Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 13059, 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844490

RESUMEN

The COVID-19 pandemic caused by SARS-CoV-2 has highlighted the urgent need for innovative antiviral strategies to fight viral infections. Although a substantial part of the overall effort has been directed at the Spike protein to create an effective global vaccination strategy, other proteins have also been examined and identified as possible therapeutic targets. Among them, although initially underestimated, there is the SARS-CoV-2 E-protein, which turned out to be a key factor in viral pathogenesis due to its role in virus budding, assembly and spreading. The C-terminus of E-protein contains a PDZ-binding motif (PBM) that plays a key role in SARS-CoV-2 virulence as it is recognized and bound by the PDZ2 domain of the human tight junction protein ZO-1. The binding between the PDZ2 domain of ZO-1 and the C-terminal portion of SARS-CoV-2 E-protein has been extensively characterized. Our results prompted us to develop a possible adjuvant therapeutic strategy aimed at slowing down or inhibiting virus-mediated pathogenesis. Such innovation consists in the design and synthesis of externally PDZ2-ZO1 functionalized PLGA-based nanoparticles to be used as intracellular decoy. Contrary to conventional strategies, this innovative approach aims to capitalize on the E protein-PDZ2 interaction to prevent virus assembly and replication. In fact, the conjugation of the PDZ2 domain to polymeric nanoparticles increases the affinity toward the E protein effectively creating a "molecular sponge" able to sequester E proteins within the intracellular environment of infected cells. Our in vitro studies on selected cellular models, show that these nanodevices significantly reduce SARS-CoV-2-mediated virulence, emphasizing the importance of exploiting viral-host interactions for therapeutic benefit.


Asunto(s)
Nanopartículas , Dominios PDZ , SARS-CoV-2 , Humanos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/metabolismo , Nanopartículas/química , COVID-19/virología , COVID-19/metabolismo , Proteína de la Zonula Occludens-1/metabolismo , Proteínas de la Envoltura de Coronavirus/metabolismo , Proteínas de la Envoltura de Coronavirus/química , Antivirales/farmacología , Antivirales/química , Tratamiento Farmacológico de COVID-19 , Animales , Unión Proteica
2.
J Biol Chem ; 300(1): 105575, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38110034

RESUMEN

The carboxy-terminal tail of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) envelope protein (E) contains a PDZ-binding motif (PBM) which is crucial for coronavirus pathogenicity. During SARS-CoV-2 infection, the viral E protein is expressed within the Golgi apparatus membrane of host cells with its PBM facing the cytoplasm. In this work, we study the molecular mechanisms controlling the presentation of the PBM to host PDZ (PSD-95/Dlg/ZO-1) domain-containing proteins. We show that at the level of the Golgi apparatus, the PDZ-binding motif of the E protein is not detected by E C-terminal specific antibodies nor by the PDZ domain-containing protein-binding partner. Four alanine substitutions upstream of the PBM in the central region of the E protein tail is sufficient to generate immunodetection by anti-E antibodies and trigger robust recruitment of the PDZ domain-containing protein into the Golgi organelle. Overall, this work suggests that the presentation of the PBM to the cytoplasm is under conformational regulation mediated by the central region of the E protein tail and that PBM presentation probably does not occur at the surface of Golgi cisternae but likely at post-Golgi stages of the viral cycle.


Asunto(s)
Proteínas de la Envoltura de Coronavirus , Citoplasma , SARS-CoV-2 , Humanos , Secuencias de Aminoácidos , Proteínas de la Envoltura de Coronavirus/química , Proteínas de la Envoltura de Coronavirus/metabolismo , COVID-19/patología , COVID-19/virología , Citoplasma/metabolismo , Citoplasma/virología , Aparato de Golgi/química , Aparato de Golgi/metabolismo , Guanilato-Quinasas/metabolismo , Dominios PDZ , Unión Proteica , Conformación Proteica , Transporte de Proteínas , SARS-CoV-2/química , SARS-CoV-2/metabolismo
3.
J Virol ; 97(10): e0042623, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37830820

RESUMEN

IMPORTANCE: Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), the virus responsible for coronavirus disease 2019 (COVID-19), has caused a global public health crisis. The E protein, a structural protein found in this virus particle, is also known to be a viroporin. As such, it forms oligomeric ion channels or pores in the host cell membrane. However, the relationship between these two functions is poorly understood. In this study, we showed that the roles of E protein in virus particle and viroporin formation are distinct. This study contributes to the development of drugs that inhibit SARS-CoV-2 virus particle formation. Additionally, we designed a highly sensitive and high-throughput virus-like particle detection system using the HiBiT tag, which is a useful tool for studying the release of SARS-CoV-2.


