Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.307
Filtrar
1.
Mol Biol Cell ; 35(2): ar21, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38088875

RESUMEN

In vertebrates, two distinct condensin complexes, condensin I and condensin II, cooperate to drive mitotic chromosome assembly. It remains largely unknown how the two complexes differentially contribute to this process at a mechanistic level. We have previously dissected the role of individual subunits of condensin II by introducing recombinant complexes into Xenopus egg extracts. Here we extend these efforts by introducing a modified functional assay using extracts depleted of topoisomerase IIα (topo IIα), which allows us to further elucidate the functional similarities and differences between condensin I and condensin II. The intrinsically disordered C-terminal region of the CAP-D3 subunit (the D3 C-tail) is a major target of Cdk1 phosphorylation, and phosphorylation-deficient mutations in this region impair condensin II functions. We also identify a unique helical structure in CAP-D3 (the D3 HEAT docker) that is predicted to directly interact with CAP-G2. Deletion of the D3 HEAT docker, along with the D3 C-tail, enhances the ability of condensin II to assemble mitotic chromosomes. Taken together, we propose a self-suppression mechanism unique to condensin II that is released by mitotic phosphorylation. Evolutionary implications of our findings are also discussed.


Asunto(s)
Cromosomas , Proteínas de Unión al ADN , Animales , Proteínas de Unión al ADN/fisiología , Complejos Multiproteicos/genética , Adenosina Trifosfatasas/genética , Mitosis
2.
Int J Mol Sci ; 24(8)2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37108091

RESUMEN

Living organisms on the surface biosphere are periodically yet consistently exposed to light. The adaptive or protective evolution caused by this source of energy has led to the biological systems present in a large variety of organisms, including fungi. Among fungi, yeasts have developed essential protective responses against the deleterious effects of light. Stress generated by light exposure is propagated through the synthesis of hydrogen peroxide and mediated by regulatory factors that are also involved in the response to other stressors. These have included Msn2/4, Crz1, Yap1, and Mga2, thus suggesting that light stress is a common factor in the yeast environmental response.


Asunto(s)
Proteínas de Unión al ADN , Proteínas de Saccharomyces cerevisiae , Proteínas de Unión al ADN/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Factores de Transcripción/fisiología , Saccharomyces cerevisiae/fisiología , Levaduras , Proteínas de la Membrana
3.
Nat Commun ; 14(1): 166, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36631525

RESUMEN

The heptad repeats of the C-terminal domain (CTD) of RNA polymerase II (Pol II) are extensively modified throughout the transcription cycle. The CTD coordinates RNA synthesis and processing by recruiting transcription regulators as well as RNA capping, splicing and 3'end processing factors. The SPOC domain of PHF3 was recently identified as a CTD reader domain specifically binding to phosphorylated serine-2 residues in adjacent CTD repeats. Here, we establish the SPOC domains of the human proteins DIDO, SHARP (also known as SPEN) and RBM15 as phosphoserine binding modules that can act as CTD readers but also recognize other phosphorylated binding partners. We report the crystal structure of SHARP SPOC in complex with CTD and identify the molecular determinants for its specific binding to phosphorylated serine-5. PHF3 and DIDO SPOC domains preferentially interact with the Pol II elongation complex, while RBM15 and SHARP SPOC domains engage with writers and readers of m6A, the most abundant RNA modification. RBM15 positively regulates m6A levels and mRNA stability in a SPOC-dependent manner, while SHARP SPOC is essential for its localization to inactive X-chromosomes. Our findings suggest that the SPOC domain is a major interface between the transcription machinery and regulators of transcription and co-transcriptional processes.


Asunto(s)
Proteínas de Unión al ADN , Fosfoserina , Dominios Proteicos , Proteínas de Unión al ARN , Transcripción Genética , Humanos , Fosforilación , Fosfoserina/química , Fosfoserina/metabolismo , ARN Polimerasa II/metabolismo , Procesamiento Postranscripcional del ARN , Empalme del ARN , Transcripción Genética/fisiología , Dominios Proteicos/fisiología , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/fisiología , Proteínas de Unión al ARN/química
4.
Proc Natl Acad Sci U S A ; 119(37): e2201513119, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36067320

RESUMEN

Most animal species display dimorphic sexual behaviors and male-biased aggressiveness. Current models have focused on the male-specific product from the fruitless (fruM) gene, which controls male courtship and male-specific aggression patterns in fruit flies, and describe a male-specific mechanism underlying sexually dimorphic behaviors. Here we show that the doublesex (dsx) gene, which expresses male-specific DsxM and female-specific DsxF transcription factors, functions in the nervous system to control both male and female sexual and aggressive behaviors. We find that Dsx is not only required in central brain neurons for male and female sexual behaviors, but also functions in approximately eight pairs of male-specific neurons to promote male aggressiveness and approximately two pairs of female-specific neurons to inhibit female aggressiveness. DsxF knockdown females fight more frequently, even with males. Our findings reveal crucial roles of dsx, which is broadly conserved from worms to humans, in a small number of neurons in both sexes to establish dimorphic sexual and aggressive behaviors.


Asunto(s)
Agresión , Cortejo , Proteínas de Unión al ADN , Proteínas de Drosophila , Drosophila melanogaster , Conducta Sexual Animal , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Femenino , Masculino
5.
Mol Cancer ; 21(1): 89, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35354467

RESUMEN

BACKGROUND: Frequent truncation mutations of the histone lysine N-methyltransferase KMT2C have been detected by whole exome sequencing studies in various cancers, including malignancies of the prostate. However, the biological consequences of these alterations in prostate cancer have not yet been elucidated. METHODS: To investigate the functional effects of these mutations, we deleted the C-terminal catalytic core motif of Kmt2c specifically in mouse prostate epithelium. We analysed the effect of Kmt2c SET domain deletion in a Pten-deficient PCa mouse model in vivo and of truncation mutations of KMT2C in a large number of prostate cancer patients. RESULTS: We show here for the first time that impaired KMT2C methyltransferase activity drives proliferation and PIN formation and, when combined with loss of the tumour suppressor PTEN, triggers loss of senescence, metastatic dissemination and dramatically reduces life expectancy. In Kmt2c-mutated tumours we show enrichment of proliferative MYC gene signatures and loss of expression of the cell cycle repressor p16INK4A. In addition, we observe a striking reduction in disease-free survival of patients with KMT2C-mutated prostate cancer. CONCLUSIONS: We identified truncating events of KMT2C as drivers of proliferation and PIN formation. Loss of PTEN and KMT2C in prostate cancer results in loss of senescence, metastatic dissemination and reduced life expectancy. Our data demonstrate the prognostic significance of KMT2C mutation status in prostate cancer patients. Inhibition of the MYC signalling axis may be a viable treatment option for patients with KMT2C truncations and therefore poor prognosis.


Asunto(s)
Metiltransferasas , Neoplasias de la Próstata , Animales , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Proteínas de Unión al ADN/fisiología , Humanos , Masculino , Metiltransferasas/genética , Ratones , Mutación , Neoplasias de la Próstata/metabolismo , Secuenciación del Exoma
6.
FASEB J ; 36(4): e22231, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35230719

RESUMEN

The dysfunction of osteogenesis is a key character in the pathogenesis of osteoporosis, but the network of signaling mechanisms in controlling the differentiation of osteoblast remain unclear. Thrap3 has been proved participating in various biological process, especially in the differentiation of stem cells. Here, we demonstrate that Thrap3 could promote osteogenesis through the inhibition of the degradation of Runx2, which is a key molecular structure in early osteoblast differentiation. Furthermore, we found that the osteogenesis enhancing capacity of Thrap3 was caused by physically binding with Sox9, inhibiting the transcriptional activity of Sox9, and then decreasing the decomposition-promoted effect of Sox9 on Runx2. Our data shows that Thrap3 promotes osteoblast differentiation through the Thrap3-Sox9-Runx2 axis. What we found may help for further clarifying the molecular mechanism of osteogenic differentiation and give a new potential therapeutic target for osteoporosis.


Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal/fisiología , Proteínas de Unión al ADN/fisiología , Osteogénesis/fisiología , Factores de Transcripción/fisiología , Animales , Diferenciación Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal/antagonistas & inhibidores , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Osteoblastos/citología , Factor de Transcripción SOX9/fisiología
7.
J Med Virol ; 94(7): 3251-3256, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35211991

RESUMEN

Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a newly discovered bat-origin coronavirus with fatal pathogenicity for neonatal piglets. There is no vaccine to prevent SADS-CoV infection or clinically approved drugs targeting SADS-CoV. Therefore, unraveling cellular factors that regulate SADS-CoV for cell entry is critical to understanding the viral transmission mechanism and provides a potential therapeutic target for SADS-CoV cure. Here, we showed that Type I interferon (IFN-I) pretreatment potently blocks SADS-CoV entry into cells using lentiviral pseudo-virions as targets whose entry is driven by the SADS-CoV Spike glycoprotein. IFN-I-mediated inhibition of SADS-CoV entry and replication was dramatically impaired in the absence of TET2. These results suggest TET2 is found to serve as a checkpoint of IFN-I-meditated inhibition on the cell entry of SADS-CoV, and our discovery might constitute a novel treatment option to combat against SADS-CoV.


Asunto(s)
Alphacoronavirus , Quirópteros , Dioxigenasas , Alphacoronavirus/fisiología , Animales , Proteínas de Unión al ADN/fisiología , Dioxigenasas/fisiología , Humanos , Interferón Tipo I , Glicoproteína de la Espiga del Coronavirus
8.
Sci Rep ; 12(1): 2306, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35145145

RESUMEN

Myocardin-related transcription factor A (MRTF-A), a coactivator of serum response factor (SRF), regulates the expression of many cytoskeletal genes in response to cytoplasmic and nuclear actin dynamics. Here we describe a novel mechanism to regulate MRTF-A activity within the nucleus by showing that lamina-associated polypeptide 2α (Lap2α), the nucleoplasmic isoform of Lap2, is a direct binding partner of MRTF-A, and required for the efficient expression of MRTF-A/SRF target genes. Mechanistically, Lap2α is not required for MRTF-A nuclear localization, unlike most other MRTF-A regulators, but is required for efficient recruitment of MRTF-A to its target genes. This regulatory step takes place prior to MRTF-A chromatin binding, because Lap2α neither interacts with, nor specifically influences active histone marks on MRTF-A/SRF target genes. Phenotypically, Lap2α is required for serum-induced cell migration, and deregulated MRTF-A activity may also contribute to muscle and proliferation phenotypes associated with loss of Lap2α. Our studies therefore add another regulatory layer to the control of MRTF-A-SRF-mediated gene expression, and broaden the role of Lap2α in transcriptional regulation.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas de Unión al ADN/fisiología , Regulación de la Expresión Génica/genética , Proteínas de la Membrana/fisiología , Transactivadores/genética , Transactivadores/metabolismo , Actinas/metabolismo , Animales , Movimiento Celular/genética , Cromatina , Citoplasma/metabolismo , Citoesqueleto/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Células 3T3 NIH , Unión Proteica/genética , Factor de Respuesta Sérica/genética , Factor de Respuesta Sérica/metabolismo , Transactivadores/fisiología , Transcripción Genética/genética
9.
Sci Rep ; 12(1): 2651, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35173232

RESUMEN

Myelin sheath formation in the peripheral nervous system and the ensuing saltatory conduction rely on differentiated Schwann cells. We have previously shown that transition of Schwann cells from an immature into a differentiated state requires Brg1 that serves as the central energy generating subunit in two related SWI/SNF-type chromatin remodelers, the BAF and the PBAF complex. Here we used conditional deletion of Pbrm1 to selectively interfere with the PBAF complex in Schwann cells. Despite efficient loss of Pbrm1 early during lineage progression, we failed to detect any substantial alterations in the number, proliferation or survival of immature Schwann cells as well as in their rate and timing of terminal differentiation. As a consequence, postnatal myelin formation in peripheral nerves appeared normal. There were no inflammatory alterations in the nerve or other signs of a peripheral neuropathy. We conclude from our study that Pbrm1 and very likely the PBAF complex are dispensable for proper Schwann cell development and that Schwann cell defects previously observed upon Brg1 deletion are mostly attributable to altered or absent function of the BAF complex.


