RESUMEN
Telomeres, the protective structures at the ends of chromosomes, are crucial for maintaining cellular longevity and genome stability. Their proper function depends on tightly regulated processes of replication, elongation, and damage response. The shelterin complex, especially Telomere Repeat-binding Factor 1 (TRF1) and TRF2, plays a pivotal role in telomere protection and has emerged as a potential anti-cancer target for drug discovery. These proteins bind to the repetitive telomeric DNA motif TTAGGG, facilitating the formation of protective structures and recruitment of other telomeric proteins. Structural methods and advanced imaging techniques have provided insights into telomeric protein-DNA interactions, but probing the dynamic processes requires single-molecule approaches. Tools like magnetic tweezers, optical tweezers, and atomic force microscopy (AFM) have been employed to study telomeric protein-DNA interactions, revealing important details such as TRF2-dependent DNA distortion and telomerase catalysis. However, the preparation of single-molecule constructs with telomeric repetitive motifs continues to be a challenging task, potentially limiting the breadth of studies utilizing single-molecule mechanical methods. To address this, we developed a method to study interactions using full-length human telomeric DNA with magnetic tweezers. This protocol describes how to express and purify TRF2, prepare telomeric DNA, set up single-molecule mechanical assays, and analyze data. This detailed guide will benefit researchers in telomere biology and telomere-targeted drug discovery.
Asunto(s)
ADN , Telómero , ADN/química , ADN/metabolismo , ADN/genética , Telómero/metabolismo , Telómero/química , Humanos , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/química , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Proteínas de Unión a Telómeros/metabolismo , Proteínas de Unión a Telómeros/química , Proteínas de Unión a Telómeros/genética , Imagen Individual de Molécula/métodos , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Proteína 1 de Unión a Repeticiones Teloméricas/química , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Pinzas ÓpticasRESUMEN
Shelterin serves critical roles in suppressing superfluous DNA damage repair pathways on telomeres. The junction between double-stranded telomeric tracts (dsTEL) and single-stranded telomeric overhang (ssTEL) is the most accessible region of the telomeric DNA. The shelterin complex contains dsTEL and ssTEL binding proteins and can protect this junction by bridging the ssTEL and dsTEL tracts. To test this possibility, we monitored shelterin binding to telomeric DNA substrates with varying ssTEL and dsTEL lengths and quantified its impact on telomere accessibility using single-molecule fluorescence microscopy methods in vitro. We identified the first dsTEL repeat nearest the junction as the preferred binding site for creating the shelterin bridge. Shelterin requires at least two ssTEL repeats, while the POT1 subunit of shelterin that binds to ssTEL requires longer ssTEL tracts for stable binding to telomeres and effective protection of the junction region. The ability of POT1 to protect the junction is significantly enhanced by the 5'-phosphate at the junction. Collectively, our results show that shelterin enhances the binding stability of POT1 to ssTEL and provides more effective protection compared with POT1 alone by bridging single- and double-stranded telomeric tracts.
Asunto(s)
Complejo Shelterina , Proteínas de Unión a Telómeros , Telómero , Telómero/química , Telómero/metabolismo , Complejo Shelterina/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Proteínas de Unión a Telómeros/química , Humanos , ADN/química , ADN/metabolismo , Sitios de Unión , Unión ProteicaRESUMEN
The six-subunit shelterin complex binds to mammalian telomeres and protects them from triggering multiple DNA damage response pathways. The loss of this protective function by shelterin can have detrimental effects on cells. In this review, we first discuss structural studies of shelterin, detailing the contributions of each subunit and inter-subunit interactions in protecting chromosome ends. We then examine the influence of telomeric chromatin dynamics on the function of shelterin at telomeres. These studies provide valuable insights and underscore the challenges that future research must tackle to attain high-resolution structures of shelterin.
Asunto(s)
Cromatina , Complejo Shelterina , Proteínas de Unión a Telómeros , Telómero , Telómero/metabolismo , Cromatina/metabolismo , Cromatina/química , Humanos , Complejo Shelterina/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Proteínas de Unión a Telómeros/química , Animales , Daño del ADN , Unión ProteicaRESUMEN
Telomeric repeat-binding factor 1 (Tbf1) has a similar architecture as the TRF family of telomeric proteins and plays important roles in both telomere homeostasis and ribosome regulation. However, the molecular basis of why Tbf1 has such different functions compared to other TRFs remains unclear. Here, we present the crystal structures of the TRF homology (TRFH) and Myb-L domains from Schizosaccharomyces pombe Tbf1 (spTbf1). TRFH-mediated homodimerization is essential for spTbf1 stability. Importantly, spTbf1TRFH lacks the conserved docking motif for interactions with telomeric proteins, explaining why spTbf1 does not participate in the assembly of the shelterin complex. Finally, structural and biochemical analyses demonstrate that TRFH and Myb-L domains as well as the loop region of spTbf1 coordinate to recognize S. pombe telomeric double-stranded DNA. Overall, our findings provide structural and functional insights into how fungi Tbf1 acts as an atypical telomeric repeat-binding factor, which helps to understand the evolution of TRFH-containing telomeric proteins.
Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Unión a Telómeros , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Proteínas de Unión al ADN , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/metabolismo , Schizosaccharomyces/química , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Telómero/metabolismo , Telómero/química , Proteínas de Unión a Telómeros/metabolismo , Proteínas de Unión a Telómeros/química , Factores de TranscripciónRESUMEN
Mammalian telomeres have evolved safeguards to prevent their recognition as DNA double-stranded breaks by suppressing the activation of various DNA sensing and repair proteins. We have shown that the telomere-binding proteins TRF2 and RAP1 cooperate to prevent telomeres from undergoing aberrant homology-directed recombination by mediating t-loop protection. Our recent findings also suggest that mammalian telomere-binding proteins interact with the nuclear envelope to maintain chromosome stability. RAP1 interacts with nuclear lamins through KU70/KU80, and disruption of RAP1 and TRF2 function result in nuclear envelope rupture, promoting telomere-telomere recombination to form structures termed ultrabright telomeres. In this review, we discuss the importance of the interactions between shelterin components and the nuclear envelope to maintain telomere homeostasis and genome stability.
Asunto(s)
Membrana Nuclear , Telómero , Animales , Humanos , Membrana Nuclear/metabolismo , Telómero/genética , Telómero/metabolismo , Proteínas de Unión a Telómeros/química , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo , ADN/metabolismo , Inestabilidad Genómica , Mamíferos/genéticaRESUMEN
Protection of telomeres 1 (POT1) is the 3' single-stranded overhang-binding telomeric protein that prevents an ataxia telangiectasia and Rad3-related (ATR) DNA damage response (DDR) at chromosome ends. What precludes the DDR machinery from accessing the telomeric double-stranded-single-stranded junction is unknown. We demonstrate that human POT1 binds this junction by recognizing the phosphorylated 5' end of the chromosome. High-resolution crystallographic structures reveal that the junction is capped by POT1 through a "POT-hole" surface, the mutation of which compromises junction protection in vitro and telomeric 5'-end definition and DDR suppression in human cells. Whereas both mouse POT1 paralogs bind the single-stranded overhang, POT1a, not POT1b, contains a POT-hole and binds the junction, which explains POT1a's sufficiency for end protection. Our study shifts the paradigm for DDR suppression at telomeres by highlighting the importance of protecting the double-stranded-single-stranded junction.
Asunto(s)
ADN , Complejo Shelterina , Proteínas de Unión a Telómeros , Telómero , Animales , Humanos , Ratones , Cristalografía , ADN/química , ADN/metabolismo , Mutación , Complejo Shelterina/química , Complejo Shelterina/genética , Complejo Shelterina/metabolismo , Telómero/química , Telómero/metabolismo , Proteínas de Unión a Telómeros/química , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismoRESUMEN
Aging is characterized by functional decline occurring alongside changes to several hallmarks of aging. One of the hallmarks includes attrition of repeated DNA sequences found at the ends of chromosomes called telomeres. While telomere attrition is linked to morbidity and mortality, whether and how it causally contributes to lifelong rates of functional decline is unclear. In this review, we propose the shelterin-telomere hypothesis of life history, in which telomere-binding shelterin proteins translate telomere attrition into a range of physiological outcomes, the extent of which may be modulated by currently understudied variation in shelterin protein levels. Shelterin proteins may expand the breadth and timing of consequences of telomere attrition, e.g., by translating early life adversity into acceleration of the aging process. We consider how the pleiotropic roles of shelterin proteins provide novel insights into natural variation in physiology, life history, and lifespan. We highlight key open questions that encourage the integrative, organismal study of shelterin proteins that enhances our understanding of the contribution of the telomere system to aging.
Asunto(s)
Experiencias Adversas de la Infancia , Humanos , Complejo Shelterina , Telómero/metabolismo , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/química , Proteínas de Unión a Telómeros/metabolismo , Proteínas/metabolismo , Envejecimiento/genéticaRESUMEN
Telomeres and other single-stranded regions of the genome require specialized management to maintain stability and for proper progression of DNA metabolism pathways. Human Replication Protein A and CTC1-STN1-TEN1 are structurally similar heterotrimeric protein complexes that have essential ssDNA-binding roles in DNA replication, repair, and telomeres. Yeast and ciliates have related ssDNA-binding proteins with strikingly conserved structural features to these human heterotrimeric protein complexes. Recent breakthrough structures have extended our understanding of these commonalities by illuminating a common mechanism used by these proteins to act as processivity factors for their partner polymerases through their ability to manage ssDNA.
Asunto(s)
Proteínas de Unión a Telómeros , Telómero , Humanos , Proteínas de Unión a Telómeros/química , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Replicación del ADN , ADN de Cadena Simple , Nucleotidiltransferasas/genética , Saccharomyces cerevisiae/metabolismo , Unión ProteicaRESUMEN
In the majority of human cancer cells, cellular immortalization depends on the maintenance of telomere length by telomerase. An essential step required for telomerase function is its recruitment to telomeres, which is regulated by the interaction of the telomere protein, TPP1, with the telomerase essential N-terminal (TEN) domain of the human telomerase reverse transcriptase, hTERT. We previously reported that the hTERT 'insertion in fingers domain' (IFD) recruits telomerase to telomeres in a TPP1-dependent manner. Here, we use hTERT truncations and the IFD domain containing mutations in conserved residues or premature aging disease-associated mutations to map the interactions between the IFD and TPP1. We find that the hTERT-IFD domain can interact with TPP1. However, deletion of the IFD motif in hTERT lacking the N-terminus and the C-terminal extension does not abolish interaction with TPP1, suggesting the IFD is not essential for hTERT interaction with TPP1. Several conserved residues in the central IFD-TRAP region that we reported regulate telomerase recruitment to telomeres, and cell immortalization compromise interaction of the hTERT-IFD domain with TPP1 when mutated. Using a similar approach, we find that the IFD domain interacts with the TEN domain but is not essential for intramolecular hTERT interactions with the TEN domain. IFD-TEN interactions are not disrupted by multiple amino acid changes in the IFD or TEN, thus highlighting a complex regulation of IFD-TEN interactions as suggested by recent cryo-EM structures of human telomerase.
Asunto(s)
Complejo Shelterina , Telomerasa , Proteínas de Unión a Telómeros , Humanos , Línea Celular , Mutación , Telomerasa/química , Telomerasa/metabolismo , Telómero/química , Telómero/metabolismo , Proteínas de Unión a Telómeros/química , Proteínas de Unión a Telómeros/metabolismo , Complejo Shelterina/química , Complejo Shelterina/metabolismoRESUMEN
The G-rich single-stranded telomere overhang can self-fold into G-quadruplex (G4) structure both in vivo and in vitro. In somatic cells, telomeres shorten progressively due to the end-replication. In stem cells, however, telomeres are replenished by a special enzyme, telomerase which synthesizes single-stranded telomere overhang. The active extension by the telomerase releases G-rich overhang segmentally in 5' to 3' direction as the overhang folds into G4 structure after successive elongation. To replicate such vectorial G4 folding process, we employed a superhelicase, Rep-X to release the G-rich sequence gradually. Using single-molecule assay we demonstrated that the folded conformation achieved by the vectorial folding is inherently different from the post-folding where the entire overhang is allowed to fold at once. In addition, the vectorially folded overhangs are less stable and more accessible to a complementary C-rich strand and the telomere binding protein, POT1 compared to the post-folded state. The higher accessibility may have implications for the facile loading of shelterin proteins after DNA replication.
Asunto(s)
G-Cuádruplex , Telomerasa , ADN Helicasas/metabolismo , Complejo Shelterina , Telomerasa/metabolismo , Telómero/genética , Telómero/metabolismo , Proteínas de Unión a Telómeros/química , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismoRESUMEN
Telomeres are nucleoprotein complexes that protect the ends of chromosomes and are essential for chromosome stability in Eukaryotes. In cells, individual telomeres form distinct globules of finite size that appear to be smaller than expected for bare DNA. Moreover, telomeres can cluster together, form telomere-induced-foci or co-localize with promyelocytic leukemia (PML) nuclear bodies. The physical basis for collapse of individual telomeres and coalescence of multiple ones remains unclear, as does the relationship between these two phenomena. By combining single-molecule force spectroscopy measurements, optical microscopy, turbidity assays, and simulations, we show that the telomere scaffolding protein TRF2 can condense individual DNA chains and drives coalescence of multiple DNA molecules, leading to phase separation and the formation of liquid-like droplets. Addition of the TRF2 binding protein hRap1 modulates phase boundaries and tunes the specificity of solution demixing while simultaneously altering the degree of DNA compaction. Our results suggest that the condensation of single telomeres and formation of biomolecular condensates containing multiple telomeres are two different outcomes driven by the same set of molecular interactions. Moreover, binding partners, such as other telomere components, can alter those interactions to promote single-chain DNA compaction over multiple-chain phase separation.
Asunto(s)
ADN , Complejo Shelterina , Proteínas de Unión a Telómeros , Proteína 2 de Unión a Repeticiones Teloméricas , ADN/química , Humanos , Conformación de Ácido Nucleico , Dominios Proteicos , Complejo Shelterina/química , Proteínas de Unión a Telómeros/química , Proteína 2 de Unión a Repeticiones Teloméricas/químicaRESUMEN
Telomerase maintains genome stability by extending the 3' telomeric repeats at eukaryotic chromosome ends, thereby counterbalancing progressive loss caused by incomplete genome replication. In mammals, telomerase recruitment to telomeres is mediated by TPP1, which assembles as a heterodimer with POT1. We report structures of DNA-bound telomerase in complex with TPP1 and with TPP1-POT1 at 3.2- and 3.9-angstrom resolution, respectively. Our structures define interactions between telomerase and TPP1-POT1 that are crucial for telomerase recruitment to telomeres. The presence of TPP1-POT1 stabilizes the DNA, revealing an unexpected path by which DNA exits the telomerase active site and a DNA anchor site on telomerase that is important for telomerase processivity. Our findings rationalize extensive prior genetic and biochemical findings and provide a framework for future mechanistic work on telomerase regulation.
Asunto(s)
ADN/química , Complejo Shelterina/química , Telomerasa/química , Proteínas de Unión a Telómeros/química , Telómero/metabolismo , Secuencias de Aminoácidos , Dominio Catalítico , Microscopía por Crioelectrón , ADN/metabolismo , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Complejo Shelterina/metabolismo , Proteínas de Unión a Telómeros/metabolismoRESUMEN
Telomeres are protein-DNA complexes that protect the ends of linear eukaryotic chromosomes. Mammalian telomeric DNA consists of 5'-(TTAGGG)n-3' double-stranded repeats, followed by up to several hundred bases of a 3' single-stranded G-rich overhang. The G-rich overhang is bound by the shelterin component POT1 which interacts with TPP1, the component involved in telomerase recruitment. A previously published crystal structure of the POT1 N-terminal half bound to the high affinity telomeric ligand 5'-TTAGGGTTAG-3' showed that the first six nucleotides, TTAGGG, are bound by the OB1 fold, while the adjacent OB2 binds the last four, TTAG. Here, we report two cryo-EM structures of full-length POT1 bound by the POT1-binding domain of TPP1. The structures differ in the relative orientation of the POT1 OB1 and OB2, suggesting that these two DNA-binding OB folds take up alternative conformations. Supporting DNA binding studies using telomeric ligands in which the OB1 and OB2 binding sites were spaced apart, show that POT1 binds with similar affinities to spaced or contiguous binding sites, suggesting plasticity in DNA binding and a role for the alternative conformations observed. A likely explanation is that the structural flexibility of POT1 enhances binding to the tandemly arranged telomeric repeats and hence increases telomere protection.
Asunto(s)
Microscopía por Crioelectrón/métodos , ADN de Cadena Simple/genética , Complejo Shelterina/química , Proteínas de Unión a Telómeros/química , Telómero/genética , Sitios de Unión , ADN de Cadena Simple/metabolismo , Humanos , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , Complejo Shelterina/genética , Complejo Shelterina/metabolismo , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismoRESUMEN
The meiosis-specific telomere-binding protein TERB1 anchors telomeres to the nuclear envelope and drives chromosome movements for the pairing of homologous chromosomes. TERB1 has an MYB-like DNA-binding (MYB) domain, which is a hallmark of telomeric DNA-binding proteins. Here, we demonstrate that the TERB1 MYB domain has lost its canonical DNA-binding activity. The analysis of Terb1 point mutant mice expressing TERB1 lacking its MYB domain showed that the MYB domain is dispensable for telomere localization of TERB1 and the downstream TERB2-MAJIN complex, the promotion of homologous pairing, and even fertility. Instead, the TERB1 MYB domain regulates the enrichment of cohesin and promotes the remodeling of axial elements in the early-to-late pachytene transition, which suppresses telomere erosion. Considering its conservation across metazoan phyla, the TERB1 MYB domain is likely to be important for the maintenance of telomeric DNA and thus for genomic integrity by suppressing meiotic telomere erosion over long evolutionary timescales.
Asunto(s)
Profase Meiótica I/fisiología , Proteínas de Unión a Telómeros/química , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Animales , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Dominios ProteicosRESUMEN
Phosphatidylinositol 3-kinase-related protein kinases (PIKKs) play critical roles in various metabolic pathways related to cell proliferation and survival. The TELO2-TTI1-TTI2 (TTT) complex has been proposed to recognize newly synthesized PIKKs and to deliver them to the R2TP complex (RUVBL1-RUVBL2-RPAP3-PIH1D1) and the heat shock protein 90 chaperone, thereby supporting their folding and assembly. Here, we determined the cryo-EM structure of the TTT complex at an average resolution of 4.2 Å. We describe the full-length structures of TTI1 and TELO2, and a partial structure of TTI2. All three proteins form elongated helical repeat structures. TTI1 provides a platform on which TELO2 and TTI2 bind to its central region and C-terminal end, respectively. The TELO2 C-terminal domain (CTD) is required for the interaction with TTI1 and recruitment of Ataxia-telangiectasia mutated (ATM). The N- and C-terminal segments of TTI1 recognize the FRAP-ATM-TRRAP (FAT) domain and the N-terminal HEAT repeats of ATM, respectively. The TELO2 CTD and TTI1 N- and C-terminal segments are required for cell survival in response to ionizing radiation.
Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Unión a Telómeros/química , Proteínas de Unión a Telómeros/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Proteínas Adaptadoras Transductoras de Señales , Proteínas Reguladoras de la Apoptosis , Proteínas Portadoras , Microscopía por Crioelectrón , ADN Helicasas , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Proteínas Nucleares , Fosfatidilinositol 3-Quinasa/química , Fosfatidilinositol 3-Quinasa/genética , Fosfatidilinositol 3-Quinasa/metabolismo , Conformación Proteica , Pliegue de Proteína , Estabilidad Proteica , Proteínas de Saccharomyces cerevisiae , Proteínas de Unión a Telómeros/genéticaRESUMEN
DNA end protection is fundamental for the long-term preservation of the genome. In vertebrates the Shelterin protein complex protects telomeric DNA ends, thereby contributing to the maintenance of genome integrity. In the Drosophila genus, this function is thought to be performed by the Terminin complex, an assembly of fast-evolving subunits. Considering that DNA end protection is fundamental for successful genome replication, the accelerated evolution of Terminin subunits is counterintuitive, as conservation is supposed to maintain the assembly and concerted function of the interacting partners. This problem extends over Drosophila telomere biology and provides insight into the evolution of protein assemblies. In order to learn more about the mechanistic details of this phenomenon we have investigated the intra- and interspecies assemblies of Verrocchio and Modigliani, two Terminin subunits using in vitro assays. Based on our results and on homology-based three-dimensional models for Ver and Moi, we conclude that both proteins contain Ob-fold and contribute to the ssDNA binding of the Terminin complex. We propose that the preservation of Ver function is achieved by conservation of specific amino acids responsible for folding or localized in interacting surfaces. We also provide here the first evidence on Moi DNA binding.
Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , ADN de Cadena Simple/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Proteínas de Unión a Telómeros/metabolismo , Animales , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Replicación del ADN , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Evolución Molecular , Modelos Moleculares , Mutación , Conformación Proteica , Homología Estructural de Proteína , Proteínas de Unión a Telómeros/química , Proteínas de Unión a Telómeros/genéticaRESUMEN
Protecting telomere from the DNA damage response is essential to avoid the entry into cellular senescence and organismal aging. The progressive telomere DNA shortening in dividing somatic cells, programmed during development, leads to critically short telomeres that trigger replicative senescence and thereby contribute to aging. In several organisms, including mammals, telomeres are protected by a protein complex named Shelterin that counteract at various levels the DNA damage response at chromosome ends through the specific function of each of its subunits. The changes in Shelterin structure and function during development and aging is thus an intense area of research. Here, we review our knowledge on the existence of several Shelterin subcomplexes and the functional independence between them. This leads us to discuss the possibility that the multifunctionality of the Shelterin complex is determined by the formation of different subcomplexes whose composition may change during aging.
Asunto(s)
Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Animales , ADN/metabolismo , Replicación del ADN , Humanos , Modelos Moleculares , Estructura Cuaternaria de Proteína , Proteínas de Unión a Telómeros/químicaRESUMEN
AIM: Coats plus syndrome (CP) is a rare autosomal recessive disorder, characterised by retinal telangiectasia exudates (Coats disease), leukodystrophy, distinctive intracranial calcification and cysts, as well as extra-neurological features including abnormal vasculature of the gastrointestinal tract, portal hypertension and osteopenia with a tendency to fractures. CP most frequently occurs due to loss-of-function mutations in CTC1. The encoded protein CTC1 constitutes part of the CST (CTC1-STN1-TEN1) complex, and three patients have been described with CP due to biallelic mutations in STN1. Together with the identification of homozygosity for a specific loss-of-function mutation in POT1 in a sibling pair, these observations highlight a defect in the maintenance of telomere integrity as the cause of CP, although the precise mechanism leading to the micro-vasculopathy seen at a pathological level remains unclear. Here, we present the investigation of a fourth child who presented to us with retinal exudates, intracranial calcifications and developmental delay, in keeping with a diagnosis of CP, and later went on to develop pancytopenia and gastrointestinal bleeding. Genome sequencing revealed compound heterozygous variants in STN1 as the likely genetic cause of CP in this present case. METHODS: We assessed the phenotype to be CP and undertook targeted sequencing. RESULTS: Whilst sequencing of CTC1 and POT1 was normal, we identified novel compound heterozygous variants in STN1 (previous gene symbol OBFC1): one loss-of-function--c.894dup (p.(Asp299Argfs*58)); and one missense--c.707T>C (p.(Leu236Pro)). CONCLUSION: Given the clinical phenotype and identified variants we suggest that this is only the fourth patient reported to date with CP due to mutations in STN1.
Asunto(s)
Ataxia/diagnóstico , Ataxia/genética , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Calcinosis/diagnóstico , Calcinosis/genética , Quistes del Sistema Nervioso Central/diagnóstico , Quistes del Sistema Nervioso Central/genética , Predisposición Genética a la Enfermedad , Heterocigoto , Leucoencefalopatías/diagnóstico , Leucoencefalopatías/genética , Espasticidad Muscular/diagnóstico , Espasticidad Muscular/genética , Mutación , Enfermedades de la Retina/diagnóstico , Enfermedades de la Retina/genética , Convulsiones/diagnóstico , Convulsiones/genética , Proteínas de Unión a Telómeros/genética , Alelos , Niño , Análisis Mutacional de ADN , Estudios de Asociación Genética , Humanos , Angiografía por Resonancia Magnética , Masculino , Modelos Moleculares , Neuroimagen , Fenotipo , Conformación Proteica , Relación Estructura-Actividad , Proteínas de Unión a Telómeros/química , Tomografía Computarizada por Rayos XRESUMEN
Specific proteins present at telomeres ensure chromosome end stability, in large part through unknown mechanisms. In this work, we address how the Saccharomyces cerevisiae ORC-related Rif2 protein protects telomere. We show that the small N-terminal Rif2 BAT motif (Blocks Addition of Telomeres) previously known to limit telomere elongation and Tel1 activity is also sufficient to block NHEJ and 5' end resection. The BAT motif inhibits the ability of the Mre11-Rad50-Xrs2 complex (MRX) to capture DNA ends. It acts through a direct contact with Rad50 ATP-binding Head domains. Through genetic approaches guided by structural predictions, we identify residues at the surface of Rad50 that are essential for the interaction with Rif2 and its inhibition. Finally, a docking model predicts how BAT binding could specifically destabilise the DNA-bound state of the MRX complex. From these results, we propose that when an MRX complex approaches a telomere, the Rif2 BAT motif binds MRX Head in its ATP-bound resting state. This antagonises MRX transition to its DNA-bound state, and favours a rapid return to the ATP-bound state. Unable to stably capture the telomere end, the MRX complex cannot proceed with the subsequent steps of NHEJ, Tel1-activation and 5' resection.