Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 624(7992): 672-681, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37935376

RESUMEN

Trace-amine-associated receptors (TAARs), a group of biogenic amine receptors, have essential roles in neurological and metabolic homeostasis1. They recognize diverse endogenous trace amines and subsequently activate a range of G-protein-subtype signalling pathways2,3. Notably, TAAR1 has emerged as a promising therapeutic target for treating psychiatric disorders4,5. However, the molecular mechanisms underlying its ability to recognize different ligands remain largely unclear. Here we present nine cryo-electron microscopy structures, with eight showing human and mouse TAAR1 in a complex with an array of ligands, including the endogenous 3-iodothyronamine, two antipsychotic agents, the psychoactive drug amphetamine and two identified catecholamine agonists, and one showing 5-HT1AR in a complex with an antipsychotic agent. These structures reveal a rigid consensus binding motif in TAAR1 that binds to endogenous trace amine stimuli and two extended binding pockets that accommodate diverse chemotypes. Combined with mutational analysis, functional assays and molecular dynamic simulations, we elucidate the structural basis of drug polypharmacology and identify the species-specific differences between human and mouse TAAR1. Our study provides insights into the mechanism of ligand recognition and G-protein selectivity by TAAR1, which may help in the discovery of ligands or therapeutic strategies for neurological and metabolic disorders.


Asunto(s)
Proteínas de Unión al GTP , Receptores Acoplados a Proteínas G , Animales , Humanos , Ratones , Aminas/metabolismo , Anfetamina/metabolismo , Antipsicóticos/química , Antipsicóticos/metabolismo , Sitios de Unión , Catecolaminas/agonistas , Catecolaminas/química , Catecolaminas/metabolismo , Microscopía por Crioelectrón , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/ultraestructura , Ligandos , Simulación de Dinámica Molecular , Mutación , Polifarmacología , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/ultraestructura , Especificidad de la Especie , Especificidad por Sustrato
2.
Nature ; 613(7943): 383-390, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36599982

RESUMEN

Specific, regulated modification of RNAs is important for proper gene expression1,2. tRNAs are rich with various chemical modifications that affect their stability and function3,4. 7-Methylguanosine (m7G) at tRNA position 46 is a conserved modification that modulates steady-state tRNA levels to affect cell growth5,6. The METTL1-WDR4 complex generates m7G46 in humans, and dysregulation of METTL1-WDR4 has been linked to brain malformation and multiple cancers7-22. Here we show how METTL1 and WDR4 cooperate to recognize RNA substrates and catalyse methylation. A crystal structure of METTL1-WDR4 and cryo-electron microscopy structures of METTL1-WDR4-tRNA show that the composite protein surface recognizes the tRNA elbow through shape complementarity. The cryo-electron microscopy structures of METTL1-WDR4-tRNA with S-adenosylmethionine or S-adenosylhomocysteine along with METTL1 crystal structures provide additional insights into the catalytic mechanism by revealing the active site in multiple states. The METTL1 N terminus couples cofactor binding with conformational changes in the tRNA, the catalytic loop and the WDR4 C terminus, acting as the switch to activate m7G methylation. Thus, our structural models explain how post-translational modifications of the METTL1 N terminus can regulate methylation. Together, our work elucidates the core and regulatory mechanisms underlying m7G modification by METTL1, providing the framework to understand its contribution to biology and disease.


Asunto(s)
Microscopía por Crioelectrón , Proteínas de Unión al GTP , Metilación , Metiltransferasas , Procesamiento Postranscripcional del ARN , ARN de Transferencia , Humanos , Dominio Catalítico , Cristalografía por Rayos X , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/ultraestructura , Metiltransferasas/química , Metiltransferasas/metabolismo , Metiltransferasas/ultraestructura , ARN de Transferencia/química , ARN de Transferencia/metabolismo , ARN de Transferencia/ultraestructura , S-Adenosilhomocisteína/metabolismo , S-Adenosilmetionina/metabolismo , Especificidad por Sustrato , Biocatálisis
3.
FEBS J ; 289(2): 386-393, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33835690

RESUMEN

The C-X-C motif chemokine CXCL8 (interleukin-8, IL-8) and its receptor chemokine receptor 2 (CXCR2) mediate neutrophil migration during cell development and inflammatory responses and thus are related to numerous inflammatory diseases and cancers. We have determined the cryo-electron microscopy structure of CXCL8 bound CXCR2 coupled to Gi protein, as well as the crystal structure of inactive CXCR2 in complex with a designed allosteric antagonist. These results reveal the binding modes between CXCL8 and CXCR2, CXCR2 and G protein, and the detailed binding pattern of the allosteric antagonist, 00767013. Further structural analysis of the inactive- and active- states of CXCR2 reveals the unique shallow-pocket activation mechanism of C-X-C chemokine receptors and promotes our understanding on how a G protein-coupled receptor (GPCR) is activated by an endogenous protein molecule. In addition, the cholesterol molecule is observed in the activated CXCR2 structure, providing the structural basis of the potential allosteric modulation role of cholesterol in chemokine receptors.


Asunto(s)
Proteínas de Unión al GTP/genética , Inflamación/genética , Interleucina-8/genética , Receptores de Interleucina-8B/genética , Regulación Alostérica/genética , Movimiento Celular/genética , Proteínas de Unión al GTP/ultraestructura , Humanos , Inflamación/patología , Interleucina-8/ultraestructura , Neutrófilos/metabolismo , Unión Proteica/genética , Conformación Proteica , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/ultraestructura , Receptores de Interleucina-8B/ultraestructura , Transducción de Señal/genética
4.
Nature ; 594(7863): 424-429, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34040255

RESUMEN

Liquid-liquid phase separation (LLPS) has emerged as a central paradigm for understanding how membraneless organelles compartmentalize diverse cellular activities in eukaryotes1-3. Here we identify a superfamily of plant guanylate-binding protein (GBP)-like GTPases (GBPLs) that assemble LLPS-driven condensates within the nucleus to protect against infection and autoimmunity. In Arabidopsis thaliana, two members of this family-GBPL1 and GBPL3-undergo phase-transition behaviour to control transcriptional responses as part of an allosteric switch that is triggered by exposure to biotic stress. GBPL1, a pseudo-GTPase, sequesters catalytically active GBPL3 under basal conditions but is displaced by GBPL3 LLPS when it enters the nucleus following immune cues to drive the formation of unique membraneless organelles termed GBPL defence-activated condensates (GDACs) that we visualized by in situ cryo-electron tomography. Within these mesoscale GDAC structures, native GBPL3 directly bound defence-gene promoters and recruited specific transcriptional coactivators of the Mediator complex and RNA polymerase II machinery to massively reprogram host gene expression for disease resistance. Together, our study identifies a GBPL circuit that reinforces the biological importance of phase-separated condensates, in this case, as indispensable players in plant defence.


Asunto(s)
Arabidopsis/inmunología , Núcleo Celular/química , Núcleo Celular/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Transición de Fase , Inmunidad de la Planta , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/ultraestructura , Núcleo Celular/genética , Núcleo Celular/ultraestructura , Cromatina/genética , Microscopía por Crioelectrón , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/ultraestructura , Regulación de la Expresión Génica de las Plantas/genética , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/ultraestructura , Complejo Mediador , Familia de Multigenes/genética , Orgánulos/química , Orgánulos/inmunología , Orgánulos/metabolismo , Orgánulos/ultraestructura , Células Vegetales/química , Células Vegetales/inmunología , Células Vegetales/metabolismo , Células Vegetales/ultraestructura , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/genética , Regiones Promotoras Genéticas/genética , ARN Polimerasa II/metabolismo , Transcripción Genética
5.
Commun Biol ; 4(1): 635, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-34045638

RESUMEN

G protein-coupled receptors (GPCRs) selectively couple to specific heterotrimeric G proteins comprised of four subfamilies in order to induce appropriate physiological responses. However, structural determinants in Gα subunits responsible for selective recognition by approximately 800 human GPCRs have remained elusive. Here, we directly compare the influence of subtype-specific Gα structures on the stability of GPCR-G protein complexes and the activation by two Gq-coupled receptors. We used FRET-assays designed to distinguish multiple Go and Gq-based Gα chimeras in their ability to be selectively bound and activated by muscarinic M3 and histaminic H1 receptors. We identify the N-terminus including the αN/ß1-hinge, the ß2/ß3-loop and the α5 helix of Gα to be key selectivity determinants which differ in their impact on selective binding to GPCRs and subsequent activation depending on the specific receptor. Altogether, these findings provide new insights into the molecular basis of G protein-coupling selectivity even beyond the Gα C-terminus.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Subunidades alfa de la Proteína de Unión al GTP/ultraestructura , Receptores Acoplados a Proteínas G/metabolismo , Animales , Subunidades alfa de la Proteína de Unión al GTP/fisiología , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/fisiología , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/ultraestructura , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/fisiología , Proteínas de Unión al GTP/ultraestructura , Humanos , Ratones , Unión Proteica , Ratas , Receptores Acoplados a Proteínas G/fisiología , Receptores Acoplados a Proteínas G/ultraestructura , Transducción de Señal
6.
FEBS J ; 288(8): 2562-2569, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33605032

RESUMEN

G protein-coupled receptors (GPCRs) are a large class of cell-surface receptor involved in cellular signaling that are currently the target of over one third of all clinically approved therapeutics. Classically, an agonist-bound, active GPCR couples to and activates G proteins through the receptor intracellular core. To attenuate G protein signaling, the GPCR is phosphorylated at its C-terminal tail and/or relevant intracellular loops, allowing for the recruitment of ß-arrestins (ßarrs). ßarrs then couple to the receptor intracellular core in order to mediate receptor desensitization and internalization. However, our laboratory and others have observed that some GPCRs are capable of continuously signaling through G protein even after internalization. This mode of sustained signaling stands in contrast with our previous understanding of GPCR signaling, and its molecular mechanism is still not well understood. Recently, we have solved the structure of a GPCR-G protein-ßarr megacomplex by cryo-electron microscopy. This 'megaplex' structure illustrates the independent and simultaneous coupling of a G protein to the receptor intracellular core, and binding of a ßarr to a phosphorylated receptor C-terminal tail, with all three components maintaining their respective canonically active conformations. The structure provides evidence for the ability of a GPCR to activate G protein even while being bound to and internalized by ßarr. It also reveals that the binding of G protein and ßarr to the same GPCR is not mutually exclusive, and raises a number of future questions to be answered regarding the mechanism of sustained signaling.


Asunto(s)
Endosomas/genética , Proteínas de Unión al GTP/genética , Receptores Acoplados a Proteínas G/genética , beta-Arrestinas/genética , Arrestinas/genética , Arrestinas/ultraestructura , Microscopía por Crioelectrón , Endocitosis/genética , Endosomas/ultraestructura , Proteínas de Unión al GTP/ultraestructura , Humanos , Conformación Molecular , Fosforilación , Unión Proteica/genética , Receptores Acoplados a Proteínas G/ultraestructura , Transducción de Señal/genética
7.
FEBS J ; 288(8): 2490-2501, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33085809

RESUMEN

G protein-coupled receptors (GPCRs) represent a major group of drug targets with tremendous pharmacological value. Signals arising from GPCRs are primarily transduced via two functional components of their corresponding G proteins, the Gα subunit and the Gßγ dimer that dissociate from each other upon activation of the heterotrimer (Gαßγ). The Gßγ dimer has become an increasingly popular subject in GPCR signaling, owing to its numerous effectors and notable roles in signal integration. Because Gßγ dimers participate in a wide range of intracellular processes that regulate cellular physiology, they are often implicated in the pathology of various diseases. Yet, one caveat to the current 'Dissociation Model' on GPCR signaling is that unequivocal Gßγ signals are biasedly detected with Gi/o -coupled receptors, while Gßγ signals from Gs - or Gq -coupled receptors seem to play an auxiliary role. In this review, we revisit the evidence for or against the 'Dissociation Model' and discuss in detail several hypotheses that may explain such disparity and provide alternative interpretations to accommodate the 'biased Gßγ signals' observed in different biological systems. The issue of whether unique combinations of Gßγ dimer can confer signaling specificity is also discussed in the context of physiological relevance.


Asunto(s)
Subunidades beta de la Proteína de Unión al GTP/genética , Subunidades gamma de la Proteína de Unión al GTP/genética , Proteínas de Unión al GTP/genética , Receptores Acoplados a Proteínas G/genética , Subunidades beta de la Proteína de Unión al GTP/ultraestructura , Subunidades gamma de la Proteína de Unión al GTP/ultraestructura , Proteínas de Unión al GTP/ultraestructura , Humanos , Multimerización de Proteína/genética , Procesamiento Proteico-Postraduccional/genética , Receptores Acoplados a Proteínas G/ultraestructura , Transducción de Señal/genética
8.
FEBS J ; 288(9): 2970-2988, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33113220

RESUMEN

Interferon-inducible large GTPases are critical for innate immunity. The distinctive feature of a large GTPase, human guanylate binding protein-1 (hGBP1), is the sequential hydrolysis of GTP into GMP via GDP. Despite several structural and biochemical studies, the underlying mechanism of assembly-stimulated GMP formation by hGBP1 and its role in immunity are not fully clarified. Using a series of biochemical, biophysical, and in silico experiments, we studied four tryptophan residues, located near switch I-II (in and around the active site) to understand the conformational changes near these regions and also to investigate their effect on enhanced GMP formation. The W79A mutation showed significantly reduced GMP formation, whereas the W81A and W180A substitutions exhibited only a marginal defect. The W114A mutation showed a long-range effect of further enhanced GMP formation, which was mediated through W79. We also observed that after first phosphate cleavage, the W79-containing region undergoes a conformational change, which is essential for stimulated GMP formation. We suggest that this conformational change helps to reposition the active site for the next cleavage step, which occurs through a stable contact between the indole moiety of W79 and the main chain carbonyl of K76. We also showed that stimulated GMP formation is crucial for antiviral activity against hepatitis C. Thus, the present study not only provides new insight for the stimulation of GMP formation in hGBP1, but also highlights the importance of the enhanced second phosphate cleavage product in the antiviral activity.


Asunto(s)
GTP Fosfohidrolasas/genética , Proteínas de Unión al GTP/ultraestructura , Hepatitis C/genética , Conformación Proteica , Dominio Catalítico/genética , GTP Fosfohidrolasas/ultraestructura , Proteínas de Unión al GTP/genética , Guanosina Trifosfato/metabolismo , Hepacivirus/genética , Hepacivirus/patogenicidad , Hepatitis C/virología , Humanos , Hidrólisis , Mutación/genética , Unión Proteica/genética , Triptófano/genética
9.
Nat Struct Mol Biol ; 26(12): 1123-1131, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31740855

RESUMEN

Classically, G-protein-coupled receptors (GPCRs) are thought to activate G protein from the plasma membrane and are subsequently desensitized by ß-arrestin (ß-arr). However, some GPCRs continue to signal through G protein from internalized compartments, mediated by a GPCR-G protein-ß-arr 'megaplex'. Nevertheless, the molecular architecture of the megaplex remains unknown. Here, we present its cryo-electron microscopy structure, which shows simultaneous engagement of human G protein and bovine ß-arr to the core and phosphorylated tail, respectively, of a single active human chimeric ß2-adrenergic receptor with the C-terminal tail of the arginine vasopressin type 2 receptor (ß2V2R). All three components adopt their canonical active conformations, suggesting that a single megaplex GPCR is capable of simultaneously activating G protein and ß-arr. Our findings provide a structural basis for GPCR-mediated sustained internalized G protein signaling.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , beta-Arrestinas/metabolismo , Animales , Bovinos , Microscopía por Crioelectrón , Endosomas/metabolismo , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/ultraestructura , Humanos , Modelos Moleculares , Conformación Proteica , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Receptores Adrenérgicos beta 2/ultraestructura , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/ultraestructura , Receptores de Vasopresinas/química , Receptores de Vasopresinas/metabolismo , Receptores de Vasopresinas/ultraestructura , beta-Arrestinas/química , beta-Arrestinas/ultraestructura
10.
Nature ; 571(7765): 429-433, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31292547

RESUMEN

Balanced fusion and fission are key for the proper function and physiology of mitochondria1,2. Remodelling of the mitochondrial inner membrane is mediated by the dynamin-like protein mitochondrial genome maintenance 1 (Mgm1) in fungi or the related protein optic atrophy 1 (OPA1) in animals3-5. Mgm1 is required for the preservation of mitochondrial DNA in yeast6, whereas mutations in the OPA1 gene in humans are a common cause of autosomal dominant optic atrophy-a genetic disorder that affects the optic nerve7,8. Mgm1 and OPA1 are present in mitochondria as a membrane-integral long form and a short form that is soluble in the intermembrane space. Yeast strains that express temperature-sensitive mutants of Mgm19,10 or mammalian cells that lack OPA1 display fragmented mitochondria11,12, which suggests that Mgm1 and OPA1 have an important role in inner-membrane fusion. Consistently, only the mitochondrial outer membrane-not the inner membrane-fuses in the absence of functional Mgm113. Mgm1 and OPA1 have also been shown to maintain proper cristae architecture10,14; for example, OPA1 prevents the release of pro-apoptotic factors by tightening crista junctions15. Finally, the short form of OPA1 localizes to mitochondrial constriction sites, where it presumably promotes mitochondrial fission16. How Mgm1 and OPA1 perform their diverse functions in membrane fusion, scission and cristae organization is at present unknown. Here we present crystal and electron cryo-tomography structures of Mgm1 from Chaetomium thermophilum. Mgm1 consists of a GTPase (G) domain, a bundle signalling element domain, a stalk, and a paddle domain that contains a membrane-binding site. Biochemical and cell-based experiments demonstrate that the Mgm1 stalk mediates the assembly of bent tetramers into helical filaments. Electron cryo-tomography studies of Mgm1-decorated lipid tubes and fluorescence microscopy experiments on reconstituted membrane tubes indicate how the tetramers assemble on positively or negatively curved membranes. Our findings convey how Mgm1 and OPA1 filaments dynamically remodel the mitochondrial inner membrane.


Asunto(s)
Chaetomium/química , Microscopía por Crioelectrón , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas de Unión al GTP/química , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/química , Cristalografía por Rayos X , Proteínas Fúngicas/ultraestructura , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/ultraestructura , Galactosilceramidas/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/ultraestructura , Modelos Moleculares , Dominios Proteicos , Multimerización de Proteína
11.
Nat Commun ; 7: 13563, 2016 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-27882919

RESUMEN

Cotranslational chaperones assist in de novo folding of nascent polypeptides in all organisms. In yeast, the heterodimeric ribosome-associated complex (RAC) forms a unique chaperone triad with the Hsp70 homologue Ssb. We report the X-ray structure of full length Ssb in the ATP-bound open conformation at 2.6 Å resolution and identify a positively charged region in the α-helical lid domain (SBDα), which is present in all members of the Ssb-subfamily of Hsp70s. Mutational analysis demonstrates that this region is strictly required for ribosome binding. Crosslinking shows that Ssb binds close to the tunnel exit via contacts with both, ribosomal proteins and rRNA, and that specific contacts can be correlated with switching between the open (ATP-bound) and closed (ADP-bound) conformation. Taken together, our data reveal how Ssb dynamics on the ribosome allows for the efficient interaction with nascent chains upon RAC-mediated activation of ATP hydrolysis.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Factores de Elongación de Péptidos/metabolismo , Conformación Proteica en Hélice alfa , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Cristalografía por Rayos X , Proteínas de Unión al GTP/ultraestructura , Proteínas HSP70 de Choque Térmico/ultraestructura , Factores de Elongación de Péptidos/ultraestructura , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/ultraestructura
12.
Nature ; 534(7605): 133-7, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27251291

RESUMEN

Ribosome biogenesis is a highly complex process in eukaryotes, involving temporally and spatially regulated ribosomal protein (r-protein) binding and ribosomal RNA remodelling events in the nucleolus, nucleoplasm and cytoplasm. Hundreds of assembly factors, organized into sequential functional groups, facilitate and guide the maturation process into productive assembly branches in and across different cellular compartments. However, the precise mechanisms by which these assembly factors function are largely unknown. Here we use cryo-electron microscopy to characterize the structures of yeast nucleoplasmic pre-60S particles affinity-purified using the epitope-tagged assembly factor Nog2. Our data pinpoint the locations and determine the structures of over 20 assembly factors, which are enriched in two areas: an arc region extending from the central protuberance to the polypeptide tunnel exit, and the domain including the internal transcribed spacer 2 (ITS2) that separates 5.8S and 25S ribosomal RNAs. In particular, two regulatory GTPases, Nog2 and Nog1, act as hub proteins to interact with multiple, distant assembly factors and functional ribosomal RNA elements, manifesting their critical roles in structural remodelling checkpoints and nuclear export. Moreover, our snapshots of compositionally and structurally different pre-60S intermediates provide essential mechanistic details for three major remodelling events before nuclear export: rotation of the 5S ribonucleoprotein, construction of the active centre and ITS2 removal. The rich structural information in our structures provides a framework to dissect molecular roles of diverse assembly factors in eukaryotic ribosome assembly.


Asunto(s)
Microscopía por Crioelectrón , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/ultraestructura , Subunidades Ribosómicas Grandes de Eucariotas/química , Subunidades Ribosómicas Grandes de Eucariotas/ultraestructura , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/ultraestructura , Transporte Activo de Núcleo Celular , Secuencia de Bases , Dominio Catalítico , Núcleo Celular/química , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Citoplasma/metabolismo , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , ADN Espaciador Ribosómico/metabolismo , ADN Espaciador Ribosómico/ultraestructura , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/ultraestructura , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/ultraestructura , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Nucleares/ultraestructura , Unión Proteica , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN de Hongos/ultraestructura , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , ARN Ribosómico/ultraestructura , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/ultraestructura , Proteínas Ribosómicas/química , Proteínas Ribosómicas/aislamiento & purificación , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Rotación , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura
13.
PLoS Comput Biol ; 12(6): e1004960, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27253392

RESUMEN

Deciphering the effects of nonsynonymous mutations on protein structure is central to many areas of biomedical research and is of fundamental importance to the study of molecular evolution. Much of the investigation of protein evolution has focused on mutations that leave a protein's folded structure essentially unchanged. However, to evolve novel folds of proteins, mutations that lead to large conformational modifications have to be involved. Unraveling the basic biophysics of such mutations is a challenge to theory, especially when only one or two amino acid substitutions cause a large-scale conformational switch. Among the few such mutational switches identified experimentally, the one between the GA all-α and GB α+ß folds is extensively characterized; but all-atom simulations using fully transferrable potentials have not been able to account for this striking switching behavior. Here we introduce an explicit-chain model that combines structure-based native biases for multiple alternative structures with a general physical atomic force field, and apply this construct to twelve mutants spanning the sequence variation between GA and GB. In agreement with experiment, we observe conformational switching from GA to GB upon a single L45Y substitution in the GA98 mutant. In line with the latent evolutionary potential concept, our model shows a gradual sequence-dependent change in fold preference in the mutants before this switch. Our analysis also indicates that a sharp GA/GB switch may arise from the orientation dependence of aromatic π-interactions. These findings provide physical insights toward rationalizing, predicting and designing evolutionary conformational switches.


Asunto(s)
Evolución Molecular , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/genética , Genes de Cambio/genética , Inestabilidad Genómica/genética , Modelos Químicos , Simulación por Computador , Proteínas de Unión al GTP/ultraestructura , Variación Genética , Modelos Genéticos , Modelos Moleculares , Conformación Proteica , Pliegue de Proteína , Análisis de Secuencia de Proteína/métodos
14.
PLoS Comput Biol ; 12(6): e1004817, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27254668

RESUMEN

The essential biological properties of proteins-folding, biochemical activities, and the capacity to adapt-arise from the global pattern of interactions between amino acid residues. The statistical coupling analysis (SCA) is an approach to defining this pattern that involves the study of amino acid coevolution in an ensemble of sequences comprising a protein family. This approach indicates a functional architecture within proteins in which the basic units are coupled networks of amino acids termed sectors. This evolution-based decomposition has potential for new understandings of the structural basis for protein function. To facilitate its usage, we present here the principles and practice of the SCA and introduce new methods for sector analysis in a python-based software package (pySCA). We show that the pattern of amino acid interactions within sectors is linked to the divergence of functional lineages in a multiple sequence alignment-a model for how sector properties might be differentially tuned in members of a protein family. This work provides new tools for studying proteins and for generally testing the concept of sectors as the principal units of function and adaptive variation.


Asunto(s)
Evolución Molecular , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/síntesis química , Modelos Químicos , Simulación del Acoplamiento Molecular/métodos , Análisis de Secuencia de Proteína/métodos , Algoritmos , Sitios de Unión , Simulación por Computador , Proteínas de Unión al GTP/ultraestructura , Unión Proteica , Alineación de Secuencia/métodos
15.
Cell Tissue Res ; 358(3): 793-805, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25209703

RESUMEN

Transglutaminase type II (TG2) is a pleiotropic enzyme that exhibits various activities unrelated to its originally identified functions. Apart from post-translational modifications of proteins (peculiar to the transglutaminase family enzymes), TG2 is involved in diverse biological functions, including cell death, signaling, cytoskeleton rearrangements, displaying enzymatic activities, G-protein and non-enzymatic biological functions. It is involved in a variety of human diseases such as celiac disease, diabetes, neurodegenerative diseases, inflammatory disorders and cancer. Regulatory mechanisms might exist through which cells control multifunctional protein expression as a function of their sub-cellular localization. The definition of the tissue and cellular distribution of such proteins is important for the determination of their function(s). We investigate the sub-cellular localization of TG2 by confocal and immunoelectron microscopy techniques in order to gain an understanding of its properties. The culture conditions of human sarcoma cells (2fTGH cells), human embryonic kidney cells (HEK293(TG)) and human neuroblastoma cells (SK-n-BE(2)) are modulated to induce various stimuli. Human tissue samples of myocardium and gut mucosa (diseased and healthy) are also analyzed. Immuno-gold labeling indicates that TG2 is localized in the nucleus, mitochondria and endoplasmic reticulum under physiological conditions but that this is not a stable association, since different locations or different amounts of TG2 can be observed depending on stress stimuli or the state of activity of the cell. We describe a possible unrecognized location of TG2. Our findings thus provide useful insights regarding the functions and regulation of this pleiotropic enzyme.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Espacio Intracelular/enzimología , Transglutaminasas/metabolismo , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Doxorrubicina/farmacología , Espacio Extracelular/efectos de los fármacos , Espacio Extracelular/metabolismo , Proteínas de Unión al GTP/ultraestructura , Células HEK293 , Humanos , Mucosa Intestinal/patología , Mucosa Intestinal/ultraestructura , Espacio Intracelular/efectos de los fármacos , Modelos Biológicos , Miofibrillas/efectos de los fármacos , Miofibrillas/metabolismo , Miofibrillas/ultraestructura , Neuroblastoma/patología , Neuroblastoma/ultraestructura , Proteína Glutamina Gamma Glutamiltransferasa 2 , Transporte de Proteínas/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/enzimología , Transglutaminasas/ultraestructura
16.
Nat Struct Mol Biol ; 18(6): 715-20, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21623367

RESUMEN

No-go decay (NGD) is a mRNA quality-control mechanism in eukaryotic cells that leads to degradation of mRNAs stalled during translational elongation. The key factors triggering NGD are Dom34 and Hbs1. We used cryo-EM to visualize NGD intermediates resulting from binding of the Dom34-Hbs1 complex to stalled ribosomes. At subnanometer resolution, all domains of Dom34 and Hbs1 were identified, allowing the docking of crystal structures and homology models. Moreover, the close structural similarity of Dom34 and Hbs1 to eukaryotic release factors (eRFs) enabled us to propose a model for the ribosome-bound eRF1-eRF3 complex. Collectively, our data provide structural insights into how stalled mRNA is recognized on the ribosome and how the eRF complex can simultaneously recognize stop codons and catalyze peptide release.


Asunto(s)
Proteínas de Ciclo Celular/ultraestructura , Endorribonucleasas/ultraestructura , Proteínas de Unión al GTP/ultraestructura , Proteínas HSP70 de Choque Térmico/ultraestructura , Factores de Elongación de Péptidos/ultraestructura , Ribosomas/ultraestructura , Proteínas de Saccharomyces cerevisiae/ultraestructura , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Microscopía por Crioelectrón , Endorribonucleasas/química , Endorribonucleasas/metabolismo , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/metabolismo , Modelos Moleculares , Factores de Elongación de Péptidos/química , Factores de Elongación de Péptidos/metabolismo , Unión Proteica , Estabilidad del ARN , ARN Mensajero/química , ARN Mensajero/metabolismo , Ribosomas/química , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Mol Cells ; 25(3): 385-9, 2008 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-18443421

RESUMEN

Septins are a family of filament-forming GTP-binding proteins involved in a variety of cellular process such as cytokinesis, exocytosis, and membrane dynamics. Here we report the biochemical and immunocytochemical characterization of a recently identified mammalian septin, SEPT12. SEPT12 binds GTP in vitro, and a mutation (Gly56 to Asn) in the GTP-binding motif abolished binding. Immunocytochemical analysis revealed that wild-type SEPT12 formed filamentous structures when transiently expressed in Hela cells whereas SEPT12G56A generated large aggregates. In addition, wild-type SEPT12 failed to form filaments when coexpressed with SEPT12G56A. We also observed that GTP-binding by SEPT12 is required for interaction with SEPT11 but not with itself.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al GTP/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/ultraestructura , Células HeLa , Humanos , Mutación , Septinas
20.
Nature ; 449(7160): 311-5, 2007 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-17637674

RESUMEN

Septins are GTP-binding proteins that assemble into homo- and hetero-oligomers and filaments. Although they have key roles in various cellular processes, little is known concerning the structure of septin subunits or the organization and polarity of septin complexes. Here we present the structures of the human SEPT2 G domain and the heterotrimeric human SEPT2-SEPT6-SEPT7 complex. The structures reveal a universal bipolar polymer building block, composed of an extended G domain, which forms oligomers and filaments by conserved interactions between adjacent nucleotide-binding sites and/or the amino- and carboxy-terminal extensions. Unexpectedly, X-ray crystallography and electron microscopy showed that the predicted coiled coils are not involved in or required for complex and/or filament formation. The asymmetrical heterotrimers associate head-to-head to form a hexameric unit that is nonpolarized along the filament axis but is rotationally asymmetrical. The architecture of septin filaments differs fundamentally from that of other cytoskeletal structures.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular/ultraestructura , Cristalografía por Rayos X , Proteínas del Citoesqueleto , Dimerización , Proteínas de Unión al GTP/ultraestructura , Humanos , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Nucleótidos/metabolismo , Monoéster Fosfórico Hidrolasas/ultraestructura , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Septinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...