Asunto(s)
Proteínas de la Envoltura de Coronavirus , SARS-CoV-2 , Humanos , COVID-19 , Lisosomas/metabolismo , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/metabolismo , Proteínas Viroporinas/metabolismo , Proteínas de la Envoltura de Coronavirus/metabolismo , Secuencias de Aminoácidos , Liberación del Virus
4.
J Phys Chem Lett ; 13(45): 10642-10648, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36354180

RESUMEN

The neurological symptoms of long COVID and viral neuroinvasion have raised concerns about the potential interactions between SARS-CoV-2 protein segments and neuronal proteins, which might confer a risk of post-infection neurodegeneration, but the underlying mechanisms remain unclear. Here, we reported that the receptor-binding domain (RBD) of the spike protein and the nine-residue segment (SK9) of the envelope protein could bind to α-synuclein (αSyn) with Kd values of 503 ± 24 nM and 12.7 ± 1.6 µM, respectively. RBD could inhibit αSyn fibrillization by blocking the non-amyloid-ß component region and mediating its antiparallel ß-sheet structural conversions. Omicron-RBD (BA.5) was shown to have a slightly stronger affinity for αSyn (Kd = 235 ± 10 nM), which implies similar effects, whereas SK9 may bind to the C-terminus which accelerates the formation of parallel ß-sheet-containing oligomers and abruptly increases the rate of membrane disruption by 213%. Our results provide plausible molecular insights into the impact of SARS-CoV-2 post-infection and the oligomerization propensity of αSyn that is associated with Parkinson's disease.


Asunto(s)
COVID-19 , Proteínas de la Envoltura de Coronavirus , Enfermedad de Parkinson , Glicoproteína de la Espiga del Coronavirus , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Enfermedad de Parkinson/metabolismo , Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/metabolismo , Proteínas de la Envoltura de Coronavirus/metabolismo , Síndrome Post Agudo de COVID-19
5.
Structure ; 30(9): 1224-1232.e5, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35716662

RESUMEN

Emerging new variants of SARS-CoV-2 and inevitable acquired drug resistance call for the continued search of new pharmacological targets to fight the potentially fatal infection. Here, we describe the mechanisms by which the E protein of SARS-CoV-2 hijacks the human transcriptional regulator BRD4. We found that SARS-CoV-2 E is acetylated in vivo and co-immunoprecipitates with BRD4 in human cells. Bromodomains (BDs) of BRD4 bind to the C-terminus of the E protein, acetylated by human acetyltransferase p300, whereas the ET domain of BRD4 recognizes the unmodified motif of the E protein. Inhibitors of BRD4 BDs, JQ1 or OTX015, decrease SARS-CoV-2 infectivity in lung bronchial epithelial cells, indicating that the acetyllysine binding function of BDs is necessary for the virus fitness and that BRD4 represents a potential anti-COVID-19 target. Our findings provide insight into molecular mechanisms that contribute to SARS-CoV-2 pathogenesis and shed light on a new strategy to block SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Proteínas de Ciclo Celular/metabolismo , Proteínas de la Envoltura de Coronavirus/metabolismo , SARS-CoV-2/fisiología , Factores de Transcripción/metabolismo , COVID-19/virología , Humanos , Proteínas Nucleares/metabolismo , Unión Proteica , Dominios Proteicos
6.
Viruses ; 14(5)2022 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-35632741

RESUMEN

This paper presents a molecular characterization of the interaction between the SARS-CoV-2 envelope (E) protein and TLR2. We demonstrated that the E protein, both as a recombinant soluble protein and as a native membrane protein associated with SARS-CoV-2 viral particles, interacts physically with the TLR2 receptor in a specific and dose-dependent manner. Furthermore, we showed that the specific interaction with the TLR2 pathway activates the NF-κB transcription factor and stimulates the production of the CXCL8 inflammatory chemokine. In agreement with the importance of NF-κB in the TLR signaling pathway, we showed that the chemical inhibition of this transcription factor leads to significant inhibition of CXCL8 production, while the blockade of the P38 and ERK1/2 MAP kinases only results in partial CXCL8 inhibition. Overall, our findings propose the envelope (E) protein as a novel molecular target for COVID-19 interventions: either (i) by exploring the therapeutic effect of anti-E blocking/neutralizing antibodies in symptomatic COVID-19 patients, or (ii) as a promising non-spike SARS-CoV-2 antigen candidate for inclusion in the development of next-generation prophylactic vaccines against COVID-19 infection and disease.


Asunto(s)
COVID-19 , Proteínas de la Envoltura de Coronavirus , SARS-CoV-2 , Receptor Toll-Like 2 , Proteínas de la Envoltura de Coronavirus/metabolismo , Humanos , Interleucina-8 , FN-kappa B , Receptor Toll-Like 2/metabolismo
7.
J Phys Chem B ; 126(20): 3648-3658, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35580331

RESUMEN

Aggregates of α-synuclein are thought to be the disease-causing agent in Parkinson's disease. Various case studies have hinted at a correlation between COVID-19 and the onset of Parkinson's disease. For this reason, we use molecular dynamics simulations to study whether amyloidogenic regions in SARS-COV-2 proteins can initiate and modulate aggregation of α-synuclein. As an example, we choose the nine-residue fragment SFYVYSRVK (SK9), located on the C-terminal of the envelope protein of SARS-COV-2. We probe how the presence of SK9 affects the conformational ensemble of α-synuclein monomers and the stability of two resolved fibril polymorphs. We find that the viral protein fragment SK9 may alter α-synuclein amyloid formation by shifting the ensemble toward aggregation-prone and preferentially rod-like fibril seeding conformations. However, SK9 has only a small effect on the stability of pre-existing or newly formed fibrils. A potential mechanism and key residues for potential virus-induced amyloid formation are described.


Asunto(s)
Proteínas Amiloidogénicas , Proteínas de la Envoltura de Coronavirus , Enfermedad de Parkinson , Fragmentos de Péptidos , alfa-Sinucleína , Proteínas Amiloidogénicas/química , Proteínas Amiloidogénicas/metabolismo , COVID-19/virología , Proteínas de la Envoltura de Coronavirus/química , Proteínas de la Envoltura de Coronavirus/metabolismo , Humanos , Enfermedad de Parkinson/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , SARS-CoV-2/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
8.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35058348

RESUMEN

Novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants pose a challenge to controlling the COVID-19 pandemic. Previous studies indicate that clinical samples collected from individuals infected with the Delta variant may contain higher levels of RNA than previous variants, but the relationship between levels of viral RNA and infectious virus for individual variants is unknown. We measured infectious viral titer (using a microfocus-forming assay) and total and subgenomic viral RNA levels (using RT-PCR) in a set of 162 clinical samples containing SARS-CoV-2 Alpha, Delta, and Epsilon variants that were collected in identical swab kits from outpatient test sites and processed soon after collection. We observed a high degree of variation in the relationship between viral titers and RNA levels. Despite this, the overall infectivity differed among the three variants. Both Delta and Epsilon had significantly higher infectivity than Alpha, as measured by the number of infectious units per quantity of viral E gene RNA (5.9- and 3.0-fold increase; P < 0.0001, P = 0.014, respectively) or subgenomic E RNA (14.3- and 6.9-fold increase; P < 0.0001, P = 0.004, respectively). In addition to higher viral RNA levels reported for the Delta variant, the infectivity (amount of replication competent virus per viral genome copy) may be increased compared to Alpha. Measuring the relationship between live virus and viral RNA is an important step in assessing the infectivity of novel SARS-CoV-2 variants. An increase in the infectivity for Delta may further explain increased spread, suggesting a need for increased measures to prevent viral transmission.


Asunto(s)
COVID-19/epidemiología , Regulación Viral de la Expresión Génica , Genoma Viral , ARN Viral/genética , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Animales , COVID-19/patología , COVID-19/transmisión , COVID-19/virología , Línea Celular Tumoral , Chlorocebus aethiops , Proteínas de la Envoltura de Coronavirus/genética , Proteínas de la Envoltura de Coronavirus/metabolismo , Hepatocitos/metabolismo , Hepatocitos/virología , Humanos , ARN Viral/metabolismo , SARS-CoV-2/clasificación , SARS-CoV-2/metabolismo , Células Vero , Carga Viral , Virulencia
9.
Anal Bioanal Chem ; 414(5): 1773-1785, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34958396

RESUMEN

Nucleic acid tests to detect the SARS-CoV-2 virus have been performed worldwide since the beginning of the COVID-19 pandemic. For the quality assessment of testing laboratories and the performance evaluation of molecular diagnosis products, reference materials (RMs) are required. In this work, we report the production of a lentiviral SARS-CoV-2 RM containing approximately 12 kilobases of its genome including common diagnostics targets such as RdRp, N, E, and S genes. The RM was measured with multiple assays using two different digital PCR platforms. To measure the homogeneity and stability of the lentiviral SARS-CoV-2 RM, reverse transcription droplet digital PCR (RT-ddPCR) was used with in-house duplex assays. The copy number concentration of each target gene in the extracted RNA solution was then converted to that of the RM solution. Their copy number values are measured to be from 1.5 × 105 to 2.0 × 105 copies/mL. The RM has a between-bottle homogeneity of 4.80-8.23% and is stable at 4 °C for 1 week and at -70 °C for 6 months. The lentiviral SARS-CoV-2 RM closely mimics real samples that undergo identical pre-analytical processes for SARS-CoV-2 molecular testing. By offering accurate reference values for the absolute copy number of viral target genes, the developed RM can be used to improve the reliability of SARS-CoV-2 molecular testing.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Genoma Viral , ARN Viral/genética , Juego de Reactivos para Diagnóstico/normas , SARS-CoV-2/genética , COVID-19/virología , Prueba de Ácido Nucleico para COVID-19/normas , Proteínas de la Envoltura de Coronavirus/genética , Proteínas de la Envoltura de Coronavirus/metabolismo , Proteínas de la Nucleocápside de Coronavirus/genética , Proteínas de la Nucleocápside de Coronavirus/metabolismo , ARN Polimerasa Dependiente de ARN de Coronavirus/genética , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Dosificación de Gen , Expresión Génica , Humanos , Células Jurkat , Lentivirus/genética , Lentivirus/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , ARN Viral/metabolismo , ARN Viral/normas , Juego de Reactivos para Diagnóstico/provisión & distribución , Estándares de Referencia , Reproducibilidad de los Resultados , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Empaquetamiento del Genoma Viral
10.
Infect Genet Evol ; 97: 105195, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34954105

RESUMEN

SARS-CoV-2 is the RNA virus responsible for COVID-19, the prognosis of which has been found to be slightly worse in men. The present study aimed to analyze the expression of different mRNAs and their regulatory molecules (miRNAs and lncRNAs) to consider the potential existence of sex-specific expression patterns and COVID-19 susceptibility using bioinformatics analysis. The binding sites of all human mature miRNA sequences on the SARS-CoV-2 genome nucleotide sequence were predicted by the miRanda tool. Sequencing data was excavated using the Galaxy web server from GSE157103, and the output of feature counts was analyzed using DEseq2 packages to obtain differentially expressed genes (DEGs). Gene set enrichment analysis (GSEA) and DEG annotation analyses were performed using the ToppGene and Metascape tools. Using the RNA Interactome Database, we predicted interactions between differentially expressed lncRNAs and differentially expressed mRNAs. Finally, their networks were constructed with top miRNAs. We identified 11 miRNAs with three to five binding sites on the SARS-COVID-2 genome reference. MiR-29c-3p, miR-21-3p, and miR-6838-5p occupied four binding sites, and miR-29a-3p had five binding sites on the SARS-CoV-2 genome. Moreover, miR-29a-3p, and miR-29c-3p were the top miRNAs targeting DEGs. The expression levels of miRNAs (125, 181b, 130a, 29a, b, c, 212, 181a, 133a) changed in males with COVID-19, in whom they regulated ACE2 expression and affected the immune response by affecting phagosomes, complement activation, and cell-matrix adhesion. Our results indicated that XIST lncRNA was up-regulated, and TTTY14, TTTY10, and ZFY-AS1 lncRN as were down-regulated in both ICU and non-ICU men with COVID-19. Dysregulation of noncoding-RNAs has critical effects on the pathophysiology of men with COVID-19, which is why they may be used as biomarkers and therapeutic agents. Overall, our results indicated that the miR-29 family target regulation patterns and might become promising biomarkers for severity and survival outcome in men with COVID-19.


Asunto(s)
Enzima Convertidora de Angiotensina 2/genética , COVID-19/genética , MicroARNs/genética , ARN Largo no Codificante/genética , SARS-CoV-2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/epidemiología , COVID-19/patología , COVID-19/virología , Biología Computacional/métodos , Proteínas de la Envoltura de Coronavirus/genética , Proteínas de la Envoltura de Coronavirus/metabolismo , Proteínas M de Coronavirus/genética , Proteínas M de Coronavirus/metabolismo , Proteínas de la Nucleocápside de Coronavirus/genética , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Bases de Datos Genéticas , Femenino , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Humanos , Masculino , MicroARNs/clasificación , MicroARNs/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Unión Proteica , ARN Largo no Codificante/clasificación , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , SARS-CoV-2/clasificación , SARS-CoV-2/patogenicidad , Índice de Severidad de la Enfermedad , Factores Sexuales , Transducción de Señal , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
11.
J Phys Chem Lett ; 12(51): 12249-12255, 2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-34928612

RESUMEN

SARS-CoV-2 and other coronaviruses pose major threats to global health, yet computational efforts to understand them have largely overlooked the process of budding, a key part of the coronavirus life cycle. When expressed together, coronavirus M and E proteins are sufficient to facilitate budding into the ER-Golgi intermediate compartment (ERGIC). To help elucidate budding, we ran atomistic molecular dynamics (MD) simulations using the Feig laboratory's refined structural models of the SARS-CoV-2 M protein dimer and E protein pentamer. Our MD simulations consisted of M protein dimers and E protein pentamers in patches of membrane. By examining where these proteins induced membrane curvature in silico, we obtained insights around how the budding process may occur. Multiple M protein dimers acted together to induce global membrane curvature through protein-lipid interactions while E protein pentamers kept the membrane planar. These results could eventually help guide development of antiviral therapeutics that inhibit coronavirus budding.


Asunto(s)
Proteínas de la Envoltura de Coronavirus/metabolismo , Simulación de Dinámica Molecular , SARS-CoV-2/fisiología , Proteínas de la Matriz Viral/metabolismo , COVID-19/patología , COVID-19/virología , Proteínas de la Envoltura de Coronavirus/química , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Humanos , Multimerización de Proteína , Transporte de Proteínas , SARS-CoV-2/aislamiento & purificación , Proteínas de la Matriz Viral/química
12.
Sci Rep ; 11(1): 24432, 2021 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-34952919

RESUMEN

Despite the initial success of some drugs and vaccines targeting COVID-19, understanding the mechanism underlying SARS-CoV-2 disease pathogenesis remains crucial for the development of further approaches to treatment. Some patients with severe Covid-19 experience a cytokine storm and display evidence of inflammasome activation leading to increased levels of IL-1ß and IL-18; however, other reports have suggested reduced inflammatory responses to Sars-Cov-2. In this study we have examined the effects of the Sars-Cov-2 envelope (E) protein, a virulence factor in coronaviruses, on inflammasome activation and pulmonary inflammation. In cultured macrophages the E protein suppressed inflammasome priming and NLRP3 inflammasome activation. Similarly, in mice transfected with E protein and treated with poly(I:C) to simulate the effects of viral RNA, the E protein, in an NLRP3-dependent fashion, reduced expression of pro-IL-1ß, levels of IL-1ß and IL-18 in broncho-alveolar lavage fluid, and macrophage infiltration in the lung. To simulate the effects of more advanced infection, macrophages were treated with both LPS and poly(I:C). In this setting the E protein increased NLRP3 inflammasome activation in both murine and human macrophages. Thus, the Sars-Cov-2 E protein may initially suppress the host NLRP3 inflammasome response to viral RNA while potentially increasing NLRP3 inflammasome responses in the later stages of infection. Targeting the Sars-Cov-2 E protein especially in the early stages of infection may represent a novel approach to Covid-19 therapy.


Asunto(s)
Proteínas de la Envoltura de Coronavirus/metabolismo , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , SARS-CoV-2/metabolismo , Animales , Líquido del Lavado Bronquioalveolar/química , COVID-19/patología , COVID-19/virología , Proteínas de la Envoltura de Coronavirus/genética , Regulación hacia Abajo/efectos de los fármacos , Estrés del Retículo Endoplásmico , Humanos , Inflamasomas/efectos de los fármacos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Quinasas Janus/genética , Quinasas Janus/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/deficiencia , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Poli I-C/farmacología , ARN Viral/metabolismo , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/aislamiento & purificación
13.
Science ; 374(6575): 1626-1632, 2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-34735219

RESUMEN

Efforts to determine why new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants demonstrate improved fitness have been limited to analyzing mutations in the spike (S) protein with the use of S-pseudotyped particles. In this study, we show that SARS-CoV-2 virus-like particles (SC2-VLPs) can package and deliver exogenous transcripts, enabling analysis of mutations within all structural proteins and at multiple steps in the viral life cycle. In SC2-VLPs, four nucleocapsid (N) mutations found universally in more-transmissible variants independently increased messenger RNA delivery and expression ~10-fold, and in a reverse genetics model, the serine-202→arginine (S202R) and arginine-203→methionine (R203M) mutations each produced >50 times as much virus. SC2-VLPs provide a platform for rapid testing of viral variants outside of a biosafety level 3 setting and demonstrate N mutations and particle assembly to be mechanisms that could explain the increased spread of variants, including B.1.617.2 (Delta, which contains the R203M mutation).


Asunto(s)
Partículas Similares a Virus Artificiales , Proteínas de la Nucleocápside de Coronavirus/genética , Mutación , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Animales , Línea Celular , Proteínas de la Envoltura de Coronavirus/genética , Proteínas de la Envoltura de Coronavirus/metabolismo , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Evolución Molecular , Genoma Viral , Humanos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Plásmidos , ARN Mensajero/genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Empaquetamiento del Genoma Viral , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/metabolismo , Internalización del Virus
14.
Mol Syst Biol ; 17(9): e10079, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34519429

RESUMEN

We modeled 3D structures of all SARS-CoV-2 proteins, generating 2,060 models that span 69% of the viral proteome and provide details not available elsewhere. We found that ˜6% of the proteome mimicked human proteins, while ˜7% was implicated in hijacking mechanisms that reverse post-translational modifications, block host translation, and disable host defenses; a further ˜29% self-assembled into heteromeric states that provided insight into how the viral replication and translation complex forms. To make these 3D models more accessible, we devised a structural coverage map, a novel visualization method to show what is-and is not-known about the 3D structure of the viral proteome. We integrated the coverage map into an accompanying online resource (https://aquaria.ws/covid) that can be used to find and explore models corresponding to the 79 structural states identified in this work. The resulting Aquaria-COVID resource helps scientists use emerging structural data to understand the mechanisms underlying coronavirus infection and draws attention to the 31% of the viral proteome that remains structurally unknown or dark.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Interacciones Huésped-Patógeno/genética , Procesamiento Proteico-Postraduccional , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/química , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Sitios de Unión , COVID-19/genética , COVID-19/metabolismo , COVID-19/virología , Biología Computacional/métodos , Proteínas de la Envoltura de Coronavirus/química , Proteínas de la Envoltura de Coronavirus/genética , Proteínas de la Envoltura de Coronavirus/metabolismo , Proteínas de la Nucleocápside de Coronavirus/química , Proteínas de la Nucleocápside de Coronavirus/genética , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Humanos , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Modelos Moleculares , Imitación Molecular , Neuropilina-1/química , Neuropilina-1/genética , Neuropilina-1/metabolismo , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas/métodos , Multimerización de Proteína , SARS-CoV-2/química , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/metabolismo , Proteínas Viroporinas/química , Proteínas Viroporinas/genética , Proteínas Viroporinas/metabolismo , Replicación Viral
15.
Biomolecules ; 11(8)2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34439792

RESUMEN

The recent pandemic we are experiencing caused by the coronavirus disease 2019 (COVID-19) has put the world's population on the rack, with more than 191 million cases and more than 4.1 million deaths confirmed to date. This disease is caused by a new type of coronavirus, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A massive proteomic analysis has revealed that one of the structural proteins of the virus, the E protein, interacts with BRD2 and BRD4 proteins of the Bromodomain and Extra Terminal domain (BET) family of proteins. BETs are essential to cell cycle progression, inflammation and immune response and have also been strongly associated with infection by different types of viruses. The fundamental role BET proteins play in transcription makes them appropriate targets for the propagation strategies of some viruses. Recognition of histone acetylation by BET bromodomains is essential for transcription control. The development of drugs mimicking acetyl groups, and thereby able to displace BET proteins from chromatin, has boosted interest on BETs as attractive targets for therapeutic intervention. The success of these drugs against a variety of diseases in cellular and animal models has been recently enlarged with promising results from SARS-CoV-2 infection studies.


Asunto(s)
COVID-19/metabolismo , Proteínas de Ciclo Celular/metabolismo , Factores de Transcripción/metabolismo , COVID-19/inmunología , COVID-19/virología , Proteínas de la Envoltura de Coronavirus/metabolismo , Humanos , Inmunidad Innata , Unión Proteica
16.
Int J Mol Sci ; 22(16)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34445789

RESUMEN

The SARS-CoV-2 pseudovirus is a commonly used strategy that mimics certain biological functions of the authentic virus by relying on biological legitimacy at the molecular level. Despite the fact that spike (S), envelope (E), and membrane (M) proteins together wrap up the SARS-CoV-2 virion, most of the reported pseudotype viruses consist of only the S protein. Here, we report that the presence of E and M increased the virion infectivity by promoting the S protein priming. The S, E, and M (SEM)-coated pseudovirion is spherical, containing crown-like spikes on the surface. Both S and SEM pseudoviruses packaged the same amounts of viral RNA, but the SEM virus bound more efficiently to cells stably expressing the viral receptor human angiotensin-converting enzyme II (hACE2) and became more infectious. Using this SEM pseudovirus, we examined the infectivity and antigenic properties of the natural SARS-CoV-2 variants. We showed that some variants have higher infectivity than the original virus and that some render the neutralizing plasma with lower potency. These studies thus revealed possible mechanisms of the dissemination advantage of these variants. Hence, the SEM pseudovirion provides a useful tool to evaluate the viral infectivity and capability of convalescent sera in neutralizing specific SARS-CoV-2 S dominant variants.


Asunto(s)
Anticuerpos Antivirales/metabolismo , COVID-19/inmunología , Proteínas de la Envoltura de Coronavirus/metabolismo , SARS-CoV-2/patogenicidad , Proteínas de la Matriz Viral/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Anticuerpos Antivirales/inmunología , COVID-19/sangre , COVID-19/virología , Línea Celular , Proteínas de la Envoltura de Coronavirus/genética , Proteínas de la Envoltura de Coronavirus/inmunología , Proteínas de la Envoltura de Coronavirus/ultraestructura , Cricetinae , Humanos , Microscopía Electrónica de Transmisión , Mutación , Pruebas de Neutralización , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/inmunología , Proteínas de la Matriz Viral/ultraestructura , Virión/genética , Virión/inmunología , Virión/metabolismo , Virión/ultraestructura
17.
J Biol Chem ; 297(2): 100940, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34237302

RESUMEN

The severe acute respiratory syndrome coronavirus 2 envelope protein (S2-E) is a conserved membrane protein that is important for coronavirus (CoV) assembly and budding. Here, we describe the recombinant expression and purification of S2-E in amphipol-class amphipathic polymer solutions, which solubilize and stabilize membrane proteins, but do not disrupt membranes. We found that amphipol delivery of S2-E to preformed planar bilayers results in spontaneous membrane integration and formation of viroporin cation channels. Amphipol delivery of the S2-E protein to human cells results in plasma membrane integration, followed by retrograde trafficking to the trans-Golgi network and accumulation in swollen perinuclear lysosomal-associated membrane protein 1-positive vesicles, likely lysosomes. CoV envelope proteins have previously been proposed to manipulate the luminal pH of the trans-Golgi network, which serves as an accumulation station for progeny CoV particles prior to cellular egress via lysosomes. Delivery of S2-E to cells will enable chemical biological approaches for future studies of severe acute respiratory syndrome coronavirus 2 pathogenesis and possibly even development of "Trojan horse" antiviral therapies. Finally, this work also establishes a paradigm for amphipol-mediated delivery of membrane proteins to cells.


Asunto(s)
Membrana Celular/efectos de los fármacos , Proteínas de la Envoltura de Coronavirus/metabolismo , Polímeros/farmacología , Propilaminas/farmacología , Tensoactivos/farmacología , Red trans-Golgi/metabolismo , Membrana Celular/metabolismo , Proteínas de la Envoltura de Coronavirus/genética , Células HeLa , Humanos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Lisosomas/metabolismo , Polímeros/química , Propilaminas/química , Transporte de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tensoactivos/química
18.
Nat Commun ; 12(1): 3433, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34103506

RESUMEN

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has created global health and economic emergencies. SARS-CoV-2 viruses promote their own spread and virulence by hijacking human proteins, which occurs through viral protein recognition of human targets. To understand the structural basis for SARS-CoV-2 viral-host protein recognition, here we use cryo-electron microscopy (cryo-EM) to determine a complex structure of the human cell junction protein PALS1 and SARS-CoV-2 viral envelope (E) protein. Our reported structure shows that the E protein C-terminal DLLV motif recognizes a pocket formed exclusively by hydrophobic residues from the PDZ and SH3 domains of PALS1. Our structural analysis provides an explanation for the observation that the viral E protein recruits PALS1 from lung epithelial cell junctions. In addition, our structure provides novel targets for peptide- and small-molecule inhibitors that could block the PALS1-E interactions to reduce E-mediated virulence.


Asunto(s)
Proteínas de la Envoltura de Coronavirus/química , Proteínas de la Envoltura de Coronavirus/metabolismo , Uniones Intercelulares/metabolismo , Proteínas de la Membrana/metabolismo , Nucleósido-Fosfato Quinasa/metabolismo , Secuencia de Aminoácidos , Proteínas de la Envoltura de Coronavirus/ultraestructura , Microscopía por Crioelectrón , Humanos , Dominios Proteicos , SARS-CoV-2/fisiología , Homología Estructural de Proteína , Relación Estructura-Actividad
19.
Cell Res ; 31(8): 847-860, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34112954

RESUMEN

Cytokine storm and multi-organ failure are the main causes of SARS-CoV-2-related death. However, the origin of excessive damages caused by SARS-CoV-2 remains largely unknown. Here we show that the SARS-CoV-2 envelope (2-E) protein alone is able to cause acute respiratory distress syndrome (ARDS)-like damages in vitro and in vivo. 2-E proteins were found to form a type of pH-sensitive cation channels in bilayer lipid membranes. As observed in SARS-CoV-2-infected cells, heterologous expression of 2-E channels induced rapid cell death in various susceptible cell types and robust secretion of cytokines and chemokines in macrophages. Intravenous administration of purified 2-E protein into mice caused ARDS-like pathological damages in lung and spleen. A dominant negative mutation lowering 2-E channel activity attenuated cell death and SARS-CoV-2 production. Newly identified channel inhibitors exhibited potent anti-SARS-CoV-2 activity and excellent cell protective activity in vitro and these activities were positively correlated with inhibition of 2-E channel. Importantly, prophylactic and therapeutic administration of the channel inhibitor effectively reduced both the viral load and secretion of inflammation cytokines in lungs of SARS-CoV-2-infected transgenic mice expressing human angiotensin-converting enzyme 2 (hACE-2). Our study supports that 2-E is a promising drug target against SARS-CoV-2.


Asunto(s)
Antivirales/metabolismo , COVID-19/patología , Proteínas de la Envoltura de Coronavirus/metabolismo , Síndrome de Dificultad Respiratoria/etiología , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Animales , Antivirales/química , Antivirales/uso terapéutico , Apoptosis , COVID-19/complicaciones , COVID-19/virología , Proteínas de la Envoltura de Coronavirus/antagonistas & inhibidores , Proteínas de la Envoltura de Coronavirus/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Semivida , Humanos , Pulmón/metabolismo , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutagénesis Sitio-Dirigida , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/patogenicidad , Bazo/metabolismo , Bazo/patología , Carga Viral , Virulencia , Tratamiento Farmacológico de COVID-19
20.
Commun Biol ; 4(1): 724, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34117354

RESUMEN

SARS-CoV-2 infection leads to coronavirus disease 2019 (COVID-19), which is associated with severe and life-threatening pneumonia and respiratory failure. However, the molecular basis of these symptoms remains unclear. SARS-CoV-1 E protein interferes with control of cell polarity and cell-cell junction integrity in human epithelial cells by binding to the PALS1 PDZ domain, a key component of the Crumbs polarity complex. We show that C-terminal PDZ binding motifs of SARS-CoV-1 and SARS-CoV-2 E proteins bind the PALS1 PDZ domain with 29.6 and 22.8 µM affinity, whereas the related sequence from MERS-CoV did not bind. We then determined crystal structures of PALS1 PDZ domain bound to both SARS-CoV-1 and SARS-CoV-2 E protein PDZ binding motifs. Our findings establish the structural basis for SARS-CoV-1/2 mediated subversion of Crumbs polarity signalling and serve as a platform for the development of small molecule inhibitors to suppress SARS-CoV-1/2 mediated disruption of polarity signalling in epithelial cells.


Asunto(s)
Proteínas de la Envoltura de Coronavirus/química , Proteínas de la Envoltura de Coronavirus/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Nucleósido-Fosfato Quinasa/química , Nucleósido-Fosfato Quinasa/metabolismo , Dominios PDZ , Secuencia de Aminoácidos , Humanos , Modelos Moleculares , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA