros/químicaRESUMEN
During meiosis, chromosomes adopt a bouquet arrangement, which is widely conserved among eukaryotes. This arrangement is assumed to play an important role in the normal progression of meiosis, by mediating the proper pairing of homologous chromosomes. In Schizosaccharomyces pombe, the complex of Bqt1 and Bqt2 plays a key role in telomere clustering and the subsequent bouquet arrangement of chromosomes during early meiotic prophase. Bqt1 and Bqt2 are part of a multi-protein complex that mediates the attachment of the telomere to the nuclear membrane. However, the structural details of the complex are needed to clarify the mechanism of telomere clustering. To enable biophysical studies of Bqt1 and Bqt2, we established a purification procedure for the Schizosaccharomyces japonicus Bqt1-Bqt2 complex, which is closely related to the S. pombe Bqt1-Bqt2 complex. A co-expression vector, in which one of the expressed subunits is fused to a removable SUMO tag, yielded high amounts of the proteins in the soluble fraction. The solubility of the Bqt1-Bqt2 complex after the removal of the SUMO tag was maintained by including CHAPS, a nondenaturing, zwitterionic detergent, in the purification buffers. These procedures enabled us to rapidly purify the stable Bqt1-Bqt2 complex. The co-purified Bqt1 and Bqt2 proteins formed a stable heterodimer, consistent with results from in vivo studies showing the requirement of both proteins for the bouquet arrangement. The expression and purification procedures established here will facilitate further biophysical studies of the Bqt1-Bqt2 complex.
Asunto(s)
Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/aislamiento & purificación , Schizosaccharomyces/genética , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/aislamiento & purificación , Secuencia de Aminoácidos , Escherichia coli/genética , Expresión Génica , Vectores Genéticos/genética , Datos de Secuencia Molecular , Multimerización de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Schizosaccharomyces/química , Proteínas de Schizosaccharomyces pombe/química , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/química , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/aislamiento & purificación , Solubilidad , Proteínas de Unión a Telómeros/químicaRESUMEN
Telomeres, the specialized DNA-protein complexes found at the termini of all linear eukaryotic -chromosomes, protect chromosomes from degradation and end-to-end fusion. The protection of telomeres 1 (POT1) protein binds the single-stranded overhang at the ends of chromosomes in diverse eukaryotes. It is essential for chromosome end-protection and involved in telomere length regulation. TPP1 is a previously identified binding partner of POT1 that has been proposed to form part of a -six-protein shelterin complex at telomeres. Through structural and biochemical studies, we have -demonstrated that human TPP1 is the missing human homolog of the ß subunit of protozoan telomere end-binding-protein-complex (TEBPα-TEBPß). Therefore, capping of telomeres by a TEBPα-TEBPß/POT1-TPP1 dimer is more evolutionarily conserved than that had been expected. In addition, we also discovered that the human POT1-TPP1 complex is a processivity factor for telomerase.
Asunto(s)
Telomerasa/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Humanos , Complejo Shelterina , Telomerasa/química , Telomerasa/aislamiento & purificación , Proteínas de Unión a Telómeros/química , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/aislamiento & purificaciónRESUMEN
Drosophila telomeres are elongated by transposition of specialized retroelements rather than telomerase activity, and are assembled independently of the terminal DNA sequence. Drosophila telomeres are protected by terminin, a complex that includes the HOAP (Heterochromatin Protein 1/origin recognition complex-associated protein) and Moi (Modigliani) proteins and shares the properties of human shelterin. Here we show that Verrocchio (Ver), an oligonucleotide/oligosaccharide-binding (OB) fold-containing protein related to Rpa2/Stn1, interacts physically with HOAP and Moi, is enriched only at telomeres, and prevents telomere fusion. These results indicate that Ver is a new terminin component; we speculate that, concomitant with telomerase loss, Drosophila evolved terminin to bind chromosome ends independently of the DNA sequence.
Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/aislamiento & purificación , Regulación de la Expresión Génica , Modelos Moleculares , Mutación/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia , Telómero/genética , Proteínas de Unión a Telómeros/química , Proteínas de Unión a Telómeros/aislamiento & purificaciónRESUMEN
In Saccharomyces cerevisiae, Stn1p and Ten1p are required for telomere maintenance. These two proteins and another telomeric single-stranded DNA binding protein, Cdc13p, have been proposed to form a complex to control telomere integrity. In this work, we purified the recombinant Stn1p in Escherichia coli and found that the purified protein could specifically interact with single-stranded telomeric DNA in vitro. Co-fractionation of co-overexpressed Stn1p and Ten1p in insect cells revealed their stable association. A Stn1p/Ten1p binary complex was reconstituted with purified recombinant proteins in vitro. These results indicated that Stn1p and Ten1p interact with each other directly, which is important in telomere length regulation and end protection.
Asunto(s)
Proteínas de Ciclo Celular/aislamiento & purificación , Proteínas de Ciclo Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Unión a Telómeros/aislamiento & purificación , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Animales , Secuencia de Bases , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/metabolismo , ADN de Cadena Simple/metabolismo , Escherichia coli/genética , Datos de Secuencia Molecular , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Telómero/genética , Proteínas de Unión a Telómeros/genéticaRESUMEN
Telomeres are DNA-protein structures that protect chromosome ends from the actions of the DNA repair machinery. When telomeric integrity is compromised, genomic instability ensues. Considerable effort has focused on identification of telomere-binding proteins and elucidation of their functions. To date, protein identification has relied on classical immunoprecipitation and mass spectrometric approaches, primarily under conditions that favor isolation of proteins with strong or long lived interactions that are present at sufficient quantities to visualize by SDS-PAGE. To facilitate identification of low abundance and transiently associated telomere-binding proteins, we developed a novel approach that combines in vivo protein-protein cross-linking, tandem affinity purification, and stringent sequential endoprotease digestion. Peptides were identified by label-free comparative nano-LC-FTICR-MS. Here, we expressed an epitope-tagged telomere-binding protein and utilized a modified chromatin immunoprecipitation approach to cross-link associated proteins. The resulting immunoprecipitant contained telomeric DNA, establishing that this approach captures bona fide telomere binding complexes. To identify proteins present in the immunocaptured complexes, samples were reduced, alkylated, and digested with sequential endoprotease treatment. The resulting peptides were purified using a microscale porous graphite stationary phase and analyzed using nano-LC-FTICR-MS. Proteins enriched in cells expressing HA-FLAG-TIN2 were identified by label-free quantitative analysis of the FTICR mass spectra from different samples and ion trap tandem mass spectrometry followed by database searching. We identified all of the proteins that constitute the telomeric shelterin complex, thus validating the robustness of this approach. We also identified 62 novel telomere-binding proteins. These results demonstrate that DNA-bound protein complexes, including those present at low molar ratios, can be identified by this approach. The success of this approach will allow us to create a more complete understanding of telomere maintenance and have broad applicability.
Asunto(s)
Cromatografía de Afinidad/métodos , Cromatografía Liquida/métodos , Reactivos de Enlaces Cruzados/farmacología , Espectrometría de Masas/métodos , Proteínas de Unión a Telómeros/metabolismo , Extractos Celulares , Línea Celular , Técnica del Anticuerpo Fluorescente , Humanos , Immunoblotting , Hibridación Fluorescente in Situ , Nanotecnología , Proteínas Recombinantes de Fusión/metabolismo , Complejo Shelterina , Coloración y Etiquetado , Proteínas de Unión a Telómeros/aislamiento & purificaciónRESUMEN
The yeast Rap1 protein plays an important role in transcriptional silencing and in telomere length homeostasis. Rap1 mediates silencing at the HM loci and at telomeres by recruiting the Sir3 and Sir4 proteins to chromatin via a Rap1 C-terminal domain, which also recruits the telomere length regulators, Rif1 and Rif2. We report the 1.85 A resolution crystal structure of the Rap1 C-terminus, which adopts an all-helical fold with no structural homologues. The structure was used to engineer surface mutations in Rap1, and the effects of these mutations on silencing and telomere length regulation were assayed in vivo. Our surprising finding was that there is no overlap between mutations affecting mating-type and telomeric silencing, suggesting that Rap1 plays distinct roles in silencing at the silent mating-type loci and telomeres. We also found novel Rap1 phenotypes and new separation-of-function mutants, which provide new tools for studying Rap1 function. Yeast two-hybrid studies were used to determine how specific mutations affect recruitment of Sir3, Rif1, and Rif2. A comparison of the yeast two-hybrid and functional data reveals patterns of protein interactions that correlate with each Rap1 phenotype. We find that Sir3 interactions are important for telomeric silencing, but not mating type silencing, and that Rif1 and Rif2 interactions are important in different subsets of telomeric length mutants. Our results show that the role of Rap1 in silencing differs between the HM loci and the telomeres and offer insight into the interplay between HM silencing, telomeric silencing, and telomere length regulation. These findings suggest a model in which competition and multiple recruitment events modulate silencing and telomere length regulation.
Asunto(s)
Mutación , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Unión a Telómeros/química , Proteínas de Unión a Telómeros/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Proteínas Portadoras/metabolismo , Mapeo Cromosómico , Cromosomas Fúngicos , Cristalografía por Rayos X , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Complejo Shelterina , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Telómero , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/aislamiento & purificación , Factores de Transcripción/genética , Factores de Transcripción/aislamiento & purificación , Técnicas del Sistema de Dos HíbridosRESUMEN
While most Solanaceae genera (e.g.Solanum, Nicotiana) possess Arabidopsis-type telomeres of (TTTAGGG)n maintained by telomerase, the genera Cestrum, Vestia and Sessea (Cestrum group) lack these telomeres. Here we show that in the Cestrum-group the activity of telomerase has been lost. Nevertheless, proteins binding the single-stranded G-rich strand of the Arabidopsis-type and related human-type (TTAGGG)n telomeric sequences are present in nuclear extracts of both Nicotiana and Cestrum species. These proteins may have a role in telomere function or other cellular activities. In addition to characterizing DNA binding specificity and molecular weights of these proteins, we searched in both N. tabacum (tobacco) and C. parqui for the presence of POT1-like proteins, involved in telomere capping and telomerase regulation. Analysis of POT1-like proteins available on public databases and cloned by us from C. parqui, revealed the N-terminal OB folds typical for this protein family and a novel, plant-specific conserved C-terminal OB-fold domain (CTOB). We propose that CTOB is involved in protein-protein interactions.
Asunto(s)
Cestrum/genética , Nicotiana/genética , Solanaceae/genética , Telomerasa/genética , Telomerasa/metabolismo , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo , Telómero/genética , Secuencia de Aminoácidos , Cestrum/enzimología , Secuencia Conservada , Electroforesis en Gel de Poliacrilamida , Ensayo de Cambio de Movilidad Electroforética/métodos , Amplificación de Genes , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Solanaceae/enzimología , Proteínas de Unión a Telómeros/aislamiento & purificación , Nicotiana/enzimologíaRESUMEN
The integrity and proper functioning of telomeres require association of telomeric DNA sequences with specific binding proteins. We have characterized PLP-1, a PURa homolog encoded by F45E4.2, which we previously identified as a candidate double stranded telomere binding protein, by affinity chromatography followed by mass spectrometry. PLP-1 bound double-stranded telomeric DNA in vitro as shown by competition assays. Core binding was provided by the third and fourth nucleotides of the TTAGGC telomeric repeat. This is quite different from the binding sequence of CEH-37, another C. elegans telomere binding protein, suggesting that multiple proteins may bind nematode telomeric DNA simultaneously in vivo.
Asunto(s)
Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Animales , Secuencia de Bases , Sitios de Unión , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/aislamiento & purificación , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Portadoras , Ensayo de Cambio de Movilidad Electroforética , Modelos Moleculares , Datos de Secuencia Molecular , Telómero/genética , Telómero/ultraestructura , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/aislamiento & purificaciónRESUMEN
We identified and characterized a human orthologue of Rif1 protein, which in budding yeast interacts in vivo with the major duplex telomeric DNA binding protein Rap1p and negatively regulates telomere length. Depletion of hRif1 by RNA interference in human cancer cells impaired cell growth but had no detectable effect on telomere length, although hRif1 overexpression in S. cerevisiae interfered with telomere length control, in a manner specifically dependent on the presence of yeast Rif1p. No localization of hRif1 on normal human telomeres, or interaction with the human telomeric proteins TRF1, TRF2, or hRap1, was detectable. However, hRif1 efficiently translocated to telomerically located DNA damage foci in response to the synthesis of aberrant telomeres directed by mutant-template telomerase RNA. The hRif1 level rose during late S/G2 but hRif1 was not visible on chromosomes in metaphase and anaphase; however, notably, specifically during early anaphase, hRif1 aligned along a subset of the midzone microtubules between the separating chromosomes. In telophase, hRif1 localized to chromosomes, and in interphase, it was intranuclear. These results define a novel subcellular localization behavior for hRif1 during the cell cycle.
Asunto(s)
Anafase/fisiología , Ciclo Celular/genética , Microtúbulos/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Secuencia de Aminoácidos/genética , Anafase/genética , Secuencia de Bases/genética , Compartimento Celular/genética , Línea Celular Tumoral , Núcleo Celular/genética , Daño del ADN/genética , ADN Complementario/análisis , ADN Complementario/genética , Humanos , Microtúbulos/genética , Datos de Secuencia Molecular , Transporte de Proteínas/genética , ARN/genética , ARN/metabolismo , Interferencia de ARN , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Telomerasa/genética , Telomerasa/metabolismo , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/aislamiento & purificación , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Regulación hacia Arriba/genética , Proteínas de Unión al GTP rap1/genética , Proteínas de Unión al GTP rap1/metabolismoRESUMEN
Telomeres are protective structures at chromosome ends and are crucial for genomic stability. Mammalian TRF1 and TRF2 bind the double-stranded telomeric repeat sequence and in turn are bound by TIN2, TANK1, TANK2, and hRAP1. TRF1 is a negative regulator of telomere length in telomerase-positive cells, whereas TRF2 is important for telomere capping. TIN2 was identified as a TRF1-interacting protein that mediates TRF1 function. We show here that TIN2 also interacts with TRF2 in vitro and in yeast and mammalian cells. TIN2 mutants defective in binding of TRF1 or TRF2 induce a DNA damage response and destabilize TRF1 and TRF2 at telomeres in human cells. Our findings suggest that the functions of TRF1 and TRF2 are linked by TIN2.
Asunto(s)
Proteínas de Unión a Telómeros/metabolismo , Telómero/fisiología , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Línea Celular , Humanos , Unión Proteica , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Telomerasa/metabolismo , Proteínas de Unión a Telómeros/aislamiento & purificación , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismoRESUMEN
The chromosomal ends of Leishmania (Leishmania) amazonensis contain conserved 5'-TTAGGG-3' telomeric repeats. Protein complexes that associate in vitro with these DNA sequences, Leishmania amazonensis G-strand telomeric protein (LaGT1-3), were identified and characterized by electrophoretic mobility shift assays and UV cross-linking using protein fractions purified from S100 and nuclear extracts. The three complexes did not form (a) with double-stranded DNA and the C-rich telomeric strand, (b) in competition assays using specific telomeric DNA oligonucleotides, or (c) after pretreatment with proteinase K. LaGT1 was the most specific and did not bind a Tetrahymena telomeric sequence. All three LaGTs associated with an RNA sequence cognate to the telomeric G-rich strand and a complex similar to LaGT1 is formed with a double-stranded DNA bearing a 3' G-overhang tail. The protein components of LaGT2 and LaGT3 were purified by affinity chromatography and identified, after renaturation, as approximately 35 and approximately 52 kDa bands, respectively. The Asunto(s)
Leishmania/genética
, Proteínas Protozoarias/metabolismo
, Secuencias Repetitivas de Ácidos Nucleicos
, Proteínas de Unión a Telómeros/metabolismo
, Telómero/genética
, Animales
, Composición de Base
, Secuencia de Bases
, Fraccionamiento Celular
, ADN Protozoario/genética
, ADN Protozoario/aislamiento & purificación
, ADN Protozoario/metabolismo
, Humanos
, Leishmania/fisiología
, Sustancias Macromoleculares
, Espectrometría de Masas
, Mapeo Peptídico
, Proteínas Protozoarias/aislamiento & purificación
, Sales (Química)/química
, Proteínas de Unión a Telómeros/aislamiento & purificación
RESUMEN
Telomere maintenance has been implicated in cancer and ageing, and requires cooperation between a multitude of telomeric factors, including telomerase, TRF1, TRF2, RAP1, TIN2, Tankyrase, PINX1 and POT1 (refs 1-12). POT1 belongs to a family of oligonucleotide-binding (OB)-fold-containing proteins that include Oxytricha nova TEBP, Cdc13, and spPot1, which specifically recognize telomeric single-stranded DNA (ssDNA). In human cells, the loading of POT1 to telomeric ssDNA controls telomerase-mediated telomere elongation. Surprisingly, a human POT1 mutant lacking an OB fold is still recruited to telomeres. However, the exact mechanism by which this recruitment occurs remains unclear. Here we identify a novel telomere protein, PTOP, which interacts with both POT1 and TIN2. PTOP binds to the carboxyl terminus of POT1 and recruits it to telomeres. Inhibition of PTOP by RNA interference (RNAi) or disruption of the PTOP-POT1 interaction hindered the localization of POT1 to telomeres. Furthermore, expression of the respective interaction domains on PTOP and POT1 alone extended telomere length in human cells. Therefore, PTOP heterodimerizes with POT1 and regulates POT1 telomeric recruitment and telomere length.
Asunto(s)
Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Transporte Activo de Núcleo Celular/genética , Senescencia Celular/genética , ADN Complementario/análisis , ADN Complementario/genética , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Dimerización , Células HeLa , Humanos , Datos de Secuencia Molecular , Mutación/genética , Unión Proteica/genética , Estructura Terciaria de Proteína/genética , Transporte de Proteínas/genética , Interferencia de ARN/fisiología , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Complejo Shelterina , Telómero/genética , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/aislamiento & purificaciónRESUMEN
To study the function of RAP1, a Candida albicans gene (CaRAP1) that shows sequence similarity to RAP1 of Saccharomyces cerevisiae was isolated by colony hybridization. DNA sequencing predicted an open reading frame of 429 amino acids with an overall identity of 24% to the ScRap1p. The DNA binding domain (DBD) was highly conserved, and EMSA using a GST-CaRap1p fusion protein confirmed its binding ability to the RPG-box of S. cerevisiae ENO1. In contrast, the N-terminus was less conserved and a moderate homology was observed in the BRCT domain. Interestingly, CaRap1p did not contain the C-terminal activation/repression region of ScRap1p.
Asunto(s)
Candida albicans/genética , Proteínas de Unión al ADN/genética , Proteínas Fúngicas , Factores de Elongación de Péptidos/genética , Proteínas de Unión a Telómeros/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Secuencia de Bases , Candida albicans/metabolismo , Clonación Molecular , Proteínas de Unión al ADN/aislamiento & purificación , Proteínas de Unión al ADN/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Escherichia coli/genética , Datos de Secuencia Molecular , Factores de Elongación de Péptidos/aislamiento & purificación , Factores de Elongación de Péptidos/metabolismo , Multimerización de Proteína , ARN de Hongos/química , ARN de Hongos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Complejo Shelterina , Proteínas de Unión a Telómeros/aislamiento & purificación , Proteínas de Unión a Telómeros/metabolismo , Factores de Transcripción/aislamiento & purificación , Factores de Transcripción/metabolismo , Transcripción GenéticaRESUMEN
Many protein components of telomeres, the multifunctional DNA-protein complexes at the ends of eukaryotic chromosomes, have been identified in diverse species ranging from yeast to humans. In Caenorhabditis elegans, CEH-37 has been identified by a yeast one hybrid screen to be a double-stranded telomere-binding protein. However, the role of CEH-37 in telomere function is unclear because a deletion mutation in this gene does not cause severe telomere defects. This observation raises the possibility of the presence of genetic redundancy. To identify additional double-stranded telomere-binding proteins in C. elegans, we used a different approach, namely, a proteomic approach. Affinity chromatography followed by Finnigan LCQ ion trap mass spectrometer analysis allowed us to identify several candidate proteins. We further characterized one of these, HMG-5, which is encoded by F45E4.9. HMG-5 bound to double-stranded telomere in vitro as shown by competition assays. At least two telomeric DNA repeats were needed for this binding. HMG-5 was expressed in the nuclei of the oocytes and all embryonic cells, but not in the hatched larvae or adults. HMG-5 mainly localized to the chromosomal ends, indicating that HMG-5 also binds to telomeres in vivo. These observations suggest that HMG-5 may participate, together with CEH-37, in early embryogenesis by acting at the telomeres.