Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235
Filtrar
1.
Cancer Lett ; 603: 217200, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-39222677

RESUMEN

Triple-negative breast cancer (TNBC) is difficult to treat breast cancer subtype due to lack or insignificant expressions of targetable estrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2). Therefore, finding a targetable protein or signaling pathway in TNBC would impact patient care. Here, we report that a member of the Mixed Lineage Kinase (MLK) family, MLK3, is an effector of G-protein-coupled protease-activated receptors 1 (PAR1) and targeting MLK3 by a small-molecule inhibitor prevented PAR1-mediated TNBC tumorigenesis. In silico and immunohistochemistry analysis of human breast tumors showed overexpression of PAR1 and MLK3 in TNBC tumors. Treating α-thrombin and PAR1 agonist increased MLK3 and JNK activities and induced cell migration in TNBC cells. The PAR1 positive/high (PAR1+/hi) population of TNBC cells showed aggressive tumor phenotype with increased MLK3 signaling. Moreover, combined inhibition of the PAR1 and MLK3 mitigated the TNBC tumor burden in preclinical TNBC models. Our data suggests that activation of the PAR1-MLK3 axis promotes TNBC tumorigenesis. Therefore, combinatorial therapy targeting MLK3 and PAR1 could effectively reduce TNBC tumor burden.


Asunto(s)
Quinasas Quinasa Quinasa PAM , Proteina Quinasa Quinasa Quinasa 11 Activada por Mitógeno , Receptor PAR-1 , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Humanos , Receptor PAR-1/metabolismo , Receptor PAR-1/genética , Femenino , Animales , Línea Celular Tumoral , Quinasas Quinasa Quinasa PAM/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Movimiento Celular , Transducción de Señal , Inhibidores de Proteínas Quinasas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Carcinogénesis/metabolismo , Carcinogénesis/genética , Ratones , Proliferación Celular
2.
J Med Chem ; 67(17): 15012-15028, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39207123

RESUMEN

Triple-negative breast cancer (TNBC) is associated with poor prognosis because of the lack of effective therapies. Mixed-lineage protein kinase 3 (MLK3) is a protein that is often upregulated in TNBC and involved in driving the tumorigenic potential of cancer cells. Here, we present a selective MLK3 degrader, CEP1347-VHL-02, based on the pan-MLK inhibitor CEP1347 and a ligand for E3 ligase von Hippel-Lindau (VHL) by employing proteolysis-targeting chimera (PROTAC) technology. Our compound effectively targeted MLK3 for degradation via the ubiquitin-proteasome system in several cell line models but did not degrade other MLK family members. Furthermore, we showed that CEP1347-VHL-02 robustly degraded MLK3 and inhibited its oncogenic activity in TNBC, measured as a reduction of clonogenic and migratory potential, cell cycle arrest, and the induction of apoptosis in MDA-MB-468 cells. In conclusion, we present CEP1347-VHL-02 as a novel MLK3 degrader that may be a promising new strategy to target MLK3 in TNBC.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proteolisis/efectos de los fármacos , Proteina Quinasa Quinasa Quinasa 11 Activada por Mitógeno , Apoptosis/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Femenino , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , Proliferación Celular/efectos de los fármacos
3.
Biochim Biophys Acta Rev Cancer ; 1879(5): 189157, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39032538

RESUMEN

Mixed-lineage kinase 3 (MLK3) is a serine/threonine kinase of the MAPK Kinase kinase (MAP3K) family that plays critical roles in various biological processes, including cancer. Upon activation, MLK3 differentially activates downstream MAPKs, such as JNK, p38, and ERK. In addition, it regulates various non-canonical signaling pathways, such as ß-catenin, AMPK, Pin1, and PAK1, to regulate cell proliferation, apoptosis, invasion, and metastasis. Recent studies have also uncovered other potentially diverse roles of MLK3 in malignancy, which include metabolic reprogramming, cancer-associated inflammation, and evasion of cancer-related immune surveillance. The role of MLK3 in cancer is complex and cancer-specific, and an understanding of its function at the molecular level aligned specifically with the cancer hallmarks will have profound therapeutic implications for diagnosing and treating MLK3-dependent cancers. This review summarizes the current knowledge about the effect of MLK3 on the hallmarks of cancer, providing insights into its potential as a promising anticancer drug target.


Asunto(s)
Quinasas Quinasa Quinasa PAM , Proteina Quinasa Quinasa Quinasa 11 Activada por Mitógeno , Neoplasias , Humanos , Neoplasias/patología , Neoplasias/genética , Neoplasias/enzimología , Neoplasias/tratamiento farmacológico , Quinasas Quinasa Quinasa PAM/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Animales , Apoptosis , Transducción de Señal , Proliferación Celular
4.
J Agric Food Chem ; 72(25): 14386-14401, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38869955

RESUMEN

Heat stress is becoming the major factor regarding dairy cow health and milk quality because of global warming. Circular RNAs (circRNAs) represent a special type of noncoding RNAs, which are related to regulating many biological processes. Nonetheless, little is known concerning their effects on heat-stressed bovine mammary epithelial cells (BMECs). Here, this study found a novel circRNA, circ_002033, using RNA sequencing (RNA-seq) and explored the role and underlying regulatory mechanism in proliferation, apoptosis, and oxidative damage in a heat-stressed bovine mammary epithelial cell line (MAC-T). According to the previous RNA-seq analysis, the abundance of circ_002033 in mammary gland tissue of heat-stressed cows increased relative to nonheat-stressed counterparts. This study found that the knockdown of circ_002033 promoted proliferation and alleviated apoptosis and oxidative damage in heat-stressed MAC-T. Mechanistically, circ_002033 localizes to miR-199a-5p in the cytoplasm of MAC-T to regulate mitogen-activated protein kinase kinase 11 (MAP3K11) expression. Meanwhile, miR-199a-5p and MAP3K11 are also involved in regulating the proliferation and apoptosis of heat-stressed MAC-T. Importantly, circ_002033 knockdown promoted the expression of miR-199a-5p while decreasing that of MAP3K11, thereby enhancing proliferation while alleviating apoptosis and oxidative damage in heat-stressed MAC-T. In summary, we found that circ_002033 regulates the proliferation, apoptosis, and oxidative damage of heat-stressed BMECs through the miR-199a-5p/MAP3K11 axis, providing the theoretical molecular foundation for mitigating heat stress of dairy cows.


Asunto(s)
Apoptosis , Proliferación Celular , Células Epiteliales , Respuesta al Choque Térmico , Quinasas Quinasa Quinasa PAM , Glándulas Mamarias Animales , MicroARNs , Estrés Oxidativo , ARN Circular , Animales , Bovinos , Células Epiteliales/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Femenino , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/citología , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Proteina Quinasa Quinasa Quinasa 11 Activada por Mitógeno , Línea Celular
5.
Oncogene ; 43(30): 2307-2324, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38858590

RESUMEN

Advanced hepatocellular carcinoma (HCC) is a lethal disease, with limited therapeutic options. Mixed Lineage Kinase 3 (MLK3) is a key regulator of liver diseases, although its role in HCC remains unclear. Analysis of TCGA databases suggested elevated MAP3K11 (MLK3 gene) expression, and TMA studies showed higher MLK3 activation in human HCCs. To understand MLK3's role in HCC, we utlized carcinogen-induced HCC model and compared between wild-type and MLK3 knockout (MLK3-/-) mice. Our studies showed that MLK3 kinase activity is upregulated in HCC, and MLK3 deficiency alleviates HCC progression. MLK3 deficiency reduced proliferation in vivo and MLK3 inhibition reduced proliferation and colony formation in vitro. To obtain further insight into the mechanism and identify newer targets mediating MLK3-induced HCCs, RNA-sequencing analysis was performed. These showed that MLK3 deficiency modulates various gene signatures, including EMT, and reduces TGFB1&2 expressions. HCC cells overexpressing MLK3 promoted EMT via autocrine TGFß signaling. Moreover, MLK3 deficiency attenuated activated hepatic stellate cell (HSC) signature, which is increased in wild-type. Interestingly, MLK3 promotes HSC activation via paracrine TGFß signaling. These findings reveal TGFß playing a key role at different steps of HCC, downstream of MLK3, implying MLK3-TGFß axis to be an ideal drug target for advanced HCC management.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Quinasas Quinasa Quinasa PAM , Proteina Quinasa Quinasa Quinasa 11 Activada por Mitógeno , Transducción de Señal , Factor de Crecimiento Transformador beta , Animales , Humanos , Masculino , Ratones , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Proliferación Celular , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Ratones Noqueados , Factor de Crecimiento Transformador beta/metabolismo
6.
Cell Mol Life Sci ; 81(1): 119, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38456949

RESUMEN

Activated small ubiquitin-like modifiers (SUMOs) have been implicated in neuropathological processes following ischemic stroke. However, the target proteins of SUMOylation and their contribution to neuronal injury remain to be elucidated. MLK3 (mixed-lineage kinase 3), a member of the mitogen-activated protein kinase kinase kinase (MAPKKK) family, is a critical regulator of neuronal lesions following cerebral ischemia. Here, we found that SUMOylation of MLK3 increases in both global and focal ischemic rodent models and primary neuronal models of oxygen and glucose deprivation (OGD). SUMO1 conjugation at the Lys401 site of MLK3 promoted its activation, stimulated its downstream p38/c-Jun N-terminal kinase (JNK) cascades, and led to cell apoptosis. The interaction of MLK3 with PIAS3, a SUMO ligase, was elevated following ischemia and reperfusion. The PINIT domain of PIAS3 was involved in direct interactions with MLK3. Overexpression of the PINIT domain of PIAS3 disrupted the MLK3-PIAS3 interaction, inhibited SUMOylation of MLK3, suppressed downstream signaling, and reduced cell apoptosis and neurite damage. In rodent ischemic models, the overexpression of the PINIT domain reduced brain lesions and alleviated deficits in learning, memory, and sensorimotor functions. Our findings demonstrate that brain ischemia-induced MLK3 SUMOylation by PIAS3 is a potential target against poststroke neuronal lesions and behavioral impairments.


Asunto(s)
Isquemia Encefálica , Sumoilación , Humanos , Quinasas Quinasa Quinasa PAM/genética , Proteina Quinasa Quinasa Quinasa 11 Activada por Mitógeno , Transducción de Señal/fisiología , Isquemia Encefálica/metabolismo , Cognición , Chaperonas Moleculares/metabolismo , Proteínas Inhibidoras de STAT Activados/genética , Proteínas Inhibidoras de STAT Activados/metabolismo
7.
Bioorg Med Chem Lett ; 101: 129652, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38346577

RESUMEN

Mixed-lineage protein kinase 3 (MLK3) is implicated in several human cancers and neurodegenerative diseases. A series of 3H-imidazo[4,5-b]pyridine derivatives were designed, synthesized and evaluated as novel MLK3 inhibitors. A homology model of MLK3 was developed and all designed compounds were docked to assess their binding pattern and affinity toward the MLK3 active site. Based on this knowledge, we synthesized and experimentally evaluated the designed compounds. Majority of the compounds showed significant inhibition of MLK3 in the enzymatic assay. In particular, compounds 9a, 9e, 9j, 9 k, 12b and 12d exhibited IC50 values of 6, 6, 8, 11, 14 and 14 nM, respectively. Furthermore, compounds 9a, 9e, 9 k and 12b exhibited favorable physicochemical properties among these compounds.


Asunto(s)
Proteina Quinasa Quinasa Quinasa 11 Activada por Mitógeno , Piridinas , Humanos , Relación Estructura-Actividad , Piridinas/química , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas/química
8.
Cell Biochem Biophys ; 81(3): 469-479, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37550525

RESUMEN

Activation of mixed lineage kinase 3 (MLK3) by phosphorylation at Thr277/Ser281 stimulates downstream apoptotic pathways and ultimately leads to cell injury. MLK3 is reported to localize to both the cytoplasm and nucleus in human ovarian cancer cells and immortalized ovarian epithelial cells (T80 and T90 cells), and phosphorylation at Thr477 is required for the cytoplasmic retention of MLK3 in T80 cells. However, the subcellular distribution of MLK3 in other cell types has rarely been reported, and whether phosphorylation of MLK3 at Thr277/Ser281 affects its subcellular distribution is unknown. Here, our bioinformatics analysis predicted that MLK3 was mainly distributed in the cytoplasm and nucleus. In the human HEK293T embryonic kidney cell line and murine HT22 hippocampal neuronal cell line, endogenous MLK3 was more abundant in the cytoplasm and less abundant in the nucleus. In addition, overexpressed Myc-tagged MLK3 and EGFP-tagged MLK3 were also observed to localize mainly to the cytoplasm. MLK3 that was activated by phosphorylation at Thr277/Ser281 was mainly distributed in the cytoplasm, and phosphorylation deficient (T277A/S281A) and mimic (T277E/S281E) mutants both showed distributions similar to that of wild type (wt) MLK3, further proving that phosphorylation at Thr277/Ser281 was not involved in regulating MLK3 subcellular localization. In HEK293T cells, H2O2 stimulation accelerated MLK3 phosphorylation (activation), and this phosphorylation was reduced by the antioxidant N-acetylcysteine in a dose-dependent manner. Overexpressing wt MLK3 promoted the production of intracellular reactive oxygen species and increased cell apoptosis, both of which were enhanced by the phosphorylation-mimic (T277E/S281E) MLK3 variant but not by the phosphorylation-deficient (T277A/S281A) MLK3 variant. These findings provided additional evidence for the cytoplasmic and nuclear distribution of MLK3 in HEK293T cells or HT22 cells and revealed the pivotal role of MLK3 in the positive feedback loop of oxidative stress injury.


Asunto(s)
Peróxido de Hidrógeno , Quinasas Quinasa Quinasa PAM , Humanos , Ratones , Animales , Retroalimentación , Células HEK293 , Quinasas Quinasa Quinasa PAM/metabolismo , Estrés Oxidativo , Fosforilación , Citoplasma/metabolismo , Proteina Quinasa Quinasa Quinasa 11 Activada por Mitógeno
9.
Eur J Med Chem ; 257: 115511, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37247505

RESUMEN

Selective and brain-permeable protein kinase inhibitors are in preclinical development for treating neurodegenerative diseases. Among them, MLK3 inhibitors, with a potent neuroprotective biological action have emerged as valuable agents for the treatment of pathologies such as Alzheimer's, Parkinson's disease and amyotrophic lateral sclerosis. In fact, one MLK3 inhibitor, CEP-1347, reached clinical trials for Parkinson's disease. Additionally, another compound called prostetin/12k, a potent and rather selective MLK3 inhibitor has started clinical development for ALS based on its motor neuron protection in both in vitro and in vivo models. In this review, we will focus on the role of MLK3 in neuron-related cell death processes, neurodegenerative diseases, and the potential advantages of targeting this kinase through pharmacological modulation for neuroprotective treatment.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedad de Parkinson/tratamiento farmacológico , Quinasas Quinasa Quinasa PAM , Muerte Celular , Proteina Quinasa Quinasa Quinasa 11 Activada por Mitógeno
10.
Oncogene ; 42(14): 1132-1143, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36813855

RESUMEN

Mixed Lineage Kinase 3 (MLK3) is a viable target for neoplastic diseases; however, it is unclear whether its activators or inhibitors can act as anti-neoplastic agents. We reported that the MLK3 kinase activity was higher in triple-negative (TNBC) than in hormone receptor-positive human breast tumors, where estrogen inhibited MLK3 kinase activity and provided a survival advantage to ER+ breast cancer cells. Herein, we show that in TNBC, the higher MLK3 kinase activity paradoxically promotes cancer cell survival. Knockdown of MLK3 or MLK3 inhibitors, CEP-1347 and URMC-099, attenuated tumorigenesis of TNBC cell line and Patient-Derived (PDX) xenografts. The MLK3 kinase inhibitors decreased both the expression and activation of MLK3, PAK1, and NF-kB protein and caused cell death in TNBC breast xenografts. RNA-seq analysis identified several genes downregulated by MLK3 inhibition, and the NGF/TrkA MAPK pathway was significantly enriched in tumors sensitive to growth inhibition by MLK3 inhibitors. The TNBC cell line unresponsive to kinase inhibitor had substantially lower TrkA, and overexpression of TrkA restored the sensitivity to MLK3 inhibition. These results suggest that the functions of MLK3 in breast cancer cells depend on downstream targets in TNBC tumors expressing TrkA, and MLK3 kinase inhibition may provide a novel targeted therapy.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Línea Celular Tumoral , Quinasas Quinasa Quinasa PAM/metabolismo , Estrógenos , Proteínas Tirosina Quinasas Receptoras , Proteina Quinasa Quinasa Quinasa 11 Activada por Mitógeno
11.
Neurosci Lett ; 793: 136990, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36455693

RESUMEN

Cytomegalovirus (CMV)-induced sensorineural hearing loss (SNHL) is a worldwide epidemic. Recent studies have shown that the degree of spiral ganglion neuron (SGN) loss is correlated with hearing loss after CMV infection. We aimed to better understand the pathological mechanisms of CMV-related SGN death and to search for intervention measures. We found that both apoptosis and pyroptosis are involved in CMV-induced SGN death, which may be caused by the simultaneous activation of the p53/JNK and NLRP3/caspase-1 signaling pathways, respectively. Moreover, considering that mixed lineage kinase family (MLK1/2/3) are host restriction factors against viral infection and upstream regulators of the p53/JNK and inflammatory (including NLRP3-caspase1) signaling pathways, we further demonstrated that the MLKs inhibitor URMC-099 exhibited a protective effect against CMV-induced SGN death and hearing loss. These results indicate that MLKs signaling may be a key regulator and promising novel target for preventing apoptosis and even pyroptosis during the CMV infection of SGN cells and for treating hearing loss.


Asunto(s)
Infecciones por Citomegalovirus , Sordera , Pérdida Auditiva Sensorineural , Quinasas Quinasa Quinasa PAM , Muromegalovirus , Animales , Ratones , Apoptosis , Citomegalovirus , Infecciones por Citomegalovirus/metabolismo , Infecciones por Citomegalovirus/patología , Sordera/metabolismo , Sordera/patología , Pérdida Auditiva/metabolismo , Pérdida Auditiva/patología , Pérdida Auditiva Sensorineural/metabolismo , Pérdida Auditiva Sensorineural/patología , Neuronas , Proteína con Dominio Pirina 3 de la Familia NLR , Ganglio Espiral de la Cóclea/patología , Proteína p53 Supresora de Tumor , Quinasas Quinasa Quinasa PAM/metabolismo , Proteina Quinasa Quinasa Quinasa 11 Activada por Mitógeno
12.
Int J Mol Sci ; 23(18)2022 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-36142785

RESUMEN

Inflammation is a critically important barrier found in innate immunity. However, severe and sustained inflammatory conditions are regarded as causes of many different serious diseases, such as cancer, atherosclerosis, and diabetes. Although numerous studies have addressed how inflammatory responses proceed and what kinds of proteins and cells are involved, the exact mechanism and protein components regulating inflammatory reactions are not fully understood. In this paper, to determine the regulatory role of mixed lineage kinase 3 (MLK3), which functions as mitogen-activated protein kinase kinase kinase (MAP3K) in cancer cells in inflammatory response to macrophages, we employed an overexpression strategy with MLK3 in HEK293 cells and used its inhibitor URMC-099 in lipopolysaccharide (LPS)-treated RAW264.7 cells. It was found that overexpressed MLK3 increased the mRNA expression of inflammatory genes (COX-2, IL-6, and TNF-α) via the activation of AP-1, according to a luciferase assay carried out with AP-1-Luc. Overexpression of MLK3 also induced phosphorylation of MAPKK (MEK1/2, MKK3/6, and MKK4/7), MAPK (ERK, p38, and JNK), and AP-1 subunits (c-Jun, c-Fos, and FRA-1). Phosphorylation of MLK3 was also observed in RAW264.7 cells stimulated by LPS, Pam3CSK, and poly(I:C). Finally, inhibition of MLK3 by URMC-099 reduced the expression of COX-2 and CCL-12, phosphorylation of c-Jun, luciferase activity mediated by AP-1, and phosphorylation of MAPK in LPS-treated RAW264.7 cells. Taken together, our findings strongly suggest that MLK3 plays a central role in controlling AP-1-mediated inflammatory responses in macrophages and that this enzyme can serve as a target molecule for treating AP-1-mediated inflammatory diseases.


Asunto(s)
Lipopolisacáridos , Factor de Transcripción AP-1 , Animales , Ciclooxigenasa 2/metabolismo , Células HEK293 , Humanos , Inflamación , Interleucina-6 , Lipopolisacáridos/farmacología , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos , Células RAW 264.7 , ARN Mensajero , Factor de Transcripción AP-1/metabolismo , Factor de Necrosis Tumoral alfa/genética , Proteina Quinasa Quinasa Quinasa 11 Activada por Mitógeno
13.
Proc Natl Acad Sci U S A ; 119(38): e2205454119, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36095190

RESUMEN

Trastuzumab is the first-line therapy for human epidermal growth factor receptor 2-positive (HER2+) breast cancer, but often patients develop acquired resistance. Although other agents are in clinical use to treat trastuzumab-resistant (TR) breast cancer; still, the patients develop recurrent metastatic disease. One of the primary mechanisms of acquired resistance is the shedding/loss of the HER2 extracellular domain, where trastuzumab binds. We envisioned any new agent acting downstream of the HER2 should overcome trastuzumab resistance. The mixed lineage kinase 3 (MLK3) activation by trastuzumab is necessary for promoting cell death in HER2+ breast cancer. We designed nanoparticles loaded with MLK3 agonist ceramide (PPP-CNP) and tested their efficacy in sensitizing TR cell lines, patient-derived organoids, and patient-derived xenograft (PDX). The PPP-CNP activated MLK3, its downstream JNK kinase activity, and down-regulated AKT pathway signaling in TR cell lines and PDX. The activation of MLK3 and down-regulation of AKT signaling by PPP-CNP induced cell death and inhibited cellular proliferation in TR cells and PDX. The apoptosis in TR cells was dependent on increased CD70 protein expression and caspase-9 and caspase-3 activities by PPP-CNP. The PPP-CNP treatment alike increased the expression of CD70, CD27, cleaved caspase-9, and caspase-3 with a concurrent tumor burden reduction of TR PDX. Moreover, the expressions of CD70 and ceramide levels were lower in TR than sensitive HER2+ human breast tumors. Our in vitro and preclinical animal models suggest that activating the MLK3-CD70 axis by the PPP-CNP could sensitize/overcome trastuzumab resistance in HER2+ breast cancer.


Asunto(s)
Antineoplásicos Inmunológicos , Neoplasias de la Mama , Ligando CD27 , Resistencia a Antineoplásicos , Quinasas Quinasa Quinasa PAM , Nanopartículas , Trastuzumab , Animales , Antineoplásicos Inmunológicos/farmacología , Antineoplásicos Inmunológicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Ligando CD27/metabolismo , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Línea Celular Tumoral , Ceramidas/química , Femenino , Humanos , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor ErbB-2/análisis , Trastuzumab/farmacología , Trastuzumab/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto , Proteina Quinasa Quinasa Quinasa 11 Activada por Mitógeno
14.
Pharmacol Ther ; 238: 108269, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36038020

RESUMEN

Mixed lineage kinase 3 (MLK3) is a serine/threonine kinase family member of mitogen activated protein kinase kinase kinases (MAP3Ks). MLK3 has been implicated in the regulation of tumor cell proliferation, differentiation, migration, invasion, and apoptosis depending on the cellular contexts. Notwithstanding the involvement of MLK3 in several cancers, the precise roles of MLK3 are not completely understood. This review evaluates the molecular mechanisms and signaling pathways associated with MLK3, which play a major role in malignancies that include breast, cervical, colorectal, gastric and prostate cancer. Since early detection of cancer is critical, this review discusses the potential of MLK3 as a predictive biomarker, which could likely help in clinical decision-making. Importantly, the efficacy of targeting MLK3 via different therapeutic approaches is also explored.


Asunto(s)
Quinasas Quinasa Quinasa PAM , Neoplasias , Humanos , Quinasas Quinasa Quinasa PAM/metabolismo , Proteínas Serina-Treonina Quinasas , Serina , Proteina Quinasa Quinasa Quinasa 11 Activada por Mitógeno
15.
J Biol Chem ; 298(8): 102263, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35843311

RESUMEN

Mixed lineage kinase 3 (MLK3) is a serine/threonine mitogen-activated protein kinase kinase kinase that promotes the activation of multiple mitogen-activated protein kinase pathways and is required for invasion and proliferation of ovarian cancer cells. Inhibition of MLK activity causes G2/M arrest in HeLa cells; however, the regulation of MLK3 during ovarian cancer cell cycle progression is not known. Here, we found that MLK3 is phosphorylated in mitosis and that inhibition of cyclin-dependent kinase 1 (CDK1) prevented MLK3 phosphorylation. In addition, we observed that c-Jun N-terminal kinase, a downstream target of MLK3 and a direct target of MKK4 (SEK1), was activated in G2 phase when CDK2 activity is increased and then inactivated at the beginning of mitosis concurrent with the increase in CDK1 and MLK3 phosphorylation. Using in vitro kinase assays and phosphomutants, we determined that CDK1 phosphorylates MLK3 on Ser548 and decreases MLK3 activity during mitosis, whereas CDK2 phosphorylates MLK3 on Ser770 and increases MLK3 activity during G1/S and G2 phases. We also found that MLK3 inhibition causes a reduction in cell proliferation and a cell cycle arrest in ovarian cancer cells, suggesting that MLK3 is required for ovarian cancer cell cycle progression. Taken together, our results suggest that phosphorylation of MLK3 by CDK1 and CDK2 is important for the regulation of MLK3 and c-Jun N-terminal kinase activities during G1/S, G2, and M phases in ovarian cancer cell division.


Asunto(s)
Proteína Quinasa CDC2 , Quinasa 2 Dependiente de la Ciclina , Neoplasias Ováricas , Proteína Quinasa CDC2/metabolismo , División Celular/genética , Línea Celular Tumoral , Quinasa 2 Dependiente de la Ciclina/metabolismo , Femenino , Puntos de Control de la Fase G2 del Ciclo Celular , Células HeLa , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Mitosis , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Fosforilación , Proteina Quinasa Quinasa Quinasa 11 Activada por Mitógeno
16.
Am J Physiol Heart Circ Physiol ; 323(3): H513-H522, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35867711

RESUMEN

Mixed lineage kinase 3 (MLK3) modulates blood pressure and left ventricular function, but the mechanisms governing these effects remain unclear. In the current study, we therefore investigated the role of the MLK3 Cdc42/Rac interactive binding (CRIB) domain in cardiovascular physiology. We examined baseline and left ventricular pressure overload responses in a MLK3 CRIB mutant (MLK3C/C) mouse, which harbors point mutations in the CRIB domain to disrupt MLK3 activation by Cdc42. Male and female MLK3C/C mice displayed increased invasively measured blood pressure compared with wild-type (MLK3+/+) littermate controls. MLK3C/C mice of both sexes also developed left and right ventricular hypertrophy but normal baseline LV function by echocardiography and invasive hemodynamics. In LV tissue from MLK3C/C mice, map3k11 mRNA, which encodes MLK3, and MLK3 protein were reduced by 74 ± 6% and 73 ± 7%, respectively. After 1-wk LV pressure overload with 25-gauge transaortic constriction (TAC), male MLK3C/C mice developed no differences in LV hypertrophy but displayed reduction in the LV systolic indices ejection fraction and dP/dt normalized to instantaneous pressure. JNK activation was also reduced in LV tissue of MLK3C/C TAC mice. TAC induced MLK3 translocation from cytosolic fraction to membrane fraction in LV tissue from MLK3+/+ but not MLK3C/C mice. These findings identify a role of the MLK3 CRIB domain in MLK3 regulation of basal blood pressure and cardiac morphology, and in promoting the compensatory LV response to pressure overload.NEW & NOTEWORTHY Here, we identified that the presence of two discrete point mutations within the Cdc42/Rac interaction and binding domain of the protein MLK3 recapitulates the effects of whole body MLK3 deletion on blood pressure, cardiac hypertrophy, and left ventricular compensation after pressure overload. These findings implicate the CRIB domain, and thus MLK3 activation by this domain, as critical for maintenance of cardiovascular homeostasis.


Asunto(s)
Cardiomegalia , Función Ventricular Izquierda , Animales , Presión Sanguínea , Cardiomegalia/metabolismo , Femenino , Hipertrofia Ventricular Izquierda , Quinasas Quinasa Quinasa PAM/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Dominios Proteicos , Remodelación Ventricular/fisiología , Proteina Quinasa Quinasa Quinasa 11 Activada por Mitógeno
17.
J Mol Histol ; 53(2): 503-510, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35247112

RESUMEN

Acute lung injury (ALI) is characterized with a high rate of morbidity and mortality. The injury and apoptosis of lung epithelial cells play crucial roles in the progression of ALI. Mixed lineage kinase 3 (MLK3) has been reported to be involved in the regulation of cellular biological functions, such as cell proliferation, apoptosis and ferroptosis. However, the effect of MLK3 exerted on ALI has not been reported. Here, LPS-stimulated MLE12 pulmonary epithelial cells were used as an in vitro model for ALI. In this research, LPS elevated the expression of MLK3 in MLE12 cells. The silence of MLK3 alleviated LPS-induced cell injury. Notably, LPS promoted ferroptosis through enhancing GSH depletion and the productions of MDA and iron, which was attenuated by MLK3 knockdown. Moreover, the silence of MLK3 inhibited p53 expression in LPS-induced cells along with a decrease in the expressions of p21 and Bax, while overexpressing p53 reversed these effects of MLK3 silence. Meanwhile, p53 overexpression reversed the positive effects of MLK3 knockdown on LPS-induced cell ferroptosis and injury. Together, our results confirmed that the silence of MLK3 alleviated LPS-induced lung epithelial cell injury by inhibiting p53-mediated ferroptosis.


Asunto(s)
Lesión Pulmonar Aguda , Ferroptosis , Quinasas Quinasa Quinasa PAM , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/genética , Animales , Línea Celular Tumoral , Células Epiteliales/metabolismo , Lipopolisacáridos/farmacología , Pulmón , Quinasas Quinasa Quinasa PAM/genética , Ratones , Proteína p53 Supresora de Tumor/genética , Proteina Quinasa Quinasa Quinasa 11 Activada por Mitógeno
18.
Oncogene ; 40(43): 6153-6165, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34511598

RESUMEN

MAP4K4 is a Ste20 member and reported to play important roles in various pathologies, including in cancer. However, the mechanism by which MAP4K4 promotes pancreatic cancer is not fully understood. It is suggested that MAP4K4 might function as a cancer promoter via specific downstream target(s) in an organ-specific manner. Here we identified MLK3 as a direct downstream target of MAP4K4. The MAP4K4 and MLK3 associates with each other, and MAP4K4 phosphorylates MLK3 on Thr738 and increases MLK3 kinase activity and downstream signaling. The phosphorylation of MLK3 by MAP4K4 promotes pancreatic cancer cell proliferation, migration, and colony formation. Moreover, MAP4K4 is overexpressed in human pancreatic tumors and directly correlates with the disease progression. The MAP4K4-specific pharmacological inhibitor, GNE-495, impedes pancreatic cancer cell growth, migration, induces cell death, and arrests cell cycle progression. Additionally, the GNE-495 reduced the tumor burden and extended survival of the KPC mice with pancreatic cancer. The MAP4K4 inhibitor also reduced MAP4K4 protein expression, tumor stroma, and induced cell death in murine pancreatic tumors. These findings collectively suggest that MLK3 phosphorylation by MAP4K4 promotes pancreatic cancer, and therefore therapies targeting MAP4K4 might alleviate the pancreatic cancer tumor burden in patients.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Regulación hacia Arriba , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Ratones , Trasplante de Neoplasias , Neoplasias Pancreáticas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/química , Treonina/química , Proteina Quinasa Quinasa Quinasa 11 Activada por Mitógeno
19.
Oxid Med Cell Longev ; 2021: 5550498, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34221233

RESUMEN

Lipotoxicity-induced apoptosis, also referred to as lipoapoptosis, is one of the important initial factors promoting the progression from hepatosteatosis to nonalcoholic steatohepatitis (NASH). Saturated free fatty acids (SFAs), which are increased significantly in NASH, are directly hepatotoxic which induce hepatocyte lipoapoptosis. Previously, we reported that protein phosphatase 4 (PP4) was a novel regulator of hepatic insulin resistance and lipid metabolism, but its role in hepatic lipoapoptosis remains unexplored. In this study, we found out that PP4 was upregulated in the livers of western diet-fed-induced NASH mice and SFA-treated murine primary hepatocytes and HepG2 cells. In addition, we found for the first time that suppression of PP4 decreased SFA-induced JNK activation and expression of key modulators of hepatocyte lipoapoptosis including p53-upregulated modulator of apoptosis (PUMA) and Bcl-2-interacting mediator (Bim) and reduced hepatocyte lipoapoptosis level as well both in vitro and in vivo. Further study revealed that PP4 induced JNK activation and lipoapoptosis-related protein expression by regulating the RAC1/MLK3 pathway instead of the PERK/CHOP pathway. The effects of palmitate-treated and PP4-induced lipoapoptosis pathway activation were largely abolished by RAC1 inhibition. Moreover, we identified that PP4 interacted with RAC1 and regulated GTPase activity of RAC1. In conclusion, these results demonstrated that PP4 was a novel regulator of hepatocyte lipoapoptosis and mediated hepatocyte lipoapoptosis by regulating the RAC1/MLK3/JNK signaling pathway. Our finding provided new insights into the mechanisms of this process.


Asunto(s)
Hepatocitos/metabolismo , Calicreínas/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Sistema de Señalización de MAP Quinasas , Neuropéptidos/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Antígeno Prostático Específico/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Animales , Apoptosis/fisiología , Línea Celular Tumoral , Hepatocitos/citología , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteina Quinasa Quinasa Quinasa 11 Activada por Mitógeno
20.
JCI Insight ; 6(18)2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34324442

RESUMEN

cGMP-dependent protein kinase 1α (PKG1α) promotes left ventricle (LV) compensation after pressure overload. PKG1-activating drugs improve heart failure (HF) outcomes but are limited by vasodilation-induced hypotension. Signaling molecules that mediate PKG1α cardiac therapeutic effects but do not promote PKG1α-induced hypotension could therefore represent improved therapeutic targets. We investigated roles of mixed lineage kinase 3 (MLK3) in mediating PKG1α effects on LV function after pressure overload and in regulating BP. In a transaortic constriction HF model, PKG activation with sildenafil preserved LV function in MLK3+/+ but not MLK3-/- littermates. MLK3 coimmunoprecipitated with PKG1α. MLK3-PKG1α cointeraction decreased in failing LVs. PKG1α phosphorylated MLK3 on Thr277/Ser281 sites required for kinase activation. MLK3-/- mice displayed hypertension and increased arterial stiffness, though PKG stimulation with sildenafil or the soluble guanylate cyclase (sGC) stimulator BAY41-2272 still reduced BP in MLK3-/- mice. MLK3 kinase inhibition with URMC-099 did not affect BP but induced LV dysfunction in mice. These data reveal MLK3 as a PKG1α substrate mediating PKG1α preservation of LV function but not acute PKG1α BP effects. Mechanistically, MLK3 kinase-dependent effects preserved LV function, whereas MLK3 kinase-independent signaling regulated BP. These findings suggest augmenting MLK3 kinase activity could preserve LV function in HF but avoid hypotension from PKG1α activation.


Asunto(s)
Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Insuficiencia Cardíaca/fisiopatología , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Disfunción Ventricular Izquierda/fisiopatología , Animales , Aorta/patología , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/genética , Células HEK293 , Insuficiencia Cardíaca/complicaciones , Humanos , Hipertensión/genética , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Masculino , Ratones , Ratones Noqueados , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/farmacología , Piridinas/farmacología , Pirroles/farmacología , Citrato de Sildenafil/farmacología , Rigidez Vascular/genética , Vasodilatadores/farmacología , Disfunción Ventricular Izquierda/etiología , Proteina Quinasa Quinasa Quinasa 11 Activada por Mitógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...