Asunto(s)
Diferenciación Celular/genética , Proteínas Cromosómicas no Histona/fisiología , Proteínas de Unión al ADN/fisiología , Células de Schwann/fisiología , Factores de Transcripción/fisiología , Animales , Linaje de la Célula/genética , Proliferación Celular/genética , Supervivencia Celular/genética , ADN Helicasas/genética , Eliminación de Gen , Ratones , Vaina de Mielina/fisiología , Proteínas Nucleares/genética , Nervios Periféricos/fisiología , Factores de Transcripción/genética
10.
Inflamm Res ; 71(2): 243-253, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35059772

RESUMEN

OBJECTIVE: Inflammation and proliferation of vascular smooth muscle cells (VSMCs), induced by angiotensin II (AngII) and other growth factors, play important roles in the pathogenesis of hypertension, restenosis, and atherosclerosis. Dihydroartemisinin (DHA) exhibits broad protective effects. However, the effects of DHA on AngII-induced inflammation and proliferation of VSMCs remain unknown. MATERIALS AND METHODS: AngII was used to construct VSMCs and vascular inflammation model in vitro and in vivo. The protective roles of DHA in inflammatory response and proliferation were evaluated through CCK-8, BrdU assay and immunofluorescence staining. The level of mRNA N6-methyladenosine was measured by m6A-RNA immunoprecipitation (MeRIP) assay. Western blot and quantitative real-time PCR were used to investigate the relationship between FTO and its potential downstream signaling molecules. RESULTS: In the present study, we found that DHA significantly suppressed AngII-induced proliferation of VSMCs and the expression of IL-6 and Ccl2 in a dose-dependent manner. Additionally, we confirmed that fat mass and obesity-associated (FTO) plays a critical role in AngII-induced VSMC proliferation and inflammation. FTO knockdown increased the methylation level of NR4A3 mRNA, whereas FTO, but not mutated FTO overexpression, reduced the methylation level of NR4A3 mRNA. These results suggest that DHA plays a protective role in AngII-induced VSMC proliferation and the associated inflammation by inhibiting the FTO/NR4A3 axis. CONCLUSION: Our findings provide new insight into the mechanisms of DHA and its critical role in the pathogenesis of hypertension-related vascular complications.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/antagonistas & inhibidores , Angiotensina II/farmacología , Artemisininas/farmacología , Proteínas de Unión al ADN/antagonistas & inhibidores , Inflamación/prevención & control , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Receptores de Esteroides/antagonistas & inhibidores , Receptores de Hormona Tiroidea/antagonistas & inhibidores , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/fisiología , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Proteínas de Unión al ADN/fisiología , Ratones , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/fisiología , Proteínas del Tejido Nervioso/fisiología , Receptores de Esteroides/fisiología , Receptores de Hormona Tiroidea/fisiología , Transducción de Señal/efectos de los fármacos
11.
Cell Mol Life Sci ; 79(2): 112, 2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35099607

RESUMEN

T cell activation initiates protective adaptive immunity, but counterbalancing mechanisms are critical to prevent overshooting responses and to maintain immune homeostasis. The CARD11-BCL10-MALT1 (CBM) complex bridges T cell receptor engagement to NF-κB signaling and MALT1 protease activation. Here, we show that ABIN-1 is modulating the suppressive function of A20 in T cells. Using quantitative mass spectrometry, we identified ABIN-1 as an interactor of the CBM signalosome in activated T cells. A20 and ABIN-1 counteract inducible activation of human primary CD4 and Jurkat T cells. While A20 overexpression is able to silence CBM complex-triggered NF-κB and MALT1 protease activation independent of ABIN-1, the negative regulatory function of ABIN-1 depends on A20. The suppressive function of A20 in T cells relies on ubiquitin binding through the C-terminal zinc finger (ZnF)4/7 motifs, but does not involve the deubiquitinating activity of the OTU domain. Our mechanistic studies reveal that the A20/ABIN-1 module is recruited to the CBM complex via A20 ZnF4/7 and that proteasomal degradation of A20 and ABIN-1 releases the CBM complex from the negative impact of both regulators. Ubiquitin binding to A20 ZnF4/7 promotes destructive K48-polyubiquitination to itself and to ABIN-1. Further, after prolonged T cell stimulation, ABIN-1 antagonizes MALT1-catalyzed cleavage of re-synthesized A20 and thereby diminishes sustained CBM complex signaling. Taken together, interdependent post-translational mechanisms are tightly controlling expression and activity of the A20/ABIN-1 silencing module and the cooperative action of both negative regulators is critical to balance CBM complex signaling and T cell activation.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Linfocitos T/metabolismo , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/fisiología , Proteína 10 de la LLC-Linfoma de Células B/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo , Células Cultivadas , Guanilato Ciclasa/metabolismo , Células HEK293 , Humanos , Células Jurkat , Activación de Linfocitos/genética , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/metabolismo , Complejos Multiproteicos/metabolismo , FN-kappa B/metabolismo , Unión Proteica , Interferencia de ARN/inmunología , Transducción de Señal/fisiología , Linfocitos T/inmunología
12.
PLoS Genet ; 18(1): e1009928, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35100262

RESUMEN

Intermediate neural progenitors (INPs) boost the number and diversity of neurons generated from neural stem cells (NSCs) by undergoing transient proliferation. In the developing Drosophila brains, INPs are generated from type II neuroblasts (NBs). In order to maintain type II NB identity and their capability to produce INPs, the proneural protein Asense (Ase) needs to be silenced by the Ets transcription factor pointed P1 (PntP1), a master regulator of type II NB development. However, the molecular mechanisms underlying the PntP1-mediated suppression of Ase is still unclear. In this study, we utilized genetic and molecular approaches to determine the transcriptional property of PntP1 and identify the direct downstream effector of PntP1 and the cis-DNA elements that mediate the suppression of ase. Our results demonstrate that PntP1 directly activates the expression of the transcriptional repressor, Tailless (Tll), by binding to seven Ets-binding sites, and Tll in turn suppresses the expression of Ase in type II NBs by binding to two hexameric core half-site motifs. We further show that Tll provides positive feedback to maintain the expression of PntP1 and the identity of type II NBs. Thus, our study identifies a novel direct target of PntP1 and reveals mechanistic details of the specification and maintenance of the type II NB identity by PntP1.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Regulación de la Expresión Génica/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Neuronas/metabolismo , Proteínas Proto-Oncogénicas/fisiología , Proteínas Represoras/genética , Factores de Transcripción/fisiología , Animales , Sitios de Unión , Proteínas de Unión al ADN/metabolismo , Drosophila , Proteínas de Drosophila/metabolismo , Elementos de Facilitación Genéticos , Proteínas del Tejido Nervioso/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Represoras/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Transgenes
13.
Pathol Res Pract ; 229: 153734, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35030351

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is recognized as one of the most lethal malignancies among the urological system, with constantly increasing mortality. While the molecular mechanisms underlying ccRCC progression are still poorly understood, the molecular and functional role of lncRNA in multiple diseases has been well demonstrated. In this study, we hypothesized that lncRNA MEG8 might participate in ccRCC development. At first, we found that MEG8 expression was increased in ccRCC tumor tissues and cells. Next, we demonstrated that MEG8 knockdown suppressed cell viability, migration, and invasion in vitro and inhibited tumor growth in vivo. Subsequently, we utilized bioinformatics analysis, ChIP, and luciferase assays, and we found that PLAG1 could transcriptionally regulate MEG8 in ccRCC cells. Furthermore, MEG8 promoted G3BP1 expression to aggravate ccRCC tumorigenic properties through sponging miR-495-3p. Our study identified a novel PLAG1/MEG8/miR-495-3p/G3BP1 network in ccRCC development, which might be a promising direction for developing new diagnoses or therapeutic agents for ccRCC.


Asunto(s)
Carcinoma de Células Renales/genética , ADN Helicasas/fisiología , Proteínas de Unión al ADN/fisiología , Neoplasias Renales/genética , MicroARNs/fisiología , Proteínas de Unión a Poli-ADP-Ribosa/fisiología , ARN Helicasas/fisiología , Proteínas con Motivos de Reconocimiento de ARN/fisiología , ARN Largo no Codificante , Humanos , Células Tumorales Cultivadas
14.
Cell Rep ; 38(2): 110211, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35021076

RESUMEN

Oncogene-induced senescence (OIS) is a form of stable cell-cycle arrest arising in response to oncogenic stimulation. OIS must be bypassed for transformation, but the mechanisms of OIS establishment and bypass remain poorly understood, especially at the post-transcriptional level. Here, we show that the RNA-binding protein UNR/CSDE1 enables OIS in primary mouse keratinocytes. Depletion of CSDE1 leads to senescence bypass, cell immortalization, and tumor formation, indicating that CSDE1 behaves as a tumor suppressor. Unbiased high-throughput analyses uncovered that CSDE1 promotes OIS by two independent molecular mechanisms: enhancement of the stability of senescence-associated secretory phenotype (SASP) factor mRNAs and repression of Ybx1 mRNA translation. Importantly, depletion of YBX1 from immortal keratinocytes rescues senescence and uncouples proliferation arrest from the SASP, revealing multilayered mechanisms exerted by CSDE1 to coordinate senescence. Our data highlight the relevance of post-transcriptional control in the regulation of senescence.


Asunto(s)
Senescencia Celular/fisiología , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Puntos de Control del Ciclo Celular/genética , Puntos de Control del Ciclo Celular/fisiología , Línea Celular , Proliferación Celular/fisiología , Senescencia Celular/genética , Proteínas de Unión al ADN/fisiología , Femenino , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Humanos , Queratinocitos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Oncogenes/genética , Cultivo Primario de Células , Procesamiento Postranscripcional del ARN/fisiología , Proteínas de Unión al ARN/fisiología , Fenotipo Secretor Asociado a la Senescencia/genética , Fenotipo Secretor Asociado a la Senescencia/fisiología , Transducción de Señal/fisiología , Proteína 1 de Unión a la Caja Y/metabolismo
15.
Neurosci Bull ; 38(5): 505-518, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34773220

RESUMEN

The axon initial segment (AIS) is a specialized structure that controls neuronal excitability via action potential (AP) generation. Currently, AIS plasticity with regard to changes in length and location in response to neural activity has been extensively investigated, but how AIS diameter is regulated remains elusive. Here we report that COUP-TFI (chicken ovalbumin upstream promotor-transcription factor 1) is an essential regulator of AIS diameter in both developing and adult mouse neocortex. Either embryonic or adult ablation of COUP-TFI results in reduced AIS diameter and impaired AP generation. Although COUP-TFI ablations in sparse single neurons and in populations of neurons have similar impacts on AIS diameter and AP generation, they strengthen and weaken, respectively, the receiving spontaneous network in mutant neurons. In contrast, overexpression of COUP-TFI in sparse single neurons increases the AIS diameter and facilitates AP generation, but decreases the receiving spontaneous network. Our findings demonstrate that COUP-TFI is indispensable for both the expansion and maintenance of AIS diameter and that AIS diameter fine-tunes action potential generation and synaptic inputs in mammalian cortical neurons.


Asunto(s)
Segmento Inicial del Axón , Factores de Transcripción , Potenciales de Acción , Animales , Factor de Transcripción COUP I , Proteínas de Unión al ADN/fisiología , Mamíferos , Ratones
16.
Clin Transl Oncol ; 24(1): 84-92, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34181232

RESUMEN

PURPOSE: To investigate the effect of microRNA-543 (miR-543) on the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of triple-negative breast cancer (TNBC) cells, and the associated mechanism. METHODS: Human breast cancer cells (MDA-MB-231, HCC1937, and MCF-7, ZR-75-1) and normal human breast epithelial cell line (MCF10A) were transfected with miR-543 mimics or inhibitor using lipofectamine 2000. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blotting were used to determine the mRNA and protein expression levels of miR-543, actin-like protein 6A (ACTL6A), vimentin, Snail, and E-cadherin in breast cancer cells/tissue. Cell counting kit-8 (CCK-8), wound-healing, and Transwell assays were used to measure the effect of miR-543 on TNBC cell proliferation, invasion, and migration. Overall survival was determined using data from Gene Expression Omnibus (GEO) and Cancer Genome Atlas (TCGA) databases. Bioinformatics analysis and luciferase reporter gene assay were used to determine the regulatory effect of miR-543 on ACTL6A. RESULTS: The level of expression of miR-543 was significantly lower in breast cancer cells/tissue than in normal human breast epithelial cell/tissue (p < 0.05). MicroRNA-543 expression level was significantly reduced in TNBC cells/tissue, relative to the other breast cancer cells/normal breast tissue (p < 0.05). MicroRNA-543 significantly suppressed tumor growth and the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of TNBC cells, in mouse xenograft model (p < 0.05). CONCLUSIONS: miR-543 influences the biological behavior of TNBC cells by directly targeting ACTL6A gene. miR-543 could serve as a novel diagnostic and therapeutic target for TNBC.


Asunto(s)
Actinas/fisiología , Movimiento Celular , Proliferación Celular , Proteínas Cromosómicas no Histona/fisiología , Proteínas de Unión al ADN/fisiología , Regulación hacia Abajo , Transición Epitelial-Mesenquimal , MicroARNs/fisiología , Neoplasias de la Mama Triple Negativas/patología , Animales , Humanos , Ratones , Invasividad Neoplásica , Células Tumorales Cultivadas
17.
Gut ; 71(3): 467-478, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-33785559

RESUMEN

BACKGROUND: Gastric adenocarcinoma (GAC) is a lethal disease with limited therapeutic options. Genetic alterations in chromatin remodelling gene AT-rich interactive domain 1A (ARID1A) and mTOR pathway activation occur frequently in GAC. Targeting the mechanistic target of rapamycin (mTOR) pathway in unselected patients has failed to show survival benefit. A deeper understanding of GAC might identify a subset that can benefit from mTOR inhibition. METHODS: Genomic alterations in ARID1A were analysed in GAC. Mouse gastric epithelial cells from CK19-Cre-Arid1Afl/fl and wild-type mice were used to determine the activation of oncogenic genes due to loss of Arid1A. Functional studies were performed to determine the significance of loss of ARID1A and the sensitivity of ARID1A-deficient cancer cells to mTOR inhibition in GAC. RESULTS: More than 30% of GAC cases had alterations (mutations or deletions) of ARID1A and ARID1A expression was negatively associated with phosphorylation of S6 and SOX9 in GAC tissues and patient-derived xenografts (PDXs). Activation of mTOR signalling (increased pS6) and SOX9 nuclear expression were strongly increased in Arid1A-/- mouse gastric tissues which could be curtailed by RAD001, an mTOR inhibitor. Knockdown of ARID1A in GAC cell lines increased pS6 and nuclear SOX9 and increased sensitivity to an mTOR inhibitor which was further amplified by its combination with fluorouracil both in vitro and in vivo in PDXs. CONCLUSIONS: The loss of ARID1A activates pS6 and SOX9 in GAC, which can be effectively targeted by an mTOR inhibitor. Therefore, our studies suggest a new therapeutic strategy of clinically targeting the mTOR pathway in patients with GAC with ARID1A deficiency.


Asunto(s)
Adenocarcinoma/etiología , Proteínas de Unión al ADN/fisiología , Factor de Transcripción SOX9/fisiología , Transducción de Señal/fisiología , Neoplasias Gástricas/etiología , Serina-Treonina Quinasas TOR/fisiología , Factores de Transcripción/fisiología , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Animales , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Proliferación Celular , Ratones , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología
18.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34969846

RESUMEN

The biogenesis of integral ß-barrel outer membrane proteins (OMPs) in gram-negative bacteria requires transport by molecular chaperones across the aqueous periplasmic space. Owing in part to the extensive functional redundancy within the periplasmic chaperone network, specific roles for molecular chaperones in OMP quality control and assembly have remained largely elusive. Here, by deliberately perturbing the OMP assembly process through use of multiple folding-defective substrates, we have identified a role for the periplasmic chaperone Skp in ensuring efficient folding of OMPs by the ß-barrel assembly machine (Bam) complex. We find that ß-barrel substrates that fail to integrate into the membrane in a timely manner are removed from the Bam complex by Skp, thereby allowing for clearance of stalled Bam-OMP complexes. Following the displacement of OMPs from the assembly machinery, Skp subsequently serves as a sacrificial adaptor protein to directly facilitate the degradation of defective OMP substrates by the periplasmic protease DegP. We conclude that Skp acts to ensure efficient ß-barrel folding by directly mediating the displacement and degradation of assembly-compromised OMP substrates from the Bam complex.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Proteínas de Escherichia coli/fisiología , Chaperonas Moleculares/fisiología , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Unión Proteica , Conformación Proteica en Lámina beta , Pliegue de Proteína , Proteolisis
19.
Cell Rep ; 37(11): 110124, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34910919

RESUMEN

Regulatory T (Treg) cells play crucial roles in suppressing deleterious immune response. Here, we investigate how Treg cells are mechanistically induced in vitro (iTreg) and stabilized via transcriptional regulation of Treg lineage-specifying factor Foxp3. We find that acetylation of histone tails at the Foxp3 promoter is required for inducing Foxp3 transcription. Upon induction, histone acetylation signals via bromodomain-containing proteins, particularly targets of inhibitor JQ1, and sustains Foxp3 transcription via a global or trans effect. Subsequently, Tet-mediated DNA demethylation of Foxp3 cis-regulatory elements, mainly enhancer CNS2, increases chromatin accessibility and protein binding, stabilizing Foxp3 transcription and obviating the need for the histone acetylation signal. These processes transform stochastic iTreg induction into a stable cell fate, with the former sensitive and the latter resistant to genetic and environmental perturbations. Thus, sequential histone acetylation and DNA demethylation in Foxp3 induction and maintenance reflect stepwise mechanical switches governing iTreg cell lineage specification.


Asunto(s)
Desmetilación del ADN , Proteínas de Unión al ADN/fisiología , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Histonas/química , Proteínas Proto-Oncogénicas/fisiología , Linfocitos T Reguladores/inmunología , Acetilación , Animales , Diferenciación Celular , Metilación de ADN , Femenino , Factores de Transcripción Forkhead/genética , Histonas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Regiones Promotoras Genéticas , Secuencias Reguladoras de Ácidos Nucleicos
20.
Cell Rep ; 37(10): 110089, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34879283

RESUMEN

Deleterious genetic variants in POGZ, which encodes the chromatin regulator Pogo Transposable Element with ZNF Domain protein, are strongly associated with autism spectrum disorder (ASD). Although it is a high-confidence ASD risk gene, the neurodevelopmental functions of POGZ remain unclear. Here we reveal the genomic binding of POGZ in the developing forebrain at euchromatic loci and gene regulatory elements (REs). We profile chromatin accessibility and gene expression in Pogz-/- mice and show that POGZ promotes the active chromatin state and transcription of clustered synaptic genes. We further demonstrate that POGZ forms a nuclear complex and co-occupies loci with ADNP, another high-confidence ASD risk gene, and provide evidence that POGZ regulates other neurodevelopmental disorder risk genes as well. Our results reveal a neurodevelopmental function of an ASD risk gene and identify molecular targets that may elucidate its function in ASD.


Asunto(s)
Trastorno Autístico/enzimología , Encéfalo/enzimología , Proteínas de Ciclo Celular/fisiología , Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/fisiología , Eucromatina/metabolismo , Sinapsis/enzimología , Transposasas/metabolismo , Animales , Trastorno Autístico/genética , Trastorno Autístico/fisiopatología , Sitios de Unión , Encéfalo/crecimiento & desarrollo , Proteínas de Ciclo Celular/genética , Elementos Transponibles de ADN , Proteínas de Unión al ADN/genética , Elementos de Facilitación Genéticos , Eucromatina/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Predisposición Genética a la Enfermedad , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis , Regiones Promotoras Genéticas , Sinapsis/genética , Transposasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA