Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Neuroinflammation ; 21(1): 186, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080649

RESUMEN

Under subarachnoid hemorrhage (SAH) conditions, astrocytes undergo a marked intensification of glycolytic activity, resulting in the generation of substantial amounts of lactate to maintain the energy demand for neurons and other brain cells. Lactate has garnered increasing attention in recent years because of its emerging role in critical biological processes such as inflammation regulation and neuroprotection, particularly through its histone lactylation. Bromodomain-containing protein 4 (BRD4) plays a crucial role in maintaining neural development and promoting memory formation in the central nervous system. Nonetheless, the function and regulatory mechanism of BRD4 and histone lactylation in astrocytes following SAH remain elusive. Our findings indicate that BRD4, a crucial epigenetic regulator, plays a definitive role in histone lactylation. Both in vitro and in vivo, these results demonstrated that targeted silencing of BRD4 in astrocytes can significantly reduce H4K8la lactylation, thereby aggravating the A1 polarization of astrocytes and ultimately affecting the recovery of neural function and prognosis in mice after SAH. In summary, BRD4 plays a pivotal role in modulating astrocyte polarization following SAH via histone lactylation. Targeting this mechanism might offer an efficient therapeutic strategy for SAH.


Asunto(s)
Astrocitos , Proteínas que Contienen Bromodominio , Histonas , Hemorragia Subaracnoidea , Factores de Transcripción , Animales , Masculino , Ratones , Astrocitos/metabolismo , Proteínas que Contienen Bromodominio/metabolismo , Polaridad Celular/fisiología , Células Cultivadas , Modelos Animales de Enfermedad , Histonas/metabolismo , Ratones Endogámicos C57BL , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Hemorragia Subaracnoidea/metabolismo , Hemorragia Subaracnoidea/patología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
2.
J Cell Biol ; 223(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38709169

RESUMEN

Histone H3 lysine36 dimethylation (H3K36me2) is generally distributed in the gene body and euchromatic intergenic regions. However, we found that H3K36me2 is enriched in pericentromeric heterochromatin in some mouse cell lines. We here revealed the mechanism of heterochromatin targeting of H3K36me2. Among several H3K36 methyltransferases, NSD2 was responsible for inducing heterochromatic H3K36me2. Depletion and overexpression analyses of NSD2-associating proteins revealed that NSD2 recruitment to heterochromatin was mediated through the imitation switch (ISWI) chromatin remodeling complexes, such as BAZ1B-SMARCA5 (WICH), which directly binds to AT-rich DNA via a BAZ1B domain-containing AT-hook-like motifs. The abundance and stoichiometry of NSD2, SMARCA5, and BAZ1B could determine the localization of H3K36me2 in different cell types. In mouse embryos, H3K36me2 heterochromatin localization was observed at the two- to four-cell stages, suggesting its physiological relevance.


Asunto(s)
Ensamble y Desensamble de Cromatina , Heterocromatina , N-Metiltransferasa de Histona-Lisina , Histonas , Proteínas Represoras , Animales , Humanos , Ratones , Adenosina Trifosfatasas , Proteínas que Contienen Bromodominio/genética , Proteínas que Contienen Bromodominio/metabolismo , Centrómero/metabolismo , Centrómero/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Heterocromatina/metabolismo , Heterocromatina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Histonas/genética , Metilación , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
3.
Nucleic Acids Res ; 52(8): 4422-4439, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38567724

RESUMEN

Efficient repair of DNA double-strand breaks in the Ig heavy chain gene locus is crucial for B-cell antibody class switch recombination (CSR). The regulatory dynamics of the repair pathway direct CSR preferentially through nonhomologous end joining (NHEJ) over alternative end joining (AEJ). Here, we demonstrate that the histone acetyl reader BRD2 suppresses AEJ and aberrant recombination as well as random genomic sequence capture at the CSR junctions. BRD2 deficiency impairs switch (S) region synapse, optimal DNA damage response (DDR), and increases DNA break end resection. Unlike BRD4, a similar bromodomain protein involved in NHEJ and CSR, BRD2 loss does not elevate RPA phosphorylation and R-loop formation in the S region. As BRD2 stabilizes the cohesion loader protein NIPBL in the S regions, the loss of BRD2 or NIPBL shows comparable deregulation of S-S synapsis, DDR, and DNA repair pathway choice during CSR. This finding extends beyond CSR, as NIPBL and BRD4 have been linked to Cornelia de Lange syndrome, a developmental disorder exhibiting defective NHEJ and Ig isotype switching. The interplay between these proteins sheds light on the intricate mechanisms governing DNA repair and immune system functionality.


Asunto(s)
Proteínas que Contienen Bromodominio , Reparación del ADN por Unión de Extremidades , Cambio de Clase de Inmunoglobulina , Factores de Transcripción , Animales , Humanos , Ratones , Linfocitos B/inmunología , Linfocitos B/metabolismo , Proteínas que Contienen Bromodominio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/genética , Reparación del ADN , Cambio de Clase de Inmunoglobulina/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Recombinación Genética , Factores de Transcripción/metabolismo
4.
Cancer Res Commun ; 4(5): 1307-1320, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38669046

RESUMEN

Anticancer drug-tolerant persister (DTP) cells at an early phase of chemotherapy reshape refractory tumors. Aldehyde dehydrogenase 1 family member A3 (ALDH1A3) is commonly upregulated by various anticancer drugs in gastric cancer patient-derived cells (PDC) and promotes tumor growth. However, the mechanism underlying the generation of ALDH1A3-positive DTP cells remains elusive. Here, we investigated the mechanism of ALDH1A3 expression and a combination therapy targeting gastric cancer DTP cells. We found that gastric cancer tissues treated with neoadjuvant chemotherapy showed high ALDH1A3 expression. Chromatin immunoprecipitation (ChIP)-PCR and ChIP sequencing analyses revealed that histone H3 lysine 27 acetylation was enriched in the ALDH1A3 promoter in 5-fluorouracil (5-FU)-tolerant persister PDCs. By chemical library screening, we found that the bromodomain and extraterminal (BET) inhibitors OTX015/birabresib and I-BET-762/molibresib suppressed DTP-related ALDH1A3 expression and preferentially inhibited DTP cell growth. In DTP cells, BRD4, but not BRD2/3, was recruited to the ALDH1A3 promoter and BRD4 knockdown decreased drug-induced ALDH1A3 upregulation. Combination therapy with 5-FU and OTX015 significantly suppressed in vivo tumor growth. These observations suggest that BET inhibitors are efficient DTP cell-targeting agents for gastric cancer treatment. SIGNIFICANCE: Drug resistance hampers the cure of patients with cancer. To prevent stable drug resistance, DTP cancer cells are rational therapeutic targets that emerge during the early phase of chemotherapy. This study proposes that the epigenetic regulation by BET inhibitors may be a rational therapeutic strategy to eliminate DTP cells.


Asunto(s)
Aldehído Oxidorreductasas , Resistencia a Antineoplásicos , Fluorouracilo , Histonas , Neoplasias Gástricas , Factores de Transcripción , Animales , Femenino , Humanos , Masculino , Ratones , Acetilación/efectos de los fármacos , Aldehído Oxidorreductasas/efectos de los fármacos , Aldehído Oxidorreductasas/metabolismo , Antineoplásicos/farmacología , Proteínas que Contienen Bromodominio/efectos de los fármacos , Proteínas que Contienen Bromodominio/metabolismo , Proteínas de Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Histonas/efectos de los fármacos , Histonas/metabolismo , Ratones Endogámicos BALB C , Ratones Desnudos , Regiones Promotoras Genéticas/efectos de los fármacos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Factores de Transcripción/efectos de los fármacos , Factores de Transcripción/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Nature ; 627(8002): 204-211, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38383787

RESUMEN

Targeted protein degradation is a pharmacological modality that is based on the induced proximity of an E3 ubiquitin ligase and a target protein to promote target ubiquitination and proteasomal degradation. This has been achieved either via proteolysis-targeting chimeras (PROTACs)-bifunctional compounds composed of two separate moieties that individually bind the target and E3 ligase, or via molecular glues that monovalently bind either the ligase or the target1-4. Here, using orthogonal genetic screening, biophysical characterization and structural reconstitution, we investigate the mechanism of action of bifunctional degraders of BRD2 and BRD4, termed intramolecular bivalent glues (IBGs), and find that instead of connecting target and ligase in trans as PROTACs do, they simultaneously engage and connect two adjacent domains of the target protein in cis. This conformational change 'glues' BRD4 to the E3 ligases DCAF11 or DCAF16, leveraging intrinsic target-ligase affinities that do not translate to BRD4 degradation in the absence of compound. Structural insights into the ternary BRD4-IBG1-DCAF16 complex guided the rational design of improved degraders of low picomolar potency. We thus introduce a new modality in targeted protein degradation, which works by bridging protein domains in cis to enhance surface complementarity with E3 ligases for productive ubiquitination and degradation.


Asunto(s)
Diseño de Fármacos , Proteolisis , Especificidad por Sustrato , Ubiquitina-Proteína Ligasas , Ubiquitinación , Proteínas que Contienen Bromodominio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Quimera Dirigida a la Proteólisis , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Unión Proteica , Dominios Proteicos
6.
Neurochem Res ; 49(5): 1254-1267, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38381246

RESUMEN

Fibrotic scars play important roles in tissue reconstruction and functional recovery in the late stage of nervous system injury. However, the mechanisms underlying fibrotic scar formation and regulation remain unclear. Casein kinase II (CK2) is a protein kinase that regulates a variety of cellular functions through the phosphorylation of proteins, including bromodomain-containing protein 4 (BRD4). CK2 and BRD4 participate in fibrosis formation in a variety of tissues. However, whether CK2 affects fibrotic scar formation remains unclear, as do the mechanisms of signal regulation after cerebral ischemic injury. In this study, we assessed whether CK2 could modulate fibrotic scar formation after cerebral ischemic injury through BRD4. Primary meningeal fibroblasts were isolated from neonatal rats and treated with transforming growth factor-ß1 (TGF-ß1), SB431542 (a TGF-ß1 receptor kinase inhibitor) or TBB (a highly potent CK2 inhibitor). Adult SD rats were intraperitoneally injected with TBB to inhibit CK2 after MCAO/R. We found that CK2 expression was increased in vitro in the TGF-ß1-induced fibrosis model and in vivo in the MCAO/R injury model. The TGF-ß1 receptor kinase inhibitor SB431542 decreased CK2 expression in fibroblasts. The CK2 inhibitor TBB reduced the increases in proliferation, migration and activation of fibroblasts caused by TGF-ß1 in vitro, and it inhibited fibrotic scar formation, ameliorated histopathological damage, protected Nissl bodies, decreased infarct volume and alleviated neurological deficits after MCAO/R injury in vivo. Furthermore, CK2 inhibition decreased BRD4 phosphorylation both in vitro and in vivo. The findings of the present study suggested that CK2 may control BRD4 phosphorylation to regulate fibrotic scar formation, to affecting outcomes after ischemic stroke.


Asunto(s)
Benzamidas , Proteínas que Contienen Bromodominio , Quinasa de la Caseína II , Cicatriz , Dioxoles , Accidente Cerebrovascular Isquémico , Animales , Ratas , Quinasa de la Caseína II/antagonistas & inhibidores , Quinasa de la Caseína II/metabolismo , Cicatriz/metabolismo , Cicatriz/patología , Fibroblastos/metabolismo , Fibrosis , Accidente Cerebrovascular Isquémico/complicaciones , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/metabolismo , Proteínas Nucleares , Fosforilación , Ratas Sprague-Dawley , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Proteínas que Contienen Bromodominio/efectos de los fármacos , Proteínas que Contienen Bromodominio/metabolismo
7.
Signal Transduct Target Ther ; 9(1): 45, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374140

RESUMEN

Cardiac fibroblasts (CFs) are the primary cells tasked with depositing and remodeling collagen and significantly associated with heart failure (HF). TEAD1 has been shown to be essential for heart development and homeostasis. However, fibroblast endogenous TEAD1 in cardiac remodeling remains incompletely understood. Transcriptomic analyses revealed consistently upregulated cardiac TEAD1 expression in mice 4 weeks after transverse aortic constriction (TAC) and Ang-II infusion. Further investigation revealed that CFs were the primary cell type expressing elevated TEAD1 levels in response to pressure overload. Conditional TEAD1 knockout was achieved by crossing TEAD1-floxed mice with CFs- and myofibroblasts-specific Cre mice. Echocardiographic and histological analyses demonstrated that CFs- and myofibroblasts-specific TEAD1 deficiency and treatment with TEAD1 inhibitor, VT103, ameliorated TAC-induced cardiac remodeling. Mechanistically, RNA-seq and ChIP-seq analysis identified Wnt4 as a novel TEAD1 target. TEAD1 has been shown to promote the fibroblast-to-myofibroblast transition through the Wnt signalling pathway, and genetic Wnt4 knockdown inhibited the pro-transformation phenotype in CFs with TEAD1 overexpression. Furthermore, co-immunoprecipitation combined with mass spectrometry, chromatin immunoprecipitation, and luciferase assays demonstrated interaction between TEAD1 and BET protein BRD4, leading to the binding and activation of the Wnt4 promoter. In conclusion, TEAD1 is an essential regulator of the pro-fibrotic CFs phenotype associated with pathological cardiac remodeling via the BRD4/Wnt4 signalling pathway.


Asunto(s)
Factores de Transcripción de Dominio TEA , Factores de Transcripción , Remodelación Ventricular , Animales , Ratones , Miofibroblastos/metabolismo , Miofibroblastos/patología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción de Dominio TEA/genética , Factores de Transcripción de Dominio TEA/metabolismo , Factores de Transcripción/genética , Remodelación Ventricular/genética , Proteína Wnt4/metabolismo , Fibroblastos/metabolismo , Proteínas que Contienen Bromodominio/metabolismo
8.
J Biol Chem ; 300(3): 105707, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38309505

RESUMEN

Liver cancer is notoriously refractory to conventional therapeutics. Tumor progression is governed by the interplay between tumor-promoting genes and tumor-suppressor genes. BRD4, an acetyl lysine-binding protein, is overexpressed in many cancer types, which promotes activation of a pro-tumor gene network. But the underlying mechanism for BRD4 overexpression remains incompletely understood. In addition, understanding the regulatory mechanism of BRD4 protein level will shed insight into BRD4-targeting therapeutics. In this study, we investigated the potential relation between BRD4 protein level and P53, the most frequently dysregulated tumor suppressor. By analyzing the TCGA datasets, we first identify a strong negative correlation between protein levels of P53 and BRD4 in liver cancer. Further investigation shows that P53 promotes BRD4 protein degradation. Mechanistically, P53 indirectly represses the transcription of USP1, a deubiquitinase, through the P21-RB1 axis. USP1 itself is also overexpressed in liver cancer and we show USP1 deubiquitinates BRD4 in vivo and in vitro, which increases BRD4 stability. With cell proliferation assays and xenograft model, we show the pro-tumor role of USP1 is partially mediated by BRD4. With functional transcriptomic analysis, we find the USP1-BRD4 axis upholds expression of a group of cancer-related genes. In summary, we identify a functional P53-P21-RB1-USP1-BRD4 axis in liver cancer.


Asunto(s)
Proteínas que Contienen Bromodominio , Proteínas de Ciclo Celular , Neoplasias Hepáticas , Proteínas Nucleares , Factores de Transcripción , Proteasas Ubiquitina-Específicas , Humanos , Proteínas que Contienen Bromodominio/genética , Proteínas que Contienen Bromodominio/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Genes Supresores de Tumor , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Unión a Retinoblastoma/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo
9.
Nucleic Acids Res ; 52(1): 154-165, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-37986225

RESUMEN

Asymmetric cell division (ACD) is a mechanism used by stem cells to maintain the number of progeny. However, the epigenetic mechanisms regulating ACD remain elusive. Here we show that BRD4, a BET domain protein that binds to acetylated histone, is segregated in daughter cells together with H3K56Ac and regulates ACD. ITGB1 is regulated by BRD4 to regulate ACD. A long noncoding RNA (lncRNA), LIBR (LncRNA Inhibiting BRD4), decreases the percentage of stem cells going through ACD through interacting with the BRD4 mRNAs. LIBR inhibits the translation of BRD4 through recruiting a translation repressor, RCK, and inhibiting the binding of BRD4 mRNAs to polysomes. These results identify the epigenetic regulatory modules (BRD4, lncRNA LIBR) that regulate ACD. The regulation of ACD by BRD4 suggests the therapeutic limitation of using BRD4 inhibitors to treat cancer due to the ability of these inhibitors to promote symmetric cell division that may lead to tumor progression and treatment resistance.


Asunto(s)
Proteínas que Contienen Bromodominio , División Celular , Epigénesis Genética , ARN Largo no Codificante , División Celular Asimétrica , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Proteínas que Contienen Bromodominio/metabolismo
10.
J Biol Chem ; 300(1): 105551, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38072045

RESUMEN

Bromodomain-PHD finger protein 1 (BRPF1) belongs to the BRPF family of bromodomain-containing proteins. Bromodomains are exclusive reader modules that recognize and bind acetylated histones and non-histone transcription factors to regulate gene expression. The biological functions of acetylated histone recognition by BRPF1 bromodomain are well characterized; however, the function of BRPF1 regulation via non-histone acetylation is still unexplored. Therefore, identifying the non-histone interactome of BRPF1 is pivotal in deciphering its role in diverse cellular processes, including its misregulation in diseases like cancer. Herein, we identified the non-histone interacting partners of BRPF1 utilizing a protein engineering-based approach. We site-specifically introduced the unnatural photo-cross-linkable amino acid 4-azido-L-phenylalanine into the bromodomain of BRPF1 without altering its ability to recognize acetylated histone proteins. Upon photoirradiation, the engineered BRPF1 generates a reactive nitrene species, cross-linking interacting partners with spatio-temporal precision. We demonstrated the robust cross-linking efficiency of the engineered variant with reported histone ligands of BRPF1 and further used the variant reader to cross-link its interactome. We also characterized novel interacting partners by proteomics, suggesting roles for BRPF1 in diverse cellular processes. BRPF1 interaction with interleukin enhancer-binding factor 3, one of these novel interacting partners, was further validated by isothermal titration calorimetry and co-IP. Lastly, we used publicly available ChIP-seq and RNA-seq datasets to understand the colocalization of BRPF1 and interleukin enhancer-binding factor 3 in regulating gene expression in the context of hepatocellular carcinoma. Together, these results will be crucial for full understanding of the roles of BRPF1 in transcriptional regulation and in the design of small-molecule inhibitors for cancer treatment.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Azidas , Proteínas que Contienen Bromodominio , Proteínas de Unión al ADN , Acetilación , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Azidas/metabolismo , Histonas/metabolismo , Interleucinas/metabolismo , Unión Proteica , Humanos , Proteínas que Contienen Bromodominio/metabolismo , Proteínas de Unión al ADN/metabolismo
11.
Mol Cell Biochem ; 479(3): 553-566, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37120495

RESUMEN

Long non-coding RNA (lncRNA) growth arrest-specific transcript 5 (GAS5) has been shown to be a regulator for many cancers, including non-small cell lung cancer (NSCLC). Therefore, its role and mechanism in the process of NSCLC deserve to be further revealed. The expression levels of GAS5, fat mass and obesity-associated protein (FTO) and bromodomain-containing protein 4 (BRD4) were detected by quantitative real-time PCR. Western blot analysis was used to examine the protein expression of FTO, BRD4, up-frameshift protein 1 (UPF1) and autophagy-related markers. Methylated RNA immunoprecipitation was used to assess the m6A level of GAS5 regulated by FTO. Cell proliferation and apoptosis were determined using MTT assay, EdU assay and flow cytometry. Autophagy ability was assessed by immunofluorescence staining and transmission electron microscope. Xenograft tumor model was constructed to explore the effects of FTO and GAS5 on NSCLC tumor growth in vivo. The interaction between UPF1 and GAS5 or BRD4 was confirmed by pull-down assay, RIP assay, dual-luciferase reporter assay, and chromatin immunoprecipitation. Fluorescent in situ hybridization was used to analyze the co-localization of GAS5 and UPF1. Actinomycin D treatment was employed to evaluate BRD4 mRNA stability. GAS5 was downregulated in NSCLC tissues and was associated with poor prognosis in NSCLC patients. FTO was highly expressed in NSCLC, and it inhibited GAS5 expression by reducing GAS5 m6A methylation level. GAS5 suppressed by FTO could promote the autophagic death of NSCLC cells in vitro and inhibit NSCLC tumor growth in vivo. In addition, GAS5 was able to interact with UPF1 to reduce the mRNA stability of BRD4. Knockdown of BRD4 reversed the inhibition of GAS5 or UPF1 silencing on the autophagic cell death of NSCLC. The findings of the study showed that lncRNA GAS5 mediated by FTO could contribute to the autophagic cell death of NSCLC by interacting with UPF1 to reduce BRD4 mRNA stability, suggesting that GAS5 might be a vital therapy target for NSCLC progression.


Asunto(s)
Muerte Celular Autofágica , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , ARN Largo no Codificante , Animales , Humanos , Adenina/análogos & derivados , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Muerte Celular Autofágica/genética , Proteínas que Contienen Bromodominio/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Proteínas de Ciclo Celular , Proliferación Celular/genética , Desmetilación , Modelos Animales de Enfermedad , Hibridación Fluorescente in Situ , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , MicroARNs/genética , Proteínas Nucleares/metabolismo , ARN Helicasas/metabolismo , ARN Largo no Codificante/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Curr Genet ; 69(4-6): 289-300, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37947853

RESUMEN

Binding of general transcription factors TFIID and TFIIA to basal promoters is rate-limiting for transcriptional initiation of eukaryotic protein-coding genes. Consequently, activator proteins interacting with subunits of TFIID and/or TFIIA can drastically increase the rate of initiation events. Yeast transcriptional activator Ino2 interacts with several Taf subunits of TFIID, among them the multifunctional Taf1 protein. In contrast to mammalian Taf1, yeast Taf1 lacks bromodomains which are instead encoded by separate proteins Bdf1 and Bdf2. In this work, we show that Bdf1 not only binds to acetylated histone H4 but can also be recruited by Ino2 and unrelated activators such as Gal4, Rap1, Leu3 and Flo8. An activator-binding domain was mapped in the N-terminus of Bdf1. Subunits Toa1 and Toa2 of yeast TFIIA directly contact sequences of basal promoters and TFIID subunit TBP but may also mediate the influence of activators. Indeed, Ino2 efficiently binds to two separate structural domains of Toa1, specifically with its N-terminal four-helix bundle structure required for dimerization with Toa2 and its C-terminal ß-barrel domain contacting TBP and sequences of the TATA element. These findings complete the functional analysis of yeast general transcription factors Bdf1 and Toa1 and identify them as targets of activator proteins.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Proteínas que Contienen Bromodominio , Fosfolípidos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Factor de Transcripción TFIIA , Factores de Transcripción , Fosfolípidos/biosíntesis , Fosfolípidos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína de Unión a TATA-Box/genética , Proteína de Unión a TATA-Box/metabolismo , Factor de Transcripción TFIIA/genética , Factor de Transcripción TFIIA/metabolismo , Factor de Transcripción TFIID/genética , Factor de Transcripción TFIID/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas que Contienen Bromodominio/genética , Proteínas que Contienen Bromodominio/metabolismo
13.
Proc Natl Acad Sci U S A ; 120(41): e2304534120, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37782793

RESUMEN

Aberrant transcripts expression of the m6A methyltransferase complex (MTC) is widely found across human cancers, suggesting a dysregulated signaling cascade which integrates m6A epitranscriptome to drive tumorigenesis. However, the responsible transcriptional machinery directing the expression of distinct MTC subunits remains unclear. Here, we identified an unappreciated interplay between the histone acetyl-lysine reader BRD4 and the m6A writer complex across human cancers. BRD4 directly stimulates transcripts expression of seven MTC subunits, allowing the maintenance of the nuclear writer complex integrity. Upon BET inhibition, this BRD4-MTC signaling cascade accounts for global m6A reduction and the subsequent dynamic alteration of BRD4-dependent transcriptome, resulting in impaired DNA damage response that involves activation of homologous recombination (HR) repair and repression of apoptosis. We further demonstrated that the combined synergy upon BET/PARP inhibition largely relies on disrupted m6A modification of HR and apoptotic genes, counteracting PARP inhibitor (PARPi) resistance in patient-derived xenograft models. Our study revealed a widespread active cross-talk between BRD4-dependent epigenetic and MTC-mediated epitranscriptomic networks, which provides a unique therapeutic vulnerability that can be leveraged in combined DNA repair-targeted therapy.


Asunto(s)
Antineoplásicos , Proteínas que Contienen Bromodominio , Proteínas Nucleares , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Reparación del ADN , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Epigénesis Genética , Proteínas que Contienen Bromodominio/genética , Proteínas que Contienen Bromodominio/metabolismo , Animales
14.
Proc Natl Acad Sci U S A ; 120(28): e2302143120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37399380

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal and incurable neurodegenerative disease affecting motor neurons and characterized by microglia-mediated neurotoxic inflammation whose underlying mechanisms remain incompletely understood. In this work, we reveal that MAPK/MAK/MRK overlapping kinase (MOK), with an unknown physiological substrate, displays an immune function by controlling inflammatory and type-I interferon (IFN) responses in microglia which are detrimental to primary motor neurons. Moreover, we uncover the epigenetic reader bromodomain-containing protein 4 (Brd4) as an effector protein regulated by MOK, by promoting Ser492-phospho-Brd4 levels. We further demonstrate that MOK regulates Brd4 functions by supporting its binding to cytokine gene promoters, therefore enabling innate immune responses. Remarkably, we show that MOK levels are increased in the ALS spinal cord, particularly in microglial cells, and that administration of a chemical MOK inhibitor to ALS model mice can modulate Ser492-phospho-Brd4 levels, suppress microglial activation, and modify the disease course, indicating a pathophysiological role of MOK kinase in ALS and neuroinflammation.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteínas que Contienen Bromodominio , Proteínas Quinasas Activadas por Mitógenos , Enfermedades Neurodegenerativas , Animales , Ratones , Esclerosis Amiotrófica Lateral/metabolismo , Modelos Animales de Enfermedad , Microglía/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas que Contienen Bromodominio/genética , Proteínas que Contienen Bromodominio/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo
15.
J Biol Chem ; 299(2): 102852, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36592926

RESUMEN

The Saccharomyces cerevisiae Yta7 is a chromatin remodeler harboring a histone-interacting bromodomain (BRD) and two AAA+ modules. It is not well understood how Yta7 recognizes the histone H3 tail to promote nucleosome disassembly for DNA replication or RNA transcription. By cryo-EM analysis, here we show that Yta7 assembles a three-tiered hexamer with a top BRD tier, a middle AAA1 tier, and a bottom AAA2 tier. Unexpectedly, the Yta7 BRD stabilizes a four-stranded ß-helix, termed BRD-interacting motif (BIM), of the largely disordered N-terminal region. The BIM motif is unique to the baker's yeast, and we show both BRD and BIM contribute to nucleosome recognition. We found that Yta7 binds both acetylated and nonacetylated H3 peptides but with a higher affinity for the unmodified peptide. This property is consistent with the absence of key residues of canonical BRDs involved in acetylated peptide recognition and the role of Yta7 in general nucleosome remodeling. Interestingly, the BRD tier exists in a spiral and a flat-ring form on top of the Yta7 AAA+ hexamer. The spiral is likely in a nucleosome-searching mode because the bottom BRD blocks the entry to the AAA+ chamber. The flat ring may be in a nucleosome disassembly state because the entry is unblocked and the H3 peptide has entered the AAA+ chamber and is stabilized by the AAA1 pore loops 1 and 2. Indeed, we show that the BRD tier is a flat ring when bound to the nucleosome. Overall, our study sheds light on the nucleosome disassembly by Yta7.


Asunto(s)
Proteínas que Contienen Bromodominio , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Adenosina Trifosfatasas/metabolismo , Proteínas que Contienen Bromodominio/química , Proteínas que Contienen Bromodominio/genética , Proteínas que Contienen Bromodominio/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Histonas/metabolismo , Nucleosomas/metabolismo , Conformación Proteica en Lámina beta , Multimerización de Proteína , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...