Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros













Intervalo de año de publicación
1.
J Biol Chem ; 300(2): 105622, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38176647

RESUMEN

Pandemic Pseudomonas aeruginosa clone C strains encode two inner-membrane associated ATP-dependent FtsH proteases. PaftsH1 is located on the core genome and supports cell growth and intrinsic antibiotic resistance, whereas PaftsH2, a xenolog acquired through horizontal gene transfer from a distantly related species, is unable to functionally replace PaftsH1. We show that purified PaFtsH2 degrades fewer substrates than PaFtsH1. Replacing the 31-amino acid-extended linker region of PaFtsH2 spanning from the C-terminal end of the transmembrane helix-2 to the first seven highly divergent residues of the cytosolic AAA+ ATPase module with the corresponding region of PaFtsH1 improves hybrid-enzyme substrate processing in vitro and enables PaFtsH2 to substitute for PaFtsH1 in vivo. Electron microscopy indicates that the identity of this linker sequence influences FtsH flexibility. We find membrane-cytoplasmic (MC) linker regions of PaFtsH1 characteristically glycine-rich compared to those from FtsH2. Consequently, introducing three glycines into the membrane-proximal end of PaFtsH2's MC linker is sufficient to elevate its activity in vitro and in vivo. Our findings establish that the efficiency of substrate processing by the two PaFtsH isoforms depends on MC linker identity and suggest that greater linker flexibility and/or length allows FtsH to degrade a wider spectrum of substrates. As PaFtsH2 homologs occur across bacterial phyla, we hypothesize that FtsH2 is a latent enzyme but may recognize specific substrates or is activated in specific contexts or biological niches. The identity of such linkers might thus play a more determinative role in the functionality of and physiological impact by FtsH proteases than previously thought.


Asunto(s)
Proteasas ATP-Dependientes , Proteínas Bacterianas , Pseudomonas aeruginosa , Secuencia de Aminoácidos , Proteasas ATP-Dependientes/química , Proteasas ATP-Dependientes/metabolismo , Proteínas Bacterianas/metabolismo , Endopeptidasas/metabolismo , Proteínas de la Membrana/metabolismo , Péptido Hidrolasas/metabolismo , Pseudomonas aeruginosa/metabolismo
2.
Mol Microbiol ; 119(1): 101-111, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36456794

RESUMEN

Targeted protein degradation plays important roles in stress responses in all cells. In E. coli, the membrane-bound AAA+ FtsH protease degrades cytoplasmic and membrane proteins. Here, we demonstrate that FtsH degrades cyclopropane fatty acid (CFA) synthase, whose synthesis is induced upon nutrient deprivation and entry into stationary phase. We find that neither the disordered N-terminal residues nor the structured C-terminal residues of the kinetically stable CFA-synthase dimer are required for FtsH recognition and degradation. Experiments with fusion proteins support a model in which an internal degron mediates FtsH recognition as a prelude to unfolding and proteolysis. These findings elucidate the terminal step in the life cycle of CFA synthase and provide new insight into FtsH function.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteasas ATP-Dependientes/química , Proteasas ATP-Dependientes/metabolismo , Proteolisis , Proteínas Bacterianas/metabolismo
3.
Protein Sci ; 31(9): e4410, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36630366

RESUMEN

AAA+ proteolytic machines play essential roles in maintaining and rebalancing the cellular proteome in response to stress, developmental cues, and environmental changes. Of the five AAA+ proteases in Escherichia coli, FtsH is unique in its attachment to the inner membrane and its function in degrading both membrane and cytosolic proteins. E. coli dihydrofolate reductase (DHFR) is a stable and biophysically well-characterized protein, which a previous study found resisted FtsH degradation despite the presence of an ssrA degron. By contrast, we find that FtsH degrades DHFR fused to a long peptide linker and ssrA tag. Surprisingly, we also find that FtsH degrades DHFR with shorter linkers and ssrA tag, and without any linker or tag. Thus, FtsH must be able to recognize a sequence element or elements within DHFR. We find that FtsH degradation of DHFR is noncanonical in the sense that it does not rely upon recognition of an unstructured polypeptide at or near the N-terminus or C-terminus of the substrate. Results using peptide-array experiments, mutant DHFR proteins, and fusion proteins suggest that FtsH recognizes an internal sequence in a species of DHFR that is partially unfolded. Overall, our findings provide insight into substrate recognition by FtsH and indicate that its degradation capacity is broader than previously reported.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo , Proteínas de la Membrana/química , Proteasas ATP-Dependientes/química , Proteínas Bacterianas/química
4.
Biochim Biophys Acta Biomembr ; 1863(2): 183526, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33278347

RESUMEN

FtsH is a membrane-bound protease that plays a crucial role in proteolytic regulation of many cellular functions. It is universally conserved in bacteria and responsible for the degradation of misfolded or misassembled proteins. A recent study has determined the structure of bacterial FtsH in detergent micelles. To properly study the function of FtsH in a native-like environment, we reconstituted the FtsH complex into lipid nanodiscs. We found that FtsH in membrane scaffold protein (MSP) nanodiscs maintains its native hexameric conformation and is functionally active. We further investigated the effect of the lipid bilayer composition (acyl chain length, saturation, head group charge and size) on FtsH proteolytic activity. We found that the lipid acyl chain length influences AaFtsH activity in nanodiscs, with the greatest activity in a bilayer of di-C18:1 PC. We conclude that MSP nanodiscs are suitable model membranes for further in vitro studies of the FtsH protease complex.


Asunto(s)
Proteasas ATP-Dependientes/química , Proteínas Bacterianas/química , Membrana Dobles de Lípidos/química , Nanoestructuras/química , Pliegue de Proteína , Aquifex/enzimología , Aquifex/genética , Proteínas Bacterianas/genética
5.
Methods Mol Biol ; 2192: 313-329, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33230781

RESUMEN

Mitochondrial proteases constitute a fundamental part of the organellar protein quality control system to ensure the timely removal of damaged or obsolete proteins. The analysis of proteases is often limited to the identification of bona fide substrates that are degraded in the presence and become more abundant in the absence of the respective protease. However, proteases in numerous organisms from bacteria to humans can process specific substrates to release shortened proteins with potentially altered activities. Here, we describe an adaptation of the substrate-trapping approach, as well as the N-terminal profiling protocol Terminal Amine Isotope Labeling of Substrates (TAILS) for the identification of bona fide substrates and mitochondrial proteins that undergo complete or partial proteolysis.


Asunto(s)
Proteasas ATP-Dependientes/química , Proteasas ATP-Dependientes/metabolismo , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Proteasas ATP-Dependientes/genética , Animales , Células Cultivadas , Cromatografía Liquida/métodos , Fibroblastos/citología , Inmunoprecipitación/métodos , Marcaje Isotópico/métodos , Ratones , Ratones Noqueados , Miocardio/citología , Procesamiento Proteico-Postraduccional , Proteolisis , Especificidad por Sustrato , Espectrometría de Masas en Tándem/métodos , Transfección/métodos
6.
Int J Mol Sci ; 21(23)2020 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-33260377

RESUMEN

We previously showed that lipopolysaccharide (LPS) assembly requires the essential LapB protein to regulate FtsH-mediated proteolysis of LpxC protein that catalyzes the first committed step in the LPS synthesis. To further understand the essential function of LapB and its role in LpxC turnover, multicopy suppressors of ΔlapB revealed that overproduction of HslV protease subunit prevents its lethality by proteolytic degradation of LpxC, providing the first alternative pathway of LpxC degradation. Isolation and characterization of an extragenic suppressor mutation that prevents lethality of ΔlapB by restoration of normal LPS synthesis identified a frame-shift mutation after 377 aa in the essential gene designated lapC, suggesting LapB and LapC act antagonistically. The same lapC gene was identified during selection for mutations that induce transcription from LPS defects-responsive rpoEP3 promoter, confer sensitivity to LpxC inhibitor CHIR090 and a temperature-sensitive phenotype. Suppressors of lapC mutants that restored growth at elevated temperatures mapped to lapA/lapB, lpxC and ftsH genes. Such suppressor mutations restored normal levels of LPS and prevented proteolysis of LpxC in lapC mutants. Interestingly, a lapC deletion could be constructed in strains either overproducing LpxC or in the absence of LapB, revealing that FtsH, LapB and LapC together regulate LPS synthesis by controlling LpxC amounts.


Asunto(s)
Amidohidrolasas/metabolismo , Biocatálisis , Proteínas de Escherichia coli/metabolismo , Lipopolisacáridos/biosíntesis , Proteasas ATP-Dependientes/química , Proteasas ATP-Dependientes/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Biocatálisis/efectos de los fármacos , Secuencia Conservada , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Choque Térmico/metabolismo , Ácidos Hidroxámicos/farmacología , Lipopolisacáridos/química , Mutación/genética , Operón/genética , Periplasma/efectos de los fármacos , Periplasma/metabolismo , Fosfolípidos/biosíntesis , Fosfolípidos/química , Regiones Promotoras Genéticas/genética , Dominios Proteicos , Proteolisis/efectos de los fármacos , Supresión Genética , Temperatura , Treonina/análogos & derivados , Treonina/farmacología , Transcripción Genética/efectos de los fármacos
7.
Mol Cell ; 75(5): 1073-1085.e6, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31327635

RESUMEN

Mitochondrial AAA+ quality-control proteases regulate diverse aspects of mitochondrial biology through specialized protein degradation, but the underlying mechanisms of these enzymes remain poorly defined. The mitochondrial AAA+ protease AFG3L2 is of particular interest, as genetic mutations localized throughout AFG3L2 are linked to diverse neurodegenerative disorders. However, a lack of structural data has limited our understanding of how mutations impact enzymatic function. Here, we used cryoelectron microscopy (cryo-EM) to determine a substrate-bound structure of the catalytic core of human AFG3L2. This structure identifies multiple specialized structural features that integrate with conserved motifs required for ATP-dependent translocation to unfold and degrade targeted proteins. Many disease-relevant mutations localize to these unique structural features of AFG3L2 and distinctly influence its activity and stability. Our results provide a molecular basis for neurological phenotypes associated with different AFG3L2 mutations and establish a structural framework to understand how different members of the AAA+ superfamily achieve specialized biological functions.


Asunto(s)
Proteasas ATP-Dependientes/química , ATPasas Asociadas con Actividades Celulares Diversas/química , Proteínas Mitocondriales/química , Mutación , Proteasas ATP-Dependientes/genética , Proteasas ATP-Dependientes/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Microscopía por Crioelectrón , Células HEK293 , Trastornos Heredodegenerativos del Sistema Nervioso/genética , Trastornos Heredodegenerativos del Sistema Nervioso/metabolismo , Humanos , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Dominios Proteicos
8.
Protein Sci ; 28(7): 1262-1275, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31008538

RESUMEN

ATPases associated with diverse cellular activities (AAA+) proteases utilize ATP hydrolysis to actively unfold native or misfolded proteins and translocate them into a protease chamber for degradation. This basic mechanism yields diverse cellular consequences, including the removal of misfolded proteins, control of regulatory circuits, and remodeling of protein conformation. Among various bacterial AAA+ proteases, FtsH is only membrane-integrated and plays a key role in membrane protein quality control. Previously, we have shown that FtsH has substantial unfoldase activity for degrading membrane proteins overcoming a dual energetic burden of substrate unfolding and membrane dislocation. Here, we asked how efficiently FtsH utilizes ATP hydrolysis to degrade membrane proteins. To answer this question, we measured degradation rates of the model membrane substrate GlpG at various ATP hydrolysis rates in the lipid bilayers. We find that the dependence of degradation rates on ATP hydrolysis rates is highly nonlinear: (i) FtsH cannot degrade GlpG until it reaches a threshold ATP hydrolysis rate; (ii) after exceeding the threshold, the degradation rates steeply increase and saturate at the ATP hydrolysis rates far below the maxima. During the steep increase, FtsH efficiently utilizes ATP hydrolysis for degradation, consuming only 40-60% of the total ATP cost measured at the maximal ATP hydrolysis rates. This behavior does not fundamentally change against water-soluble substrates as well as upon addition of the macromolecular crowding agent Ficoll 70. The Hill analysis shows that the nonlinearity stems from coupling of three to five ATP hydrolysis events to degradation, which represents unique cooperativity compared to other AAA+ proteases including ClpXP, HslUV, Lon, and proteasomes.


Asunto(s)
Proteasas ATP-Dependientes/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteolisis , Proteasas ATP-Dependientes/química , Adenosina Trifosfato/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Proteínas de Escherichia coli/química , Hidrólisis
9.
J Med Genet ; 56(8): 499-511, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30910913

RESUMEN

BACKGROUND: Spinocerebellar ataxia type 28 (SCA28) is a dominantly inherited neurodegenerative disease caused by pathogenic variants in AFG3L2. The AFG3L2 protein is a subunit of mitochondrial m-AAA complexes involved in protein quality control. Objective of this study was to determine the molecular mechanisms of SCA28, which has eluded characterisation to date. METHODS: We derived SCA28 patient fibroblasts carrying different pathogenic variants in the AFG3L2 proteolytic domain (missense: the newly identified p.F664S and p.M666T, p.G671R, p.Y689H and a truncating frameshift p.L556fs) and analysed multiple aspects of mitochondrial physiology. As reference of residual m-AAA activity, we included SPAX5 patient fibroblasts with homozygous p.Y616C pathogenic variant, AFG3L2+/- HEK293 T cells by CRISPR/Cas9-genome editing and Afg3l2-/- murine fibroblasts. RESULTS: We found that SCA28 cells carrying missense changes have normal levels of assembled m-AAA complexes, while the cells with a truncating pathogenic variant had only half of this amount. We disclosed inefficient mitochondrial fusion in SCA28 cells caused by increased OPA1 processing operated by hyperactivated OMA1. Notably, we found altered mitochondrial proteostasis to be the trigger of OMA1 activation in SCA28 cells, with pharmacological attenuation of mitochondrial protein synthesis resulting in stabilised levels of OMA1 and OPA1 long forms, which rescued mitochondrial fusion efficiency. Secondary to altered mitochondrial morphology, mitochondrial calcium uptake resulted decreased in SCA28 cells. CONCLUSION: Our data identify the earliest events in SCA28 pathogenesis and open new perspectives for therapy. By identifying similar mitochondrial phenotypes between SCA28 cells and AFG3L2+/- cells, our results support haploinsufficiency as the mechanism for the studied pathogenic variants.


Asunto(s)
Proteasas ATP-Dependientes/genética , ATPasas Asociadas con Actividades Celulares Diversas/genética , Variación Genética , Haploinsuficiencia , Metaloendopeptidasas/genética , Dominios Proteicos/genética , Estrés Fisiológico/genética , Proteasas ATP-Dependientes/química , Proteasas ATP-Dependientes/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/química , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Animales , Calcio/metabolismo , Fibroblastos/metabolismo , Células HEK293 , Humanos , Metaloendopeptidasas/metabolismo , Ratones , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/metabolismo , Modelos Biológicos , Unión Proteica , Multimerización de Proteína , Proteolisis , Proteostasis/genética , Activación Transcripcional
10.
Trends Biochem Sci ; 44(6): 528-545, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30773324

RESUMEN

Proteases play essential roles in cellular proteostasis. Mechanisms through which proteases recognize their substrates are often hard to predict and therefore require experimentation. In vivo trapping allows systematic identification of potential substrates of proteases, their adaptors, and chaperones. This combines in vivo genetic modifications of proteolytic systems, stabilized protease-substrate interactions, affinity enrichments of trapped substrates, and mass spectrometry (MS)-based identification. In vitro approaches, in which immobilized protease components are incubated with isolated cellular proteome, complement this in vivo approach. Both approaches can provide information about substrate recognition signals, degrons, and conditional effects. This review summarizes published trapping studies and their biological outcomes, and provides recommendations for substrate trapping of the processive AAA+ Clp, Lon, and FtsH chaperone proteolytic systems.


Asunto(s)
Proteasas ATP-Dependientes/metabolismo , Proteasas ATP-Dependientes/química , Animales , Humanos , Proteolisis , Especificidad por Sustrato
11.
Emerg Microbes Infect ; 7(1): 149, 2018 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-30120231

RESUMEN

The Lon protease selectively degrades abnormal proteins or certain normal proteins in response to environmental and cellular conditions in many prokaryotic and eukaryotic organisms. However, the mechanism(s) behind the substrate selection of normal proteins remains largely unknown. In this study, we identified 10 new substrates of F. tularensis Lon from a total of 21 candidate substrates identified in our previous work, the largest number of novel Lon substrates from a single study. Cross-species degradation of these and other known Lon substrates revealed that human Lon is unable to degrade many bacterial Lon substrates, suggestive of a "organism-adapted" substrate selection mechanism for the natural Lon variants. However, individually replacing the N, A, and P domains of human Lon with the counterparts of bacterial Lon did not enable the human protease to degrade the same bacterial Lon substrates. This result showed that the "organism-adapted" substrate selection depends on multiple domains of the Lon proteases. Further in vitro proteolysis and mass spectrometry analysis revealed a similar substrate cleavage pattern between the bacterial and human Lon variants, which was exemplified by predominant representation of leucine, alanine, and other hydrophobic amino acids at the P(-1) site within the substrates. These observations suggest that the Lon proteases select their substrates at least in part by fine structural matching with the proteins in the same organisms.


Asunto(s)
Proteasas ATP-Dependientes/química , Proteínas Bacterianas/química , Francisella tularensis/enzimología , Proteínas Mitocondriales/química , Proteasa La/química , Proteasas ATP-Dependientes/genética , Proteasas ATP-Dependientes/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Francisella tularensis/química , Francisella tularensis/genética , Humanos , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Datos de Secuencia Molecular , Proteasa La/genética , Proteasa La/metabolismo , Dominios Proteicos , Alineación de Secuencia , Especificidad por Sustrato
12.
Biochemistry ; 57(28): 4225-4235, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29932645

RESUMEN

Human AFG3L2 is a compartmental AAA+ protease that performs ATP-fueled degradation at the matrix face of the inner mitochondrial membrane. Identifying how AFG3L2 selects substrates from the diverse complement of matrix-localized proteins is essential for understanding mitochondrial protein biogenesis and quality control. Here, we create solubilized forms of AFG3L2 to examine the enzyme's substrate specificity mechanisms. We show that conserved residues within the presequence of the mitochondrial ribosomal protein, MrpL32, target the subunit to the protease for processing into a mature form. Moreover, these residues can act as a degron, delivering diverse model proteins to AFG3L2 for degradation. By determining the sequence of degradation products from multiple substrates using mass spectrometry, we construct a peptidase specificity profile that displays constrained product lengths and is dominated by the identity of the residue at the P1' position, with a strong preference for hydrophobic and small polar residues. This specificity profile is validated by examining the cleavage of both fluorogenic reporter peptides and full polypeptide substrates bearing different P1' residues. Together, these results demonstrate that AFG3L2 contains multiple modes of specificity, discriminating between potential substrates by recognizing accessible degron sequences and performing peptide bond cleavage at preferred patterns of residues within the compartmental chamber.


Asunto(s)
Proteasas ATP-Dependientes/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Ribosómicas/metabolismo , Proteasas ATP-Dependientes/química , ATPasas Asociadas con Actividades Celulares Diversas/química , Secuencia de Aminoácidos , Humanos , Proteínas Mitocondriales/química , Proteolisis , Proteínas Ribosómicas/química , Solubilidad , Especificidad por Sustrato
13.
J Cell Sci ; 131(7)2018 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-29545505

RESUMEN

The proteolytic processing of dynamin-like GTPase OPA1, mediated by the activity of both YME1L1 [intermembrane (i)-AAA protease complex] and OMA1, is a crucial step in the regulation of mitochondrial dynamics. OMA1 is a zinc metallopeptidase of the inner mitochondrial membrane that undergoes pre-activating proteolytic and auto-proteolytic cleavage after mitochondrial import. Here, we identify AFG3L2 [matrix (m)-AAA complex] as the major protease mediating this event, which acts by maturing the 60 kDa pre-pro-OMA1 to the 40 kDa pro-OMA1 form by severing the N-terminal portion without recognizing a specific consensus sequence. Therefore, m-AAA and i-AAA complexes coordinately regulate OMA1 processing and turnover, and consequently control which OPA1 isoforms are present, thus adding new information on the molecular mechanisms of mitochondrial dynamics and neurodegenerative diseases affected by these phenomena.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteasas ATP-Dependientes/genética , ATPasas Asociadas con Actividades Celulares Diversas/genética , GTP Fosfohidrolasas/genética , Metaloendopeptidasas/genética , Mitocondrias/genética , Proteasas ATP-Dependientes/química , ATPasas Asociadas con Actividades Celulares Diversas/química , Apoptosis/genética , Secuencia de Consenso/genética , GTP Fosfohidrolasas/química , Células HeLa , Humanos , Mitocondrias/química , Dinámicas Mitocondriales/genética , Membranas Mitocondriales/química , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Procesamiento Proteico-Postraduccional/genética , Proteolisis
14.
J Am Chem Soc ; 140(13): 4656-4665, 2018 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-29528632

RESUMEN

ATP-dependent protein degradation mediated by AAA+ proteases is one of the major cellular pathways for protein quality control and regulation of functional networks. While a majority of studies of protein degradation have focused on water-soluble proteins, it is not well understood how membrane proteins with abnormal conformation are selectively degraded. The knowledge gap stems from the lack of an in vitro system in which detailed molecular mechanisms can be studied as well as difficulties in studying membrane protein folding in lipid bilayers. To quantitatively define the folding-degradation relationship of membrane proteins, we reconstituted the degradation using the conserved membrane-integrated AAA+ protease FtsH as a model degradation machine and the stable helical-bundle membrane protein GlpG as a model substrate in the lipid bilayer environment. We demonstrate that FtsH possesses a substantial ability to actively unfold GlpG, and the degradation significantly depends on the stability and hydrophobicity near the degradation marker. We find that FtsH hydrolyzes 380-550 ATP molecules to degrade one copy of GlpG. Remarkably, FtsH overcomes the dual-energetic burden of substrate unfolding and membrane dislocation with the ATP cost comparable to that for water-soluble substrates by robust ClpAP/XP proteases. The physical principles elucidated in this study provide general insights into membrane protein degradation mediated by ATP-dependent proteolytic systems.


Asunto(s)
Proteasas ATP-Dependientes/química , Proteínas de Escherichia coli/química , Proteínas de la Membrana/química , Secuencia Conservada , Pliegue de Proteína , Proteolisis
15.
Biochem Biophys Res Commun ; 495(1): 1201-1207, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29180014

RESUMEN

Prompt removal of misfolded membrane proteins and misassembled membrane protein complexes is essential for membrane homeostasis. However, the elimination of these toxic proteins from the hydrophobic membrane environment has high energetic barriers. The transmembrane protein, FtsH, is the only known ATP-dependent protease responsible for this task. The mechanisms by which FtsH recognizes, unfolds, translocates, and proteolyzes its substrates remain unclear. The structure and function of the ATPase and protease domains of FtsH have been previously characterized while the role of the FtsH periplasmic domain has not clearly identified. Here, we report the 1.5-1.95 Å resolution crystal structures of the Thermotoga maritima FtsH periplasmic domain (tmPD) and describe the dynamic features of tmPD oligomerization.


Asunto(s)
Proteasas ATP-Dependientes/química , Proteasas ATP-Dependientes/ultraestructura , Péptido Hidrolasas/química , Péptido Hidrolasas/ultraestructura , Multimerización de Proteína , Thermotoga maritima/enzimología , Sitios de Unión , Simulación por Computador , Activación Enzimática , Modelos Químicos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios Proteicos , Relación Estructura-Actividad
16.
Science ; 358(6363)2017 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-29097521

RESUMEN

We present an atomic model of a substrate-bound inner mitochondrial membrane AAA+ quality control protease in yeast, YME1. Our ~3.4-angstrom cryo-electron microscopy structure reveals how the adenosine triphosphatases (ATPases) form a closed spiral staircase encircling an unfolded substrate, directing it toward the flat, symmetric protease ring. Three coexisting nucleotide states allosterically induce distinct positioning of tyrosines in the central channel, resulting in substrate engagement and translocation to the negatively charged proteolytic chamber. This tight coordination by a network of conserved residues defines a sequential, around-the-ring adenosine triphosphate hydrolysis cycle that results in stepwise substrate translocation. A hingelike linker accommodates the large-scale nucleotide-driven motions of the ATPase spiral relative to the planar proteolytic base. The translocation mechanism is likely conserved for other AAA+ ATPases.


Asunto(s)
Proteasas ATP-Dependientes/química , Membranas Mitocondriales/enzimología , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Proteasas ATP-Dependientes/ultraestructura , Adenosina Trifosfato/metabolismo , Microscopía por Crioelectrón , Hidrólisis , Modelos Moleculares , Dominios Proteicos , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/ultraestructura , Especificidad por Sustrato
17.
Biochim Biophys Acta Bioenerg ; 1858(7): 519-528, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28442264

RESUMEN

The mitochondrial ATP dependent matrix protease, Lon, is involved in the maintenance of mitochondrial DNA nucleoids and degradation of abnormal or misfolded proteins. The Lon protease regulates mitochondrial Tfam (mitochondrial transcription factor A) level and thus modulates mitochondrial DNA (mtDNA) content. We have previously shown that hypoxic stress induces the PKA-dependent phosphorylation of cytochrome c oxidase (CcO) subunits I, IVi1, and Vb and a time-dependent reduction of these subunits in RAW 264.7 murine macrophages subjected to hypoxia and rabbit hearts subjected to ischemia/reperfusion. Here, we show that Lon is involved in the preferential turnover of phosphorylated CcO subunits under hypoxic/ischemic stress. Induction of Lon protease occurs at 6 to 12 h of hypoxia and this increase coincides with lower CcO subunit contents. Over-expression of flag-tagged wild type and phosphorylation site mutant Vb and IVi1 subunits (S40A and T52A, respectively) caused marked degradation of wild type protein under hypoxia while the mutant proteins were relatively resistant. Furthermore, the recombinant purified Lon protease degraded the phosphorylated IVi1 and Vb subunits, while the phosphorylation-site mutant proteins were resistant to degradation. 3D structural modeling shows that the phosphorylation sites are exposed to the matrix compartment, accessible to matrix PKA and Lon protease. Hypoxic stress did not alter CcO subunit levels in Lon depleted cells, confirming its role in CcO turnover. Our results therefore suggest that Lon preferentially degrades the phosphorylated subunits of CcO and plays a role in the regulation of CcO activity in hypoxia and ischemia/reperfusion injury.


Asunto(s)
Proteasas ATP-Dependientes/metabolismo , Hipoxia de la Célula/fisiología , Complejo IV de Transporte de Electrones/metabolismo , Mitocondrias Cardíacas/enzimología , Proteínas Mitocondriales/metabolismo , Isquemia Miocárdica/enzimología , Proteasas ATP-Dependientes/química , Proteasas ATP-Dependientes/genética , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Humanos , Masculino , Ratones , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Modelos Moleculares , Fosforilación , Conformación Proteica , Procesamiento Proteico-Postraduccional , Subunidades de Proteína , Células RAW 264.7 , Interferencia de ARN , ARN Interferente Pequeño/genética , Conejos , Proteínas Recombinantes/metabolismo
18.
Biol Chem ; 398(5-6): 625-635, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28085670

RESUMEN

Cellular proteomes are dynamic and adjusted to permanently changing conditions by ATP-fueled proteolytic machineries. Among the five AAA+ proteases in Escherichia coli FtsH is the only essential and membrane-anchored metalloprotease. FtsH is a homohexamer that uses its ATPase domain to unfold and translocate substrates that are subsequently degraded without the need of ATP in the proteolytic chamber of the protease domain. FtsH eliminates misfolded proteins in the context of general quality control and properly folded proteins for regulatory reasons. Recent trapping approaches have revealed a number of novel FtsH substrates. This review summarizes the substrate diversity of FtsH and presents details on the surprisingly diverse recognition principles of three well-characterized substrates: LpxC, the key enzyme of lipopolysaccharide biosynthesis; RpoH, the alternative heat-shock sigma factor and YfgM, a bifunctional membrane protein implicated in periplasmic chaperone functions and cytoplasmic stress adaptation.


Asunto(s)
Proteasas ATP-Dependientes/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Proteolisis , Proteasas ATP-Dependientes/química , Secuencia de Aminoácidos , Proteínas de Escherichia coli/química
19.
Structure ; 24(5): 676-686, 2016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-27041593

RESUMEN

The Lon AAA+ protease (LonA) plays important roles in protein homeostasis and regulation of diverse biological processes. LonA behaves as a homomeric hexamer in the presence of magnesium (Mg(2+)) and performs ATP-dependent proteolysis. However, it is also found that LonA can carry out Mg(2+)-dependent degradation of unfolded protein substrate in an ATP-independent manner. Here we show that in the presence of Mg(2+) LonA forms a non-secluded hexameric barrel with prominent openings, which explains why Mg(2+)-activated LonA can operate as a diffusion-based chambered protease to degrade unstructured protein and peptide substrates efficiently in the absence of ATP. A 1.85 Å crystal structure of Mg(2+)-activated protease domain reveals Mg(2+)-dependent remodeling of a substrate-binding loop and a potential metal-binding site near the Ser-Lys catalytic dyad, supported by biophysical binding assays and molecular dynamics simulations. Together, these findings reveal the specific roles of Mg(2+) in the molecular assembly and activation of LonA.


Asunto(s)
Proteasas ATP-Dependientes/química , Magnesio/metabolismo , Proteínas Mitocondriales/química , Multimerización de Proteína , Proteasas ATP-Dependientes/antagonistas & inhibidores , Proteasas ATP-Dependientes/metabolismo , Sitios de Unión , Bortezomib/farmacología , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/metabolismo , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/farmacología , Unión Proteica
20.
Structure ; 24(5): 667-675, 2016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-27041592

RESUMEN

The Lon AAA+ protease (LonA) is an evolutionarily conserved protease that couples the ATPase cycle into motion to drive substrate translocation and degradation. A hallmark feature shared by AAA+ proteases is the stimulation of ATPase activity by substrates. Here we report the structure of LonA bound to three ADPs, revealing the first AAA+ protease assembly where the six protomers are arranged alternately in nucleotide-free and bound states. Nucleotide binding induces large coordinated movements of conserved pore loops from two pairs of three non-adjacent protomers and shuttling of the proteolytic groove between the ATPase site and a previously unknown Arg paddle. Structural and biochemical evidence supports the roles of the substrate-bound proteolytic groove in allosteric stimulation of ATPase activity and the conserved Arg paddle in driving substrate degradation. Altogether, this work provides a molecular framework for understanding how ATP-dependent chemomechanical movements drive allosteric processes for substrate degradation in a major protein-destruction machine.


Asunto(s)
Proteasas ATP-Dependientes/química , Sitio Alostérico , Proteínas Mitocondriales/química , Proteasas ATP-Dependientes/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Regulación Alostérica , Proteínas Mitocondriales/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA