Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.043
Filtrar
1.
Mol Med Rep ; 30(5)2024 11.
Artículo en Inglés | MEDLINE | ID: mdl-39301654

RESUMEN

Cardiac hypertrophy results from the heart reacting and adapting to various pathological stimuli and its persistent development is a major contributing factor to heart failure. However, the molecular mechanisms of cardiac hypertrophy remain unclear. Small GTPases in the Ras, Rho, Rab, Arf and Ran subfamilies exhibit GTPase activity and play crucial roles in regulating various cellular responses. Previous studies have shown that Ras, Rho and Rab are closely linked to cardiac hypertrophy and that their overexpression can induce cardiac hypertrophy. Here, we review the functions of small GTPases in cardiac hypertrophy and provide additional insights and references for the prevention and treatment of cardiac hypertrophy.


Asunto(s)
Cardiomegalia , Proteínas de Unión al GTP Monoméricas , Cardiomegalia/metabolismo , Cardiomegalia/patología , Humanos , Animales , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Transducción de Señal , Proteínas de Unión al GTP rho/metabolismo
2.
Biochim Biophys Acta Mol Cell Res ; 1871(8): 119844, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39260747

RESUMEN

BACKGROUND: Ras guanyl-releasing protein 2 (RASGRP2) is an important regulator mediating endothelial cell function. However, whether RASGRP2 mediates diabetes mellitus (DM)-related atherosclerosis (AS) progression by regulating endothelial cell functions is unknown. METHODS: Human cardiac microvascular endothelial cells (HCMECs) were treated with high-glucose (HG) and oxidized low-density lipoprotein (oxLDL). The expression of RASGRP2 and neural precursor cell expressed developmentally downregulated 4-like (NEDD4L) was examined by quantitative real-time PCR and western blot (WB). Cell viability, apoptosis, migration, angiogenesis were detected by CCK8 assay, flow cytometry, transwell assay and tube formation assay. ROS production and cell permeability were tested to assess cell function. Rap1 and R-Ras protein levels were examined using WB. The interaction between RASGRP2 and NEDD4L was confirmed by Co-IP assay and ubiquitination assay. Exosomes were isolated from adipose-derived MSC (ADMSC)-transfected RASGRP2 overexpression vector, and then co-cultured with HG + oxLDL-induced HCMECs. RESULTS: RASGRP2 was lowly expressed in HG + oxLDL-induced HCMECs. RASGRP2 overexpression inhibited HG + oxLDL-induced HCMECs permeability, apoptosis and ROS production, while accelerated cell viability, migration and angiogenesis. NEDD4L could interact with RASGRP2 by ubiquitination, thus inhibiting RASGRP2 protein stability to degrade its expression. Functional experiments showed that NEDD4L knockdown suppressed HG + oxLDL-induced HCMECs dysfunction, while these effects were reversed by RASGRP2 downregulation. ADMSC-Exo overexpressed RASGRP2 could promote cell viability, migration and angiogenesis, while suppress permeability, apoptosis and ROS production in HG + oxLDL-induced HCMECs. CONCLUSION: Our data showed that targeting NEDD4L/RASGRP2 axis or inducing RASGRP2-modified ADMSC-Exo might be the efficient strategy for alleviating DM-related AS.


Asunto(s)
Células Endoteliales , Glucosa , Factores de Intercambio de Guanina Nucleótido , Lipoproteínas LDL , Humanos , Apoptosis , Movimiento Celular , Supervivencia Celular/efectos de los fármacos , Células Endoteliales/metabolismo , Glucosa/metabolismo , Glucosa/farmacología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/farmacología , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Ubiquitina-Proteína Ligasas Nedd4/genética , Proteínas de Unión al GTP rap1/metabolismo , Proteínas de Unión al GTP rap1/genética
3.
Cells ; 13(17)2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39273073

RESUMEN

Circadian clocks are biochemical timers regulating many physiological and molecular processes according to the day/night cycles. The function of the oscillator relies on negative transcriptional/translational feedback loops operated by the so-called clock genes and the encoded clock proteins. Previously, we identified the small GTPase LIGHT INSENSITIVE PERIOD 1 (LIP1) as a circadian-clock-associated protein that regulates light input to the clock in the model plant Arabidopsis thaliana. We showed that LIP1 is also required for suppressing red and blue light-mediated photomorphogenesis, pavement cell shape determination and tolerance to salt stress. Here, we demonstrate that LIP1 is present in a complex of clock proteins GIGANTEA (GI), ZEITLUPE (ZTL) and TIMING OF CAB 1 (TOC1). LIP1 participates in this complex via GUANINE EX-CHANGE FACTOR 7. Analysis of genetic interactions proved that LIP1 affects the oscillator via modulating the function of GI. We show that LIP1 and GI independently and additively regulate photomorphogenesis and salt stress responses, whereas controlling cell shape and photoperiodic flowering are not shared functions of LIP1 and GI. Collectively, our results suggest that LIP1 affects a specific function of GI, possibly by altering binding of GI to downstream signalling components.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Relojes Circadianos , Regulación de la Expresión Génica de las Plantas , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Relojes Circadianos/genética , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Luz , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Unión al GTP Monoméricas/genética
4.
Sci Rep ; 14(1): 20832, 2024 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242621

RESUMEN

Pluripotent stem cells can differentiate into distinct cell types but the intracellular pathways controlling cell fate choice are not well understood. The social amoeba Dictyostelium discoideum is a simplified system to study choice preference as proliferating amoebae enter a developmental cycle upon starvation and differentiate into two major cell types, stalk and spores, organised in a multicellular fruiting body. Factors such as acidic vesicle pH predispose amoebae to one fate. Here we show that the mechanistic target of rapamycin complex 1 (mTORC1) pathway has a role in cell fate bias in Dictyostelium. Inhibiting the mTORC1 pathway activity by disruption of Rheb (activator Ras homolog enriched in brain), or treatment with the mTORC1 inhibitor rapamycin prior to development, biases cells to a spore cell fate. Conversely activation of the pathway favours stalk cell differentiation. The Set1 histone methyltransferase, responsible for histone H3 lysine4 methylation, in Dictyostelium cells regulates transcription at the onset of development. Disruption of Set1 leads to high mTORC1 pathway activity and stalk cell predisposition. The ability of the mTORC1 pathway to regulate cell fate bias of cells undergoing differentiation offers a potential target to increase the efficiency of stem cell differentiation into a particular cell type.


Asunto(s)
Diferenciación Celular , Dictyostelium , Diana Mecanicista del Complejo 1 de la Rapamicina , Transducción de Señal , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Dictyostelium/metabolismo , Dictyostelium/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Sirolimus/farmacología , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Unión al GTP Monoméricas/genética
5.
Proc Natl Acad Sci U S A ; 121(35): e2322755121, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39163330

RESUMEN

The mechanistic target of rapamycin complex 1 (mTORC1) pathway regulates cell growth and metabolism in response to many environmental cues, including nutrients. Amino acids signal to mTORC1 by modulating the guanine nucleotide loading states of the heterodimeric Rag GTPases, which bind and recruit mTORC1 to the lysosomal surface, its site of activation. The Rag GTPases are tethered to the lysosome by the Ragulator complex and regulated by the GATOR1, GATOR2, and KICSTOR multiprotein complexes that localize to the lysosomal surface through an unknown mechanism(s). Here, we show that mTORC1 is completely insensitive to amino acids in cells lacking the Rag GTPases or the Ragulator component p18. Moreover, not only are the Rag GTPases and Ragulator required for amino acids to regulate mTORC1, they are also essential for the lysosomal recruitment of the GATOR1, GATOR2, and KICSTOR complexes, which stably associate and traffic to the lysosome as the "GATOR" supercomplex. The nucleotide state of RagA/B controls the lysosomal association of GATOR, in a fashion competitively antagonized by the N terminus of the amino acid transporter SLC38A9. Targeting of Ragulator to the surface of mitochondria is sufficient to relocalize the Rags and GATOR to this organelle, but not to enable the nutrient-regulated recruitment of mTORC1 to mitochondria. Thus, our results reveal that the Rag-Ragulator complex is the central organizer of the physical architecture of the mTORC1 nutrient-sensing pathway and underscore that mTORC1 activation requires signal transduction on the lysosomal surface.


Asunto(s)
Aminoácidos , Lisosomas , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas de Unión al GTP Monoméricas , Nutrientes , Transducción de Señal , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Lisosomas/metabolismo , Humanos , Aminoácidos/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Nutrientes/metabolismo , Animales , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Células HEK293
6.
J Cell Biol ; 223(10)2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39101946

RESUMEN

Small GTPases are essential in various cellular signaling pathways, and detecting their activation within living cells is crucial for understanding cellular processes. The current methods for detecting GTPase activation using fluorescent proteins rely on the interaction between the GTPase and its effector. Consequently, these methods are not applicable to factors, such as Sar1, where the effector also functions as a GTPase-activating protein. Here, we present a novel method, the Small GTPase ActIvitY ANalyzing (SAIYAN) system, for detecting the activation of endogenous small GTPases via fluorescent signals utilizing a split mNeonGreen system. We demonstrated Sar1 activation at the endoplasmic reticulum (ER) exit site and successfully detected its activation state in various cellular conditions. Utilizing the SAIYAN system in collagen-secreting cells, we discovered activated Sar1 localized both at the ER exit sites and ER-Golgi intermediate compartment (ERGIC) regions. Additionally, impaired collagen secretion confined the activated Sar1 at the ER exit sites, implying the importance of Sar1 activation through the ERGIC in collagen secretion.


Asunto(s)
Retículo Endoplásmico , Aparato de Golgi , Proteínas de Unión al GTP Monoméricas , Proteínas de Unión al GTP Monoméricas/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Aparato de Golgi/metabolismo , Aparato de Golgi/enzimología , Animales , Activación Enzimática , Colágeno/metabolismo , Células HeLa
7.
Mol Biol Cell ; 35(8): ar113, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38985515

RESUMEN

Coat protein complex II (COPII) governs the initial steps of biosynthetic secretory protein transport from the endoplasmic reticulum (ER), facilitating the movement of a wide variety of cargoes. Here, we demonstrate that Trk-fused gene (TFG) regulates the rate at which inner COPII coat proteins are concentrated at ER subdomains. Specifically, in cells lacking TFG, the GTPase-activating protein (GAP) Sec23 accumulates more rapidly at budding sites on the ER as compared with control cells, potentially altering the normal timing of GTP hydrolysis on Sar1. Under these conditions, anterograde trafficking of several secretory cargoes is delayed, irrespective of their predicted size. We propose that TFG controls the local, freely available pool of Sec23 during COPII coat formation and limits its capacity to prematurely destabilize COPII complexes on the ER. This function of TFG enables it to act akin to a rheostat, promoting the ordered recruitment of Sec23, which is critical for efficient secretory cargo export.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento , Retículo Endoplásmico , Proteínas de Unión al GTP Monoméricas , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Transporte Vesicular , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Activadoras de GTPasa/genética , Aparato de Golgi/metabolismo
8.
Methods Mol Biol ; 2816: 101-115, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38977592

RESUMEN

Members of the Rho family of small monomeric GTPases regulate a plethora of critical cellular functions including gene expression, cell cycle progression, and the dynamic modeling of the actin cytoskeleton. Diversity among Rho family members is derived, in part, from variations in their subcellular distribution. Localization of newly synthesized (naïve) Rho proteins to target subcellular compartments is largely governed by lipid modifications, including posttranslational prenylation. Here, using well-established and widely available contemporary methodologies, detailed protocols by which to semiquantitatively evaluate the functional consequence of posttranslational prenylation in human trabecular meshwork cells are described. We propose the novel concept that posttranslational prenylation itself is a key regulator of mammalian Rho GTPase protein expression and turnover.


Asunto(s)
Malla Trabecular , Humanos , Malla Trabecular/metabolismo , Malla Trabecular/citología , Células Cultivadas , Terpenos/metabolismo , Prenilación de Proteína , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP rho/metabolismo , Proteínas de Unión al GTP rho/genética , Procesamiento Proteico-Postraduccional
9.
Nat Commun ; 15(1): 5797, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987236

RESUMEN

The basal structure of the bacterial flagellum includes a membrane embedded MS-ring (formed by multiple copies of FliF) and a cytoplasmic C-ring (composed of proteins FliG, FliM and FliN). The SRP-type GTPase FlhF is required for directing the initial flagellar protein FliF to the cell pole, but the mechanisms are unclear. Here, we show that FlhF anchors developing flagellar structures to the polar landmark protein HubP/FimV, thereby restricting their formation to the cell pole. Specifically, the GTPase domain of FlhF interacts with HubP, while a structured domain at the N-terminus of FlhF binds to FliG. FlhF-bound FliG subsequently engages with the MS-ring protein FliF. Thus, the interaction of FlhF with HubP and FliG recruits a FliF-FliG complex to the cell pole. In addition, the modulation of FlhF activity by the MinD-type ATPase FlhG controls the interaction of FliG with FliM-FliN, thereby regulating the progression of flagellar assembly at the pole.


Asunto(s)
Proteínas Bacterianas , Flagelos , Flagelos/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Unión Proteica , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/genética , Partícula de Reconocimiento de Señal/metabolismo , Partícula de Reconocimiento de Señal/química , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Unión al GTP Monoméricas/química , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de la Membrana
10.
Angew Chem Int Ed Engl ; 63(44): e202403499, 2024 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-39058298

RESUMEN

Small GTPases comprise a superfamily of over 167 proteins in the human genome and are critical regulators of a variety of pathways including cell migration and proliferation. Despite the importance of these proteins in cell signaling, a standardized approach for controlling small GTPase activation within living cells is lacking. Herein, we report a split-protein-based approach to directly activate small GTPase signaling in living cells. Importantly, our fragmentation site can be applied across the small GTPase superfamily. We highlight the utility of these standardized parts by demonstrating the ability to directly modulate the activity of four different small GTPases with user-defined inputs, providing the first plug and play system for direct activation of small GTPases in living cells.


Asunto(s)
Proteínas de Unión al GTP Monoméricas , Transducción de Señal , Humanos , Proteínas de Unión al GTP Monoméricas/metabolismo , Células HEK293
11.
J Gen Physiol ; 156(9)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38990175

RESUMEN

L-type CaV1.2 current (ICa,L) links electrical excitation to contraction in cardiac myocytes. ICa,L is tightly regulated to control cardiac output. Rad is a Ras-related, monomeric protein that binds to L-type calcium channel ß subunits (CaVß) to promote inhibition of ICa,L. In addition to CaVß interaction conferred by the Rad core motif, the highly conserved Rad C-terminus can direct membrane association in vitro and inhibition of ICa,L in immortalized cell lines. In this work, we test the hypothesis that in cardiomyocytes the polybasic C-terminus of Rad confers t-tubular localization, and that membrane targeting is required for Rad-dependent ICa,L regulation. We introduced a 3xFlag epitope to the N-terminus of the endogenous mouse Rrad gene to facilitate analysis of subcellular localization. Full-length 3xFlag-Rad (Flag-Rad) mice were compared with a second transgenic mouse model, in which the extended polybasic C-termini of 3xFlag-Rad was truncated at alanine 277 (Flag-RadΔCT). Ventricular cardiomyocytes were isolated for anti-Flag-Rad immunocytochemistry and ex vivo electrophysiology. Full-length Flag-Rad showed a repeating t-tubular pattern whereas Flag-RadΔCT failed to display membrane association. ICa,L in Flag-RadΔCT cardiomyocytes showed a hyperpolarized activation midpoint and an increase in maximal conductance. Additionally, current decay was faster in Flag-RadΔCT cells. Myocardial ICa,L in a Rad C-terminal deletion model phenocopies ICa,L modulated in response to ß-AR stimulation. Mechanistically, the polybasic Rad C-terminus confers CaV1.2 regulation via membrane association. Interfering with Rad membrane association constitutes a specific target for boosting heart function as a treatment for heart failure with reduced ejection fraction.


Asunto(s)
Canales de Calcio Tipo L , Miocitos Cardíacos , Animales , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo L/genética , Ratones , Miocitos Cardíacos/metabolismo , Membrana Celular/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Ratones Transgénicos , Proteínas ras
12.
Cell Mol Life Sci ; 81(1): 249, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836877

RESUMEN

Protein ubiquitination is one of the most important posttranslational modifications (PTMs) in eukaryotes and is involved in the regulation of almost all cellular signaling pathways. The intracellular bacterial pathogen Legionella pneumophila translocates at least 26 effectors to hijack host ubiquitination signaling via distinct mechanisms. Among these effectors, SidC/SdcA are novel E3 ubiquitin ligases with the adoption of a Cys-His-Asp catalytic triad. SidC/SdcA are critical for the recruitment of endoplasmic reticulum (ER)-derived vesicles to the Legionella-containing vacuole (LCV). However, the ubiquitination targets of SidC/SdcA are largely unknown, which restricts our understanding of the mechanisms used by these effectors to hijack the vesicle trafficking pathway. Here, we demonstrated that multiple Rab small GTPases and target soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) proteins are bona fide ubiquitination substrates of SidC/SdcA. SidC/SdcA-mediated ubiquitination of syntaxin 3 and syntaxin 4 promotes their unconventional pairing with the vesicle-SNARE protein Sec22b, thereby contributing to the membrane fusion of ER-derived vesicles with the phagosome. In addition, our data reveal that ubiquitination of Rab7 by SidC/SdcA is critical for its association with the LCV membrane. Rab7 ubiquitination could impair its binding with the downstream effector Rab-interacting lysosomal protein (RILP), which partially explains why LCVs avoid fusion with lysosomes despite the acquisition of Rab7. Taken together, our study reveals the biological mechanisms employed by SidC/SdcA to promote the maturation of the LCVs.


Asunto(s)
Legionella pneumophila , Fagosomas , Proteínas SNARE , Ubiquitinación , Proteínas de Unión al GTP rab , Legionella pneumophila/metabolismo , Humanos , Fagosomas/metabolismo , Fagosomas/microbiología , Proteínas SNARE/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Animales , Proteínas Qa-SNARE/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Vacuolas/metabolismo , Vacuolas/microbiología , Células HEK293 , Ratones , Proteínas de Unión a GTP rab7/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Retículo Endoplásmico/metabolismo
13.
Neurobiol Dis ; 199: 106568, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38885848

RESUMEN

Substantial work has been devoted to better understand the contribution of the myriad of genes that may underly the development of Parkinson's disease (PD) and their role in disease etiology. The small GTPase Ras-like without CAAX2 (RIT2) is one such genetic risk factor, with one single nucleotide polymorphism in the RIT2 locus, rs12456492, having been associated with PD risk in multiple populations. While RIT2 has previously been shown to influence signaling pathways, dopamine transporter trafficking, and LRRK2 activity, its cellular function remains unclear. In the current study, we have situated RIT2 to be upstream of various diverse processes associated with PD. In cellular models, we have shown that RIT2 is necessary for activity-dependent changes in the expression of genes related to the autophagy-lysosomal pathway (ALP) by regulating the nuclear translocation of MiT/TFE3-family transcription factors. RIT2 is also associated with lysosomes and can regulate autophagic flux and clearance by regulating lysosomal hydrolase expression and activity. Interestingly, upregulation of RIT2 can augment ALP flux and protect against α-synuclein aggregation in cortical neurons. Taken together, the present study suggests that RIT2 can regulates gene expression upstream of ALP function and that enhancing RIT2 activity may provide therapeutic benefit in PD.


Asunto(s)
Autofagia , Lisosomas , Enfermedad de Parkinson , alfa-Sinucleína , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Autofagia/fisiología , Lisosomas/metabolismo , Humanos , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Animales
14.
Cell Death Dis ; 15(6): 409, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862475

RESUMEN

Low glucose is a common microenvironment for rapidly growing solid tumors, which has developed multiple approaches to survive under glucose deprivation. However, the specific regulatory mechanism remains largely elusive. In this study, we demonstrate that glucose deprivation, while not amino acid or serum starvation, transactivates the expression of DCAF1. This enhances the K48-linked polyubiquitination and proteasome-dependent degradation of Rheb, inhibits mTORC1 activity, induces autophagy, and facilitates cancer cell survival under glucose deprivation conditions. This study identified DCAF1 as a new cellular glucose sensor and uncovered new insights into mechanism of DCAF1-mediated inactivation of Rheb-mTORC1 pathway for promoting cancer cell survival in response to glucose deprivation.


Asunto(s)
Supervivencia Celular , Glucosa , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteína Homóloga de Ras Enriquecida en el Cerebro , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo , Proteína Homóloga de Ras Enriquecida en el Cerebro/genética , Glucosa/metabolismo , Línea Celular Tumoral , Autofagia , Ubiquitinación , Transducción de Señal , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Células HEK293 , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética
15.
Curr Opin Struct Biol ; 87: 102869, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38943706

RESUMEN

The intrinsically disordered, lipid-modified membrane anchor of small GTPases is emerging as a critical modulator of function through its ability to sort lipids in a conformation-dependent manner. We reviewed recent computational and experimental studies that have begun to shed light on the sequence-ensemble-function relationship in this unique class of lipidated intrinsically disordered regions (LIDRs).


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Unión al GTP Monoméricas/química , Humanos , Membrana Celular/metabolismo , Animales
16.
J Phys Chem B ; 128(27): 6518-6528, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38942776

RESUMEN

Protein structure has been well established to play a key role in determining function; however, intrinsically disordered proteins and regions (IDPs and IDRs) defy this paradigm. IDPs and IDRs exist as an ensemble of structures rather than a stable 3D structure yet play essential roles in many cell-signaling processes. Nearly all Ras superfamily GTPases are tethered to membranes by a lipid tail at the end of a flexible IDR. The sequence of the IDR is a key determinant of membrane localization, and interaction between the IDR and the membrane has been shown to affect signaling in RAS proteins through the modulation of dynamic membrane organization. Here, we utilized atomistic molecular dynamics simulations to study the membrane interaction, conformational dynamics, and lipid sorting of three IDRs from small GTPases Rheb, RhoA, and DiRas3 in model membranes representing their physiological target membranes. We found that complementarity between the lipidated IDR sequence and target membrane lipid composition is a determinant of conformational plasticity. We also show that electrostatic interactions between anionic lipids and basic residues on IDRs are correlated with sampling of semistable conformational substates, and lack of these interactions is associated with greater conformational diversity. Finally, we show that small GTPase IDRs with a polybasic domain alter local lipid composition by segregating anionic lipids and, in some cases, excluding other lipids from their immediate vicinity in favor of anionic lipids.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Proteína Homóloga de Ras Enriquecida en el Cerebro , Proteína de Unión al GTP rhoA , Humanos , Membrana Celular/metabolismo , Membrana Celular/química , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Simulación de Dinámica Molecular , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Unión al GTP Monoméricas/química , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo , Proteína Homóloga de Ras Enriquecida en el Cerebro/química , Proteína de Unión al GTP rhoA/metabolismo , Proteína de Unión al GTP rhoA/química
17.
Cell Death Differ ; 31(8): 1070-1084, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38816580

RESUMEN

Sterol regulatory element binding transcription factors (SREBPs) play a crucial role in lipid homeostasis. They are processed and transported to the nucleus via COPII, where they induce the expression of lipogenic genes. COPII maintains the homeostasis of organelles and plays an essential role in the protein secretion pathways in eukaryotes. The formation of COPII begins at endoplasmic reticulum exit sites (ERES), and is regulated by SEC16A, which provides a platform for the assembly of COPII. However, there have been few studies on the changes in SEC16A protein levels. The repetitive expansion of the hexanucleotide sequence GGGGCC within the chromosome 9 open reading frame 72 (C9orf72) gene is a prevalent factor in the development of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here, we found that the absence of C9orf72 leads to a decrease in SEC16A protein levels, resulting in reduced localization of the guanine nucleotide exchange factor SEC12 at the ERES. Consequently, the small GTP binding protein SAR1 is unable to bind the endoplasmic reticulum normally, impairing the assembly of COPII. Ultimately, the disruption of SREBPs transport decreases de novo lipogenesis. These results suggest that C9orf72 acts as a novel role in regulating lipid homeostasis and may serve as a potential therapeutic target for obesity.


Asunto(s)
Proteína C9orf72 , Retículo Endoplásmico , Metabolismo de los Lípidos , Hígado , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Humanos , Proteína C9orf72/metabolismo , Proteína C9orf72/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Animales , Retículo Endoplásmico/metabolismo , Hígado/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Ratones , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Lipogénesis/genética
18.
Plant Mol Biol ; 114(3): 64, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809410

RESUMEN

Pollen tube growth is an essential step leading to reproductive success in flowering plants, in which vesicular trafficking plays a key role. Vesicular trafficking from endoplasmic reticulum to the Golgi apparatus is mediated by the coat protein complex II (COPII). A key component of COPII is small GTPase Sar1. Five Sar1 isoforms are encoded in the Arabidopsis genome and they show distinct while redundant roles in various cellular and developmental processes, especially in reproduction. Arabidopsis Sar1b is essential for sporophytic control of pollen development while Sar1b and Sar1c are critical for gametophytic control of pollen development. Because functional loss of Sar1b and Sar1c resulted in pollen abortion, whether they influence pollen tube growth was unclear. Here we demonstrate that Sar1b mediates pollen tube growth, in addition to its role in pollen development. Although functional loss of Sar1b does not affect pollen germination, it causes a significant reduction in male transmission and of pollen tube penetration of style. We further show that membrane dynamics at the apex of pollen tubes are compromised by Sar1b loss-of-function. Results presented provide further support of functional complexity of the Sar1 isoforms.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Tubo Polínico , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/metabolismo , Tubo Polínico/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Regulación de la Expresión Génica de las Plantas , Polen/crecimiento & desarrollo , Polen/genética , Polen/metabolismo , Plantas Modificadas Genéticamente , Germinación/genética
19.
Int J Mol Sci ; 25(8)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38674111

RESUMEN

Coatomer Protein Complex-II (COPII) mediates anterograde vesicle transport from the endoplasmic reticulum (ER) to the Golgi apparatus. Here, we report that the COPII coatomer complex is constructed dependent on a small GTPase, Sar1, in spermatocytes before and during Drosophila male meiosis. COPII-containing foci co-localized with transitional endoplasmic reticulum (tER)-Golgi units. They showed dynamic distribution along astral microtubules and accumulated around the spindle pole, but they were not localized on the cleavage furrow (CF) sites. The depletion of the four COPII coatomer subunits, Sec16, or Sar1 that regulate COPII assembly resulted in multinucleated cell production after meiosis, suggesting that cytokinesis failed in both or either of the meiotic divisions. Although contractile actomyosin and anilloseptin rings were formed once plasma membrane ingression was initiated, they were frequently removed from the plasma membrane during furrowing. We explored the factors conveyed toward the CF sites in the membrane via COPII-mediated vesicles. DE-cadherin-containing vesicles were formed depending on Sar1 and were accumulated in the cleavage sites. Furthermore, COPII depletion inhibited de novo plasma membrane insertion. These findings suggest that COPII vesicles supply the factors essential for the anchoring and/or constriction of the contractile rings at cleavage sites during male meiosis in Drosophila.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento , Citocinesis , Proteínas de Drosophila , Meiosis , Proteínas de Transporte Vesicular , Animales , Masculino , Cadherinas/metabolismo , Membrana Celular/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Citocinesis/fisiología , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Meiosis/fisiología , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Espermatocitos/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
20.
Cell Signal ; 119: 111172, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38604342

RESUMEN

Simvastatin is an inhibitor of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, which is a rate-limiting enzyme of the cholesterol synthesis pathway. It has been used clinically as a lipid-lowering agent to reduce low-density lipoprotein (LDL) cholesterol levels. In addition, antitumor activity has been demonstrated. Although simvastatin attenuates the prenylation of small GTPases, its effects on cell division in which small GTPases play an important role, have not been examined as a mechanism underlying its cytostatic effects. In this study, we determined its effect on cell division. Cell cycle synchronization experiments revealed a delay in mitotic progression in simvastatin-treated cells at concentrations lower than the IC50. Time-lapse imaging analysis indicated that the duration of mitosis, especially from mitotic entry to anaphase onset, was prolonged. In addition, simvastatin increased the number of cells exhibiting misoriented anaphase/telophase and bleb formation. Inhibition of the spindle assembly checkpoint (SAC) kinase Mps1 canceled the mitotic delay. Additionally, the number of cells exhibiting kinetochore localization of BubR1, an essential component of SAC, was increased, suggesting an involvement of SAC in the mitotic delay. Enhancement of F-actin formation and cell rounding at mitotic entry indicates that cortical actin dynamics were affected by simvastatin. The cholesterol removal agent methyl-ß-cyclodextrin (MßCD) accelerated mitotic progression differently from simvastatin, suggesting that cholesterol loss from the plasma membrane is not involved in the mitotic delay. Of note, the small GTPase RhoA, which is a critical factor for cortical actin dynamics, exhibited upregulated expression. In addition, Rap1 was likely not geranylgeranylated. Our results demonstrate that simvastatin affects actin dynamics by modifying small GTPases, thereby activating the spindle assembly checkpoint and causing abnormal cell division.


Asunto(s)
Puntos de Control de la Fase M del Ciclo Celular , Simvastatina , Simvastatina/farmacología , Humanos , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Células HeLa , Proteínas de Unión al GTP Monoméricas/metabolismo , Mitosis/efectos de los fármacos , División Celular/efectos de los fármacos , Proteína de Unión al GTP rhoA/